organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(3-eth­­oxy-2-hy­droxy­benzyl­­idene)carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 19 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, C12H16N2O4, an intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating in the [010] direction.

Related literature

For background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O4

  • Mr = 252.27

  • Orthorhombic, P 21 21 21

  • a = 7.1140 (14) Å

  • b = 9.6010 (19) Å

  • c = 18.570 (4) Å

  • V = 1268.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 11976 measured reflections

  • 2917 independent reflections

  • 2680 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.07

  • 2917 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N2 0.82 1.91 2.6290 (15) 145
N1—H1A⋯O2i 0.86 2.31 2.9633 (15) 132
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to Schiff bases, see: Cimerman et al. (1997).

Experimental top

A mixture of 3-ethoxy-2-hydroxybenzaldehyde (0.1 mol), and ethyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.082 mol, yield 82%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

Refinement of the Flack absolute structure parameter was indeterminate.

H atoms were fixed geometrically (C—H = 0.93–0.97Å, O—H = 0.82Å, N—H = 0.86Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(carrier).

Structure description top

For background to Schiff bases, see: Cimerman et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
Ethyl 3-(3-ethoxy-2-hydroxybenzylidene)carbazate top
Crystal data top
C12H16N2O4F(000) = 536
Mr = 252.27Dx = 1.321 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1982 reflections
a = 7.1140 (14) Åθ = 3.5–27.3°
b = 9.6010 (19) ŵ = 0.10 mm1
c = 18.570 (4) ÅT = 293 K
V = 1268.4 (4) Å3Block, colourless
Z = 40.22 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
2680 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 89
11976 measured reflectionsk = 1212
2917 independent reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.0849P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H16N2O4V = 1268.4 (4) Å3
Mr = 252.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1140 (14) ŵ = 0.10 mm1
b = 9.6010 (19) ÅT = 293 K
c = 18.570 (4) Å0.22 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
2680 reflections with I > 2σ(I)
11976 measured reflectionsRint = 0.043
2917 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
2917 reflectionsΔρmin = 0.18 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32636 (13)0.00340 (9)0.17092 (5)0.0507 (3)
N20.73581 (14)0.03948 (10)0.26990 (6)0.0400 (2)
O40.90478 (14)0.23476 (9)0.34513 (6)0.0514 (3)
H4A0.81930.20080.32120.077*
N10.59340 (15)0.01343 (11)0.22830 (6)0.0447 (3)
H1A0.59640.09860.21400.054*
O20.43343 (15)0.19175 (9)0.22560 (6)0.0530 (3)
C30.44812 (18)0.07057 (13)0.21020 (7)0.0398 (3)
O31.19430 (15)0.31435 (11)0.41917 (6)0.0563 (3)
C101.04046 (17)0.13798 (13)0.35560 (7)0.0379 (3)
C40.87138 (19)0.04316 (13)0.28510 (7)0.0418 (3)
H4B0.86790.13440.26840.050*
C51.03034 (18)0.00269 (13)0.32791 (7)0.0396 (3)
C81.3410 (2)0.08581 (17)0.40856 (8)0.0522 (3)
H8A1.44490.11250.43560.063*
C91.1983 (2)0.17984 (14)0.39607 (7)0.0433 (3)
C111.3491 (2)0.36144 (18)0.46182 (8)0.0569 (4)
H11A1.35840.30700.50570.068*
H11B1.46570.35190.43520.068*
C61.1784 (2)0.08977 (15)0.34131 (8)0.0500 (3)
H6A1.17320.17990.32310.060*
C20.1594 (2)0.06859 (15)0.14570 (9)0.0503 (3)
H2B0.06230.00070.13510.060*
H2C0.11310.12910.18360.060*
C71.3308 (2)0.04877 (18)0.38097 (9)0.0583 (4)
H7A1.42820.11120.38950.070*
C121.3135 (3)0.51120 (19)0.47940 (11)0.0702 (5)
H12A1.41590.54680.50760.105*
H12B1.30320.56380.43560.105*
H12C1.19870.51910.50630.105*
C10.1972 (3)0.1532 (2)0.08008 (10)0.0710 (5)
H1B0.08390.19940.06540.106*
H1C0.29220.22120.09050.106*
H1D0.23990.09330.04200.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0523 (5)0.0346 (5)0.0654 (6)0.0008 (4)0.0193 (5)0.0033 (4)
N20.0422 (5)0.0344 (5)0.0433 (5)0.0040 (4)0.0032 (4)0.0007 (4)
O40.0488 (5)0.0345 (5)0.0708 (6)0.0054 (4)0.0190 (5)0.0043 (4)
N10.0486 (6)0.0311 (5)0.0545 (6)0.0019 (4)0.0116 (5)0.0051 (4)
O20.0618 (6)0.0288 (4)0.0683 (6)0.0011 (4)0.0139 (5)0.0029 (4)
C30.0454 (6)0.0310 (5)0.0429 (6)0.0050 (5)0.0035 (6)0.0037 (5)
O30.0554 (6)0.0443 (5)0.0693 (6)0.0021 (4)0.0214 (5)0.0068 (4)
C100.0393 (6)0.0355 (6)0.0387 (6)0.0011 (5)0.0014 (5)0.0041 (5)
C40.0484 (6)0.0325 (6)0.0445 (6)0.0012 (5)0.0015 (6)0.0015 (5)
C50.0413 (6)0.0398 (6)0.0376 (6)0.0017 (5)0.0014 (5)0.0025 (5)
C80.0446 (7)0.0583 (9)0.0535 (8)0.0041 (6)0.0122 (7)0.0008 (6)
C90.0457 (7)0.0416 (7)0.0426 (6)0.0011 (5)0.0049 (6)0.0016 (5)
C110.0536 (8)0.0620 (9)0.0550 (8)0.0109 (7)0.0132 (7)0.0057 (7)
C60.0533 (8)0.0414 (7)0.0554 (8)0.0104 (6)0.0007 (7)0.0036 (6)
C20.0455 (7)0.0405 (7)0.0647 (8)0.0012 (6)0.0117 (7)0.0035 (6)
C70.0506 (8)0.0592 (9)0.0650 (9)0.0189 (7)0.0082 (7)0.0003 (7)
C120.0665 (10)0.0650 (10)0.0791 (11)0.0153 (9)0.0034 (9)0.0201 (9)
C10.0691 (10)0.0819 (12)0.0618 (9)0.0041 (10)0.0130 (9)0.0153 (9)
Geometric parameters (Å, º) top
O1—C31.3367 (15)C8—C71.392 (2)
O1—C21.4516 (17)C8—H8A0.9300
N2—C41.2803 (17)C11—C121.496 (3)
N2—N11.3715 (14)C11—H11A0.9700
O4—C101.3539 (15)C11—H11B0.9700
O4—H4A0.8200C6—C71.368 (2)
N1—C31.3533 (16)C6—H6A0.9300
N1—H1A0.8600C2—C11.489 (2)
O2—C31.2026 (15)C2—H2B0.9700
O3—C91.3611 (17)C2—H2C0.9700
O3—C111.4299 (17)C7—H7A0.9300
C10—C51.3988 (18)C12—H12A0.9600
C10—C91.4095 (18)C12—H12B0.9600
C4—C51.4508 (18)C12—H12C0.9600
C4—H4B0.9300C1—H1B0.9600
C5—C61.3998 (18)C1—H1C0.9600
C8—C91.3783 (19)C1—H1D0.9600
C3—O1—C2116.95 (10)O3—C11—H11B110.3
C4—N2—N1116.81 (10)C12—C11—H11B110.3
C10—O4—H4A109.5H11A—C11—H11B108.5
C3—N1—N2118.90 (10)C7—C6—C5120.62 (13)
C3—N1—H1A120.5C7—C6—H6A119.7
N2—N1—H1A120.5C5—C6—H6A119.7
O2—C3—O1125.97 (12)O1—C2—C1112.09 (13)
O2—C3—N1125.72 (12)O1—C2—H2B109.2
O1—C3—N1108.29 (10)C1—C2—H2B109.2
C9—O3—C11117.30 (12)O1—C2—H2C109.2
O4—C10—C5123.22 (11)C1—C2—H2C109.2
O4—C10—C9116.66 (11)H2B—C2—H2C107.9
C5—C10—C9120.12 (11)C6—C7—C8120.42 (13)
N2—C4—C5121.33 (11)C6—C7—H7A119.8
N2—C4—H4B119.3C8—C7—H7A119.8
C5—C4—H4B119.3C11—C12—H12A109.5
C10—C5—C6119.00 (12)C11—C12—H12B109.5
C10—C5—C4121.56 (11)H12A—C12—H12B109.5
C6—C5—C4119.44 (12)C11—C12—H12C109.5
C9—C8—C7120.52 (13)H12A—C12—H12C109.5
C9—C8—H8A119.7H12B—C12—H12C109.5
C7—C8—H8A119.7C2—C1—H1B109.5
O3—C9—C8125.71 (12)C2—C1—H1C109.5
O3—C9—C10114.97 (12)H1B—C1—H1C109.5
C8—C9—C10119.32 (12)C2—C1—H1D109.5
O3—C11—C12107.13 (14)H1B—C1—H1D109.5
O3—C11—H11A110.3H1C—C1—H1D109.5
C12—C11—H11A110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.821.912.6290 (15)145
N1—H1A···O2i0.862.312.9633 (15)132
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2O4
Mr252.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.1140 (14), 9.6010 (19), 18.570 (4)
V3)1268.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11976, 2917, 2680
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.07
No. of reflections2917
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.821.912.6290 (15)145
N1—H1A···O2i0.862.312.9633 (15)132
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank the Science Foundation of Weifang University (No. 2009Z24).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds