organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Bis[5-methyl-3-(tri­fluoro­meth­yl)pyrazol-1-yl]pyrimidine

aKey Laboratory of Pesticide Chemistry and Applications, Ministry of Agriculture, Institute of Plant Protection Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
*Correspondence e-mail: jning502@yahoo.com.cn

(Received 19 October 2009; accepted 22 October 2009; online 28 October 2009)

The complete mol­ecule of the the title compound, C14H10F6N6, is generated by crystallographic twofold symmetry, with two C atoms lying on the roatation axis. The dihedral angle between the central and peripheral rings is 25.97 (8)°.

Related literature

For background to fluorine-containing heterocycles and their properties, see: Krishnaiah & Narsaiah (2002[Krishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem. 115, 9-11.]); Ohno et al. (2004[Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F6N6

  • Mr = 376.28

  • Monoclinic, C 2/c

  • a = 8.5387 (14) Å

  • b = 16.110 (6) Å

  • c = 11.022 (5) Å

  • β = 99.295 (5)°

  • V = 1496.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 K

  • 0.41 × 0.36 × 0.26 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.938, Tmax = 0.960

  • 8915 measured reflections

  • 1706 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.100

  • S = 1.19

  • 1706 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Strategically positioned fluorine in heterocyclic compounds, especially those containing trifluromethyl groups plays an important role in medicines and agrochemicals (e.g. Krishnaiah & Narsaiah, 2002). Specifically, the fluorinated pyrazoles have been shown to possess high biological activities (e.g. Ohno et al. 2004) as herbicides, fungicides, insecticides, analgesics, antipyretics and antiinflammatories. Pyrazolopyrimidine and related fuesd heterocycles are of interest as potential bioactive molecules. Recently, the new title compound (I) was synthesized in our group with high herbicidal activity. The crystal structure of the compound (I) is shown in Fig. 1.

Related literature top

For background to fluorine-containing heterocycles and their properties, see: Krishnaiah & Narsaiah (2002); Ohno et al. (2004). Please provide caption for Fig. 1 (including probability level)

Experimental top

The title compound (0.1 g) was dissolved in anhydrous methanol (20 ml) at room temperature. Colourless blocks of (I) were obtained through slow evaporation after two weeks.

Refinement top

All the hydrogen atoms were placed in idealised positions with C—H = 0.93–0.98Å and Uiso (H) = 1.2–1.5Uep (C).

Structure description top

Strategically positioned fluorine in heterocyclic compounds, especially those containing trifluromethyl groups plays an important role in medicines and agrochemicals (e.g. Krishnaiah & Narsaiah, 2002). Specifically, the fluorinated pyrazoles have been shown to possess high biological activities (e.g. Ohno et al. 2004) as herbicides, fungicides, insecticides, analgesics, antipyretics and antiinflammatories. Pyrazolopyrimidine and related fuesd heterocycles are of interest as potential bioactive molecules. Recently, the new title compound (I) was synthesized in our group with high herbicidal activity. The crystal structure of the compound (I) is shown in Fig. 1.

For background to fluorine-containing heterocycles and their properties, see: Krishnaiah & Narsaiah (2002); Ohno et al. (2004). Please provide caption for Fig. 1 (including probability level)

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and atom-numbering scheme.
4,6-Bis[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]pyrimidine top
Crystal data top
C14H10F6N6F(000) = 760
Mr = 376.28Dx = 1.670 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 648 reflections
a = 8.5387 (14) Åθ = 2.2–27.5°
b = 16.110 (6) ŵ = 0.16 mm1
c = 11.022 (5) ÅT = 173 K
β = 99.295 (5)°Block, colorless
V = 1496.2 (9) Å30.41 × 0.36 × 0.26 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
1706 independent reflections
Radiation source: sealed tube1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 1111
Tmin = 0.938, Tmax = 0.960k = 2020
8915 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0291P)2 + 1.4916P]
where P = (Fo2 + 2Fc2)/3
1706 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H10F6N6V = 1496.2 (9) Å3
Mr = 376.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.5387 (14) ŵ = 0.16 mm1
b = 16.110 (6) ÅT = 173 K
c = 11.022 (5) Å0.41 × 0.36 × 0.26 mm
β = 99.295 (5)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
1706 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
1678 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.960Rint = 0.033
8915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.19Δρmax = 0.23 e Å3
1706 reflectionsΔρmin = 0.22 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.53252 (12)0.61885 (7)0.61601 (11)0.0484 (3)
F20.39212 (17)0.66320 (8)0.45033 (11)0.0610 (4)
F30.31154 (14)0.67824 (7)0.62363 (12)0.0544 (3)
N10.22004 (15)0.52452 (8)0.43231 (12)0.0284 (3)
N20.16127 (15)0.44751 (8)0.45125 (11)0.0269 (3)
N30.07685 (16)0.32384 (8)0.35077 (13)0.0311 (3)
C10.30268 (18)0.54413 (10)0.54059 (14)0.0288 (3)
C20.29725 (19)0.48203 (10)0.62924 (14)0.0310 (4)
H2A0.34700.48290.71280.037*
C30.20539 (18)0.42006 (10)0.57018 (14)0.0289 (3)
C40.1508 (2)0.34123 (11)0.62036 (16)0.0369 (4)
H4A0.17500.34230.71030.055*
H4B0.20540.29420.58920.055*
H4C0.03600.33530.59450.055*
C50.07580 (17)0.40647 (10)0.34787 (13)0.0266 (3)
C60.00000.45258 (14)0.25000.0265 (4)
H6A0.00000.51150.25000.032*
C70.00000.28736 (15)0.25000.0331 (5)
H7A0.00000.22840.25000.040*
C80.3840 (2)0.62608 (11)0.55639 (15)0.0342 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0298 (5)0.0524 (7)0.0594 (7)0.0036 (5)0.0038 (5)0.0096 (5)
F20.0863 (10)0.0544 (7)0.0384 (6)0.0291 (7)0.0011 (6)0.0066 (5)
F30.0461 (7)0.0431 (6)0.0754 (9)0.0017 (5)0.0146 (6)0.0206 (6)
N10.0275 (6)0.0310 (7)0.0259 (6)0.0002 (5)0.0011 (5)0.0002 (5)
N20.0254 (6)0.0302 (7)0.0242 (6)0.0013 (5)0.0014 (5)0.0006 (5)
N30.0300 (7)0.0313 (7)0.0311 (7)0.0019 (5)0.0023 (5)0.0010 (6)
C10.0251 (7)0.0353 (8)0.0256 (7)0.0034 (6)0.0027 (6)0.0028 (6)
C20.0288 (8)0.0393 (9)0.0239 (7)0.0063 (6)0.0013 (6)0.0011 (6)
C30.0270 (7)0.0350 (8)0.0244 (7)0.0070 (6)0.0038 (6)0.0024 (6)
C40.0432 (10)0.0373 (9)0.0296 (8)0.0035 (7)0.0044 (7)0.0062 (7)
C50.0223 (7)0.0324 (8)0.0252 (7)0.0012 (6)0.0043 (6)0.0016 (6)
C60.0236 (10)0.0292 (11)0.0262 (10)0.0000.0028 (8)0.000
C70.0341 (12)0.0291 (11)0.0352 (12)0.0000.0032 (9)0.000
C80.0318 (8)0.0394 (9)0.0304 (8)0.0008 (7)0.0014 (6)0.0031 (7)
Geometric parameters (Å, º) top
F1—C81.3359 (19)C2—C31.368 (2)
F2—C81.325 (2)C2—H2A0.9500
F3—C81.336 (2)C3—C41.490 (2)
N1—C11.323 (2)C4—H4A0.9800
N1—N21.3668 (19)C4—H4B0.9800
N2—C31.377 (2)C4—H4C0.9800
N2—C51.414 (2)C5—C61.3815 (19)
N3—C51.331 (2)C6—C5i1.3815 (19)
N3—C71.3319 (17)C6—H6A0.9500
C1—C21.404 (2)C7—N3i1.3319 (17)
C1—C81.489 (2)C7—H7A0.9500
C1—N1—N2103.56 (13)H4A—C4—H4C109.5
N1—N2—C3112.71 (12)H4B—C4—H4C109.5
N1—N2—C5117.12 (12)N3—C5—C6123.83 (15)
C3—N2—C5130.02 (14)N3—C5—N2116.59 (13)
C5—N3—C7114.87 (15)C6—C5—N2119.57 (15)
N1—C1—C2112.63 (15)C5i—C6—C5114.9 (2)
N1—C1—C8119.21 (14)C5i—C6—H6A122.5
C2—C1—C8128.13 (15)C5—C6—H6A122.5
C3—C2—C1105.64 (14)N3—C7—N3i127.6 (2)
C3—C2—H2A127.2N3—C7—H7A116.2
C1—C2—H2A127.2N3i—C7—H7A116.2
C2—C3—N2105.44 (14)F2—C8—F1107.01 (15)
C2—C3—C4129.45 (15)F2—C8—F3107.49 (16)
N2—C3—C4124.98 (15)F1—C8—F3105.65 (14)
C3—C4—H4A109.5F2—C8—C1112.77 (14)
C3—C4—H4B109.5F1—C8—C1111.59 (14)
H4A—C4—H4B109.5F3—C8—C1111.93 (14)
C3—C4—H4C109.5
C1—N1—N2—C30.68 (16)N1—N2—C5—N3152.46 (14)
C1—N1—N2—C5175.36 (13)C3—N2—C5—N322.8 (2)
N2—N1—C1—C20.63 (17)N1—N2—C5—C626.16 (18)
N2—N1—C1—C8179.10 (13)C3—N2—C5—C6158.62 (13)
N1—C1—C2—C30.37 (18)N3—C5—C6—C5i0.48 (11)
C8—C1—C2—C3178.67 (15)N2—C5—C6—C5i178.03 (15)
C1—C2—C3—N20.07 (17)C5—N3—C7—N3i0.43 (10)
C1—C2—C3—C4175.86 (16)N1—C1—C8—F214.0 (2)
N1—N2—C3—C20.47 (17)C2—C1—C8—F2167.76 (16)
C5—N2—C3—C2174.92 (14)N1—C1—C8—F1134.52 (15)
N1—N2—C3—C4175.69 (14)C2—C1—C8—F147.3 (2)
C5—N2—C3—C48.9 (3)N1—C1—C8—F3107.31 (17)
C7—N3—C5—C60.9 (2)C2—C1—C8—F370.9 (2)
C7—N3—C5—N2177.66 (11)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10F6N6
Mr376.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)8.5387 (14), 16.110 (6), 11.022 (5)
β (°) 99.295 (5)
V3)1496.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.41 × 0.36 × 0.26
Data collection
DiffractometerRigaku Saturn724+ CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.938, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
8915, 1706, 1678
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.100, 1.19
No. of reflections1706
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (No. 20070420444), the Major State Basic Research Development program of China (No. 2010CB126106 and No. 2006CB101907), and the 863 high-tech key project of China (2006AA10A203).

References

First citationKrishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem. 115, 9–11.  Web of Science CrossRef CAS Google Scholar
First citationOhno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15–26.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds