metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(5-formyl-2-hy­droxy­phenyl-κC1)mercury(II)

aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: zhengzebao@163.com

(Received 19 October 2009; accepted 22 October 2009; online 28 October 2009)

In the planar (r.m.s. deviation = 0.027 Å) title compound, [Hg(C7H5O2)Cl], the HgII atom shows a typical linear coordination by a C atom of the benzene ring and a Cl atom. Inter­molecular O—H⋯O hydrogen bonds are present in the crystal structure, resulting in chains propagating along the b axis. The crystal studied was a non-merohedral twin, with a twin ratio of 0.802 (2):0.198 (2).

Related literature

For general background to the use of cyclo­metallated compounds in synthesis, catalysis and materials, see: Gruter et al. (1995[Gruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev. 95, 2405-2456.]); Dupont et al. (2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]). For related structures and the synthesis of related cyclo­mercurated compounds, see: Xu et al. (2009[Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009). Acta Cryst. E65, m754.]). For the preparation of cyclo­mercurated compounds, see: Ryabov et al. (2003[Ryabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. & Pfeffer, M. (2003). Inorg. Chem. 42, 6598-6600.]); Wu et al. (2001[Wu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. & Song, M. P. (2001). J. Organomet. Chem. 637-639, 27-46.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C7H5O2)Cl]

  • Mr = 357.15

  • Monoclinic, P 21 /c

  • a = 4.1004 (10) Å

  • b = 14.842 (3) Å

  • c = 14.116 (3) Å

  • β = 106.657 (6)°

  • V = 823.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 18.97 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.116, Tmax = 0.151

  • 4116 measured reflections

  • 1424 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.09

  • 1424 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 2.05 e Å−3

  • Δρmin = −1.73 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—C3 2.058 (13)
Hg1—Cl1 2.326 (4)
C3—Hg1—Cl1 179.1 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.91 2.727 (16) 172
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter et al., 1995; Dupont et al., 2005). Among them, cyclomercurated compounds are easy to prepare through a C–H activation process and are stable but reasonably reactive (Wu et al., 2001; Ryabov et al., 2003).

In the planar title compound (Fig. 1), the mercury(II) atom shows a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. O2–Hg1 distance (3.047 (2) Å) is much longer than those of the related Hg(II) complex (Xu et al., 2009). The C–Hg and Hg–Cl bond distances are within normal ranges. The C3–Hg1–Cl1 angle is 179.1 (4) °. Intermolecular O—H···O hydrogen bonds are present in the crystal structure (Table 1), resulting in a one-dimensional supramolecular architecture (Fig.2).

Related literature top

For general background to the use of cyclometallated compounds in synthesis, catalysis and materials, see: Gruter et al. (1995); Dupont et al., (2005). For related structures and the synthesis of related cyclomercurated compounds, see: Xu et al. (2009). For the preparation of cyclomercurated compounds through a C–H activation process, see: Ryabov et al. (2003); Wu et al. (2001).

Experimental top

The title compound was prepared from the p-hydroxybenzaldehyde with Hg(OAc)2 and subsequent treatment with LiCl and recrystallized from dichloromethane-petroleum ether solution at room temperature to give (I) as colorless crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93–0.96 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N), and 1.5Ueq(O).

The structure is a non-merohdral twin. The twin law, as given by PLATON (Spek, 2009), is (-1 0 0, 0 - 1 0, 2 0 1), which lowered the R1 index from 0.116 to 0.039.

Structure description top

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter et al., 1995; Dupont et al., 2005). Among them, cyclomercurated compounds are easy to prepare through a C–H activation process and are stable but reasonably reactive (Wu et al., 2001; Ryabov et al., 2003).

In the planar title compound (Fig. 1), the mercury(II) atom shows a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. O2–Hg1 distance (3.047 (2) Å) is much longer than those of the related Hg(II) complex (Xu et al., 2009). The C–Hg and Hg–Cl bond distances are within normal ranges. The C3–Hg1–Cl1 angle is 179.1 (4) °. Intermolecular O—H···O hydrogen bonds are present in the crystal structure (Table 1), resulting in a one-dimensional supramolecular architecture (Fig.2).

For general background to the use of cyclometallated compounds in synthesis, catalysis and materials, see: Gruter et al. (1995); Dupont et al., (2005). For related structures and the synthesis of related cyclomercurated compounds, see: Xu et al. (2009). For the preparation of cyclomercurated compounds through a C–H activation process, see: Ryabov et al. (2003); Wu et al. (2001).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the formation of the one-dimensional chain structure formed by the intermolecular O—H···O hydrogen bonds.
Chlorido(5-formyl-2-hydroxyphenyl-κC1)mercury(II) top
Crystal data top
[Hg(C7H5O2)Cl]F(000) = 640
Mr = 357.15Dx = 2.882 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2640 reflections
a = 4.1004 (10) Åθ = 2.7–29.5°
b = 14.842 (3) ŵ = 18.97 mm1
c = 14.116 (3) ÅT = 295 K
β = 106.657 (6)°Block, colorless
V = 823.0 (3) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1424 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.116, Tmax = 0.151k = 1217
4116 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0429P)2 + 12.0653P]
where P = (Fo2 + 2Fc2)/3
1424 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 2.05 e Å3
0 restraintsΔρmin = 1.73 e Å3
Crystal data top
[Hg(C7H5O2)Cl]V = 823.0 (3) Å3
Mr = 357.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1004 (10) ŵ = 18.97 mm1
b = 14.842 (3) ÅT = 295 K
c = 14.116 (3) Å0.20 × 0.18 × 0.16 mm
β = 106.657 (6)°
Data collection top
Bruker SMART CCD
diffractometer
1424 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1333 reflections with I > 2σ(I)
Tmin = 0.116, Tmax = 0.151Rint = 0.039
4116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0429P)2 + 12.0653P]
where P = (Fo2 + 2Fc2)/3
1424 reflectionsΔρmax = 2.05 e Å3
101 parametersΔρmin = 1.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.32843 (16)0.87897 (3)0.53385 (4)0.0345 (2)
Cl10.5374 (10)0.9140 (2)0.4016 (3)0.0405 (8)
O10.093 (5)1.0269 (8)0.8767 (9)0.076 (4)
O20.069 (4)0.6993 (7)0.5877 (8)0.055 (3)
H20.00230.64930.59820.083*
C10.031 (5)0.8833 (8)0.8033 (11)0.038 (3)
C20.131 (4)0.9074 (9)0.7223 (10)0.033 (3)
H2A0.18980.96710.71530.040*
C30.148 (4)0.8460 (9)0.6511 (9)0.029 (3)
C40.052 (4)0.7564 (10)0.6613 (10)0.036 (3)
C50.063 (5)0.7317 (9)0.7410 (11)0.042 (3)
H50.12880.67240.74670.051*
C60.081 (4)0.7932 (10)0.8110 (10)0.039 (4)
H60.16420.77660.86310.047*
C70.007 (6)0.9495 (12)0.8760 (11)0.059 (5)
H70.11190.93190.92350.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0437 (3)0.0258 (3)0.0364 (3)0.0009 (2)0.0153 (3)0.0038 (2)
Cl10.050 (2)0.0390 (18)0.0357 (17)0.0049 (17)0.0181 (16)0.0012 (15)
O10.133 (14)0.035 (6)0.067 (8)0.005 (8)0.040 (9)0.009 (6)
O20.099 (11)0.028 (5)0.047 (6)0.014 (6)0.033 (7)0.007 (5)
C10.050 (10)0.022 (7)0.043 (8)0.011 (6)0.015 (7)0.002 (5)
C20.036 (8)0.021 (6)0.044 (8)0.008 (6)0.013 (6)0.008 (6)
C30.032 (7)0.021 (6)0.030 (7)0.002 (6)0.003 (5)0.007 (5)
C40.042 (8)0.030 (7)0.029 (7)0.003 (6)0.002 (6)0.003 (6)
C50.061 (10)0.021 (6)0.047 (8)0.005 (7)0.020 (8)0.008 (6)
C60.052 (9)0.034 (8)0.034 (7)0.005 (7)0.014 (7)0.016 (6)
C70.096 (15)0.048 (10)0.038 (9)0.017 (10)0.027 (10)0.009 (7)
Geometric parameters (Å, º) top
Hg1—C32.058 (13)C2—C31.37 (2)
Hg1—Cl12.326 (4)C2—H2A0.9300
O1—C71.22 (2)C3—C41.405 (19)
O2—C41.357 (17)C4—C51.39 (2)
O2—H20.8193C5—C61.36 (2)
C1—C21.37 (2)C5—H50.9300
C1—C61.428 (19)C6—H60.9300
C1—C71.46 (2)C7—H70.9300
C3—Hg1—Cl1179.1 (4)O2—C4—C3115.9 (13)
C4—O2—H2109.5C5—C4—C3120.1 (13)
C2—C1—C6119.2 (13)C6—C5—C4120.8 (13)
C2—C1—C7121.9 (13)C6—C5—H5119.6
C6—C1—C7118.4 (15)C4—C5—H5119.6
C1—C2—C3121.8 (13)C5—C6—C1119.2 (13)
C1—C2—H2A119.1C5—C6—H6120.4
C3—C2—H2A119.1C1—C6—H6120.4
C2—C3—C4118.7 (13)O1—C7—C1122.3 (17)
C2—C3—Hg1122.4 (10)O1—C7—H7118.8
C4—C3—Hg1118.8 (10)C1—C7—H7118.8
O2—C4—C5123.9 (13)
C6—C1—C2—C34 (2)O2—C4—C5—C6178.4 (16)
C7—C1—C2—C3176.1 (16)C3—C4—C5—C61 (2)
C1—C2—C3—C41 (2)C4—C5—C6—C12 (3)
C1—C2—C3—Hg1175.8 (12)C2—C1—C6—C54 (2)
C2—C3—C4—O2179.0 (14)C7—C1—C6—C5176.7 (16)
Hg1—C3—C4—O23.9 (18)C2—C1—C7—O111 (3)
C2—C3—C4—C51 (2)C6—C1—C7—O1177.2 (19)
Hg1—C3—C4—C5178.5 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.912.727 (16)172
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Hg(C7H5O2)Cl]
Mr357.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)4.1004 (10), 14.842 (3), 14.116 (3)
β (°) 106.657 (6)
V3)823.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)18.97
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.116, 0.151
No. of measured, independent and
observed [I > 2σ(I)] reflections
4116, 1424, 1333
Rint0.039
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.09
No. of reflections1424
No. of parameters101
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0429P)2 + 12.0653P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.05, 1.73

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Hg1—C32.058 (13)Hg1—Cl12.326 (4)
C3—Hg1—Cl1179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.912.727 (16)172
Symmetry code: (i) x, y1/2, z+3/2.
 

References

First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev. 95, 2405–2456.  CrossRef CAS Web of Science Google Scholar
First citationRyabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. & Pfeffer, M. (2003). Inorg. Chem. 42, 6598–6600.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. & Song, M. P. (2001). J. Organomet. Chem. 637–639, 27–46.  Web of Science CrossRef CAS Google Scholar
First citationXu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009). Acta Cryst. E65, m754.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds