organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(3-Fluoro­phen­yl)ethyl­­idene]formohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 October 2009; accepted 18 October 2009; online 23 October 2009)

In the title compound, C9H9FN2O, the dihedral angle between the fluoro­benzene ring and the mean plane of the side chain is 15.59 (14)°. In the crystal, the mol­ecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, resulting in R22(8) loops. These dimers are reinforced by C—H⋯O inter­actions.

Related literature

For related structures, see: Shafiq et al. (2009a[Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2494.],b[Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2495.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9FN2O

  • Mr = 180.18

  • Triclinic, [P \overline 1]

  • a = 6.8466 (5) Å

  • b = 7.0258 (6) Å

  • c = 9.9419 (8) Å

  • α = 70.558 (5)°

  • β = 81.267 (5)°

  • γ = 73.977 (4)°

  • V = 432.50 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.986, Tmax = 0.990

  • 19438 measured reflections

  • 2124 independent reflections

  • 1320 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.148

  • S = 1.00

  • 2124 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.14 2.989 (2) 168
C8—H8A⋯O1i 0.96 2.52 3.204 (3) 129
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently we have reported the crystal structures of (II) N'-[(1E)-1-(4-Chlorophenyl)ethylidene]formohydrazide (Shafiq et al., 2009a), (III) N'-[(E)-(5-Methylfuran-2-yl)methylidene]formohydrazide (Shafiq et al., 2009b). The title compound (I, Fig. 1) has been prepared in continuation of synthesizing various formohydrazide derivatives.

In (I), the groups A (C1—C6/F1) and B (C7/C8/N1/N2/C9) are planar with maximum r. m. s. deviations of 0.0022 and 0.0146 Å, respectively from their mean squares planes. The dihedral angle between A/B is 15.59 (14)°.

The molecules of (I) consist of dimers similar to (II) and (III) due to N–H···O type of intermolecular H-bondings forming R22(8) ring motifs (Bernstein et al., 1995). The difference between (I) and (II) is the substitution of Cl and F-atom on the para and meta positions of benzene ring, respectively. Due to this change there exist two R21(7) ring motifs in dimers due to C–H···O and N—H···O H-bondings (Table 1).

Related literature top

For related structures, see: Shafiq et al. (2009a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of formic hydrazide (1.0 g, 0.017 mol) in ethanol (15 ml) was added 1-(3-fluorophenyl)ethanone (2.043 ml, 0.017 mol). The resultant mixture was then heated under reflux. The reaction mixture was refluxed about 12 h and monitored through TLC. After the completion of reaction, the mixture was cooled to room temperature. The solid was collected by suction filtration. The product obtained was washed with hot ethanol and 1,4-dioxan and dried. Colourless needles of (I) were obtained by recrystallization of the crude product in 1,4-dioxan after two days.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

Recently we have reported the crystal structures of (II) N'-[(1E)-1-(4-Chlorophenyl)ethylidene]formohydrazide (Shafiq et al., 2009a), (III) N'-[(E)-(5-Methylfuran-2-yl)methylidene]formohydrazide (Shafiq et al., 2009b). The title compound (I, Fig. 1) has been prepared in continuation of synthesizing various formohydrazide derivatives.

In (I), the groups A (C1—C6/F1) and B (C7/C8/N1/N2/C9) are planar with maximum r. m. s. deviations of 0.0022 and 0.0146 Å, respectively from their mean squares planes. The dihedral angle between A/B is 15.59 (14)°.

The molecules of (I) consist of dimers similar to (II) and (III) due to N–H···O type of intermolecular H-bondings forming R22(8) ring motifs (Bernstein et al., 1995). The difference between (I) and (II) is the substitution of Cl and F-atom on the para and meta positions of benzene ring, respectively. Due to this change there exist two R21(7) ring motifs in dimers due to C–H···O and N—H···O H-bondings (Table 1).

For related structures, see: Shafiq et al. (2009a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form dimers.
N'-[(E)-1-(3-Fluorophenyl)ethylidene]formohydrazide top
Crystal data top
C9H9FN2OZ = 2
Mr = 180.18F(000) = 188
Triclinic, P1Dx = 1.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8466 (5) ÅCell parameters from 2124 reflections
b = 7.0258 (6) Åθ = 3.1–28.3°
c = 9.9419 (8) ŵ = 0.11 mm1
α = 70.558 (5)°T = 296 K
β = 81.267 (5)°Cut needle, colourless
γ = 73.977 (4)°0.28 × 0.12 × 0.10 mm
V = 432.50 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2124 independent reflections
Radiation source: fine-focus sealed tube1320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.986, Tmax = 0.990l = 1312
19438 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.1041P]
where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H9FN2Oγ = 73.977 (4)°
Mr = 180.18V = 432.50 (6) Å3
Triclinic, P1Z = 2
a = 6.8466 (5) ÅMo Kα radiation
b = 7.0258 (6) ŵ = 0.11 mm1
c = 9.9419 (8) ÅT = 296 K
α = 70.558 (5)°0.28 × 0.12 × 0.10 mm
β = 81.267 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1320 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.990Rint = 0.028
19438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2124 reflectionsΔρmin = 0.20 e Å3
119 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.17799 (17)0.19897 (19)0.11146 (13)0.0654 (5)
O10.27158 (19)1.0743 (2)0.48303 (16)0.0571 (5)
N10.0361 (2)0.6861 (2)0.32755 (15)0.0397 (4)
N20.0531 (2)0.8255 (2)0.40149 (15)0.0423 (5)
C10.1524 (2)0.4305 (3)0.22398 (18)0.0385 (5)
C20.0221 (3)0.3804 (3)0.20534 (18)0.0414 (5)
C30.0068 (3)0.2466 (3)0.12916 (19)0.0443 (6)
C40.1727 (3)0.1578 (3)0.0688 (3)0.0600 (8)
C50.3447 (3)0.2084 (4)0.0867 (3)0.0734 (10)
C60.3367 (3)0.3417 (3)0.1637 (2)0.0582 (7)
C70.1417 (2)0.5780 (3)0.30417 (18)0.0395 (5)
C80.3324 (3)0.5870 (4)0.3542 (3)0.0689 (8)
C90.2381 (3)0.9408 (3)0.4233 (2)0.0462 (6)
H20.147950.437320.244330.0496*
H2A0.052150.837560.432420.0507*
H40.178120.066890.017690.0720*
H50.469340.151680.045990.0882*
H60.455660.372300.175380.0698*
H8A0.305190.604320.447550.1034*
H8B0.380930.702260.288850.1034*
H8C0.433880.460050.358380.1034*
H90.348090.918440.391330.0554*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0472 (7)0.0812 (9)0.0917 (9)0.0205 (6)0.0071 (6)0.0522 (7)
O10.0416 (7)0.0611 (9)0.0844 (10)0.0063 (6)0.0031 (6)0.0510 (8)
N10.0379 (7)0.0397 (8)0.0486 (8)0.0064 (6)0.0014 (6)0.0256 (7)
N20.0350 (7)0.0458 (8)0.0558 (9)0.0057 (6)0.0034 (6)0.0312 (7)
C10.0353 (8)0.0386 (9)0.0457 (10)0.0038 (7)0.0042 (7)0.0217 (8)
C20.0348 (8)0.0458 (10)0.0482 (10)0.0059 (7)0.0000 (7)0.0247 (8)
C30.0392 (9)0.0480 (10)0.0543 (11)0.0110 (8)0.0071 (7)0.0248 (9)
C40.0485 (11)0.0681 (13)0.0841 (15)0.0068 (9)0.0018 (10)0.0570 (12)
C50.0407 (10)0.0940 (18)0.112 (2)0.0058 (10)0.0056 (11)0.0791 (16)
C60.0332 (9)0.0723 (14)0.0886 (15)0.0071 (9)0.0009 (9)0.0558 (12)
C70.0357 (8)0.0408 (9)0.0470 (10)0.0046 (7)0.0058 (7)0.0224 (8)
C80.0423 (10)0.0802 (15)0.1084 (18)0.0019 (10)0.0197 (11)0.0673 (14)
C90.0356 (9)0.0491 (10)0.0638 (12)0.0082 (7)0.0003 (8)0.0330 (9)
Geometric parameters (Å, º) top
F1—C31.355 (2)C4—C51.372 (3)
O1—C91.223 (3)C5—C61.379 (3)
N1—N21.380 (2)C7—C81.490 (3)
N1—C71.278 (2)C2—H20.9300
N2—C91.332 (3)C4—H40.9300
N2—H2A0.8600C5—H50.9300
C1—C21.389 (3)C6—H60.9300
C1—C71.485 (3)C8—H8A0.9600
C1—C61.388 (3)C8—H8B0.9600
C2—C31.365 (3)C8—H8C0.9600
C3—C41.364 (3)C9—H90.9300
N2—N1—C7117.88 (15)O1—C9—N2123.78 (19)
N1—N2—C9117.74 (15)C1—C2—H2120.00
C9—N2—H2A121.00C3—C2—H2120.00
N1—N2—H2A121.00C3—C4—H4121.00
C6—C1—C7120.83 (15)C5—C4—H4121.00
C2—C1—C7120.92 (16)C4—C5—H5119.00
C2—C1—C6118.24 (18)C6—C5—H5119.00
C1—C2—C3119.28 (19)C1—C6—H6120.00
C2—C3—C4123.5 (2)C5—C6—H6120.00
F1—C3—C2118.80 (18)C7—C8—H8A109.00
F1—C3—C4117.74 (18)C7—C8—H8B109.00
C3—C4—C5117.2 (2)C7—C8—H8C109.00
C4—C5—C6121.4 (2)H8A—C8—H8B110.00
C1—C6—C5120.5 (2)H8A—C8—H8C109.00
N1—C7—C1115.92 (14)H8B—C8—H8C109.00
N1—C7—C8124.86 (19)O1—C9—H9118.00
C1—C7—C8119.20 (17)N2—C9—H9118.00
C7—N1—N2—C9178.74 (16)C2—C1—C7—C8164.42 (19)
N2—N1—C7—C1179.88 (14)C6—C1—C7—N1164.85 (17)
N2—N1—C7—C81.7 (3)C6—C1—C7—C816.6 (3)
N1—N2—C9—O1177.46 (17)C1—C2—C3—F1179.92 (16)
C6—C1—C2—C30.1 (3)C1—C2—C3—C40.2 (3)
C7—C1—C2—C3179.02 (17)F1—C3—C4—C5179.6 (2)
C2—C1—C6—C50.4 (3)C2—C3—C4—C50.2 (4)
C7—C1—C6—C5178.6 (2)C3—C4—C5—C60.7 (4)
C2—C1—C7—N114.1 (3)C4—C5—C6—C10.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.142.989 (2)168
C8—H8A···O1i0.962.523.204 (3)129
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC9H9FN2O
Mr180.18
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8466 (5), 7.0258 (6), 9.9419 (8)
α, β, γ (°)70.558 (5), 81.267 (5), 73.977 (4)
V3)432.50 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.986, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
19438, 2124, 1320
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.148, 1.00
No. of reflections2124
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.142.989 (2)168
C8—H8A···O1i0.962.523.204 (3)129
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds