metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[[3-(2-pyrid­yl)-1H-pyrazole]cadmium(II)]-μ-oxalato] dihydrate]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 20 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, {[Cd(C2O4)(C8H7N3)]·2H2O}n, the CdII ion is chelated by two O,O′-bidentate oxalate ions and an N,N′-bidentate 3-(2-pyrid­yl)-1H-pyrazole mol­ecule, thereby generating a distorted cis-CdN2O4 octa­hedral geometry. Adjacent pairs of Cd ions are bridged by oxalate ions, resulting in wave-like polymeric chains propagating in [100]. The packing is consolidated by N—H—O and O—H—O hydrogen bonds.

Related literature

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998[Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.], 2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2O4)(C8H7N3)]·2H2O

  • Mr = 381.63

  • Triclinic, [P \overline 1]

  • a = 7.920 (2) Å

  • b = 9.663 (2) Å

  • c = 9.675 (2) Å

  • α = 92.940 (4)°

  • β = 108.555 (3)°

  • γ = 106.164 (4)°

  • V = 666.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.878

  • 3416 measured reflections

  • 2346 independent reflections

  • 2247 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.050

  • S = 1.00

  • 2346 reflections

  • 193 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.2802 (16)
Cd1—O2i 2.2850 (17)
Cd1—O3 2.3286 (17)
Cd1—O4ii 2.3010 (16)
Cd1—N1 2.365 (2)
Cd1—N2 2.292 (2)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5iii 0.86 1.85 2.696 (3) 169
O5—H2W⋯O2iv 0.82 (2) 2.20 (2) 2.861 (3) 138 (3)
O6—H3W⋯O4v 0.82 (4) 2.34 (3) 2.878 (3) 124 (3)
O6—H4W⋯O3vi 0.82 (4) 2.01 (4) 2.832 (3) 171 (4)
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y-1, z; (v) -x, -y+1, -z+1; (vi) x, y, z-1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tridentate ligand 3-(2-pyridyl)pyrazole and its derivatives have been used widely in the construction of supramolecular architectures by way of metal-organic coordination (Ward et al. 1998; 2001).

As a continuation of these studies, we now report the crystal structure of the title complex.

As shown in figure 1, the CdII ions are hexcoordianted, chelated by two oxalate and one 3-(2-pyridyl)pyrazole ligand (Table 1). While each oxalate ligand acts as one bridige to chalate two Cd ions, forming one wave-like line with Cd···Cd distance being 5.950 /%A, shown in Figure 2. The structure is consolidated by N—H···O and O—H···O hydrogen bonds (Table 2, Figure 3).

Related literature top

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001).

Experimental top

A mixture of Cd(CH3COO)2.2H2O (1 mmol, 0.027 g), oxalic acid (1 mmol, 0.09 g), sodium hydroxide (0.04 g, 1 mmol) and 3-(2-pyridyl)pyrazole (1 mmol, 0.15 g) and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, colorless prisms of (I) were obtained from the reaction mixture.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with C—H = 0.93 and Uiso(H) = 1.2Ueq(C). Two solvent water molecules are refined by using the 'DFIX' command with the hydrogen atoms were separated with 1.38 Å, and the lengths of bond H—O were constrained with 0.82 Å with error 0.02Å and Uiso = 1.5Ueq (O).

Structure description top

Tridentate ligand 3-(2-pyridyl)pyrazole and its derivatives have been used widely in the construction of supramolecular architectures by way of metal-organic coordination (Ward et al. 1998; 2001).

As a continuation of these studies, we now report the crystal structure of the title complex.

As shown in figure 1, the CdII ions are hexcoordianted, chelated by two oxalate and one 3-(2-pyridyl)pyrazole ligand (Table 1). While each oxalate ligand acts as one bridige to chalate two Cd ions, forming one wave-like line with Cd···Cd distance being 5.950 /%A, shown in Figure 2. The structure is consolidated by N—H···O and O—H···O hydrogen bonds (Table 2, Figure 3).

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001).

Computing details top

Data collection: SMART (Bruker, 20033); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. , A view of the title compound with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labeled with A are at the symmetry position (-x,-y + 2,-z + 2).
[Figure 2] Fig. 2. , A view of the chain strcuture of (I).
[Figure 3] Fig. 3. , A view of the packing strcuture of (I).
catena-Poly[[[[3-(2-pyridyl)-1H-pyrazole]cadmium(II)]-µ-oxalato] dihydrate] top
Crystal data top
[Cd(C2O4)(C8H7N3)]·2H2OZ = 2
Mr = 381.63F(000) = 376
Triclinic, P1Dx = 1.902 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.920 (2) ÅCell parameters from 3167 reflections
b = 9.663 (2) Åθ = 2.9–28.3°
c = 9.675 (2) ŵ = 1.67 mm1
α = 92.940 (4)°T = 293 K
β = 108.555 (3)°Block, colorless
γ = 106.164 (4)°0.12 × 0.10 × 0.08 mm
V = 666.2 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2346 independent reflections
Radiation source: fine-focus sealed tube2247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 89
Tmin = 0.825, Tmax = 0.878k = 119
3416 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.031P)2 + 0.429P]
where P = (Fo2 + 2Fc2)/3
2346 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.38 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cd(C2O4)(C8H7N3)]·2H2Oγ = 106.164 (4)°
Mr = 381.63V = 666.2 (3) Å3
Triclinic, P1Z = 2
a = 7.920 (2) ÅMo Kα radiation
b = 9.663 (2) ŵ = 1.67 mm1
c = 9.675 (2) ÅT = 293 K
α = 92.940 (4)°0.12 × 0.10 × 0.08 mm
β = 108.555 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2346 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2247 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.878Rint = 0.008
3416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0186 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.38 e Å3
2346 reflectionsΔρmin = 0.31 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.49223 (2)0.741369 (17)0.821503 (17)0.03309 (8)
C10.1758 (4)0.4289 (3)0.6244 (3)0.0458 (6)
H10.16050.41200.71410.055*
C20.0730 (4)0.3235 (3)0.5038 (4)0.0543 (7)
H20.00850.23660.51200.065*
C30.0924 (4)0.3483 (3)0.3708 (3)0.0531 (7)
H30.02320.27910.28690.064*
C40.2164 (4)0.4777 (3)0.3633 (3)0.0462 (6)
H40.23170.49670.27410.055*
C50.3179 (3)0.5791 (3)0.4901 (3)0.0339 (5)
C70.4569 (3)0.7167 (3)0.4902 (3)0.0342 (5)
C80.4998 (4)0.7780 (3)0.3728 (3)0.0475 (6)
H80.44190.74140.27270.057*
C90.4002 (3)0.9947 (2)0.9452 (2)0.0311 (5)
C110.4082 (3)0.5038 (2)1.0129 (2)0.0295 (5)
C200.6454 (4)0.9036 (3)0.4371 (3)0.0496 (7)
H200.70650.96930.38840.060*
N10.2973 (3)0.5554 (2)0.6200 (2)0.0365 (4)
N20.5697 (3)0.8005 (2)0.6184 (2)0.0351 (4)
N30.6837 (3)0.9143 (2)0.5838 (2)0.0421 (5)
H3A0.77010.98470.64740.050*
O10.3288 (2)0.89932 (18)0.83387 (18)0.0377 (4)
O20.3257 (2)1.0843 (2)0.9777 (2)0.0450 (4)
O30.3446 (2)0.60271 (19)0.9645 (2)0.0409 (4)
O40.3377 (2)0.41014 (18)1.07962 (18)0.0364 (4)
O50.0175 (3)0.1137 (3)0.7858 (3)0.0753 (7)
H1W0.063 (4)0.067 (5)0.841 (4)0.113*
H2W0.0949 (15)0.126 (5)0.805 (4)0.113*
O60.0648 (3)0.6774 (3)0.0467 (3)0.0863 (9)
H3W0.016 (4)0.703 (5)0.013 (4)0.130*
H4W0.143 (5)0.660 (5)0.015 (4)0.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04230 (12)0.02946 (11)0.02728 (11)0.01333 (8)0.01047 (8)0.00063 (7)
C10.0421 (14)0.0385 (14)0.0520 (16)0.0092 (11)0.0127 (12)0.0075 (12)
C20.0399 (14)0.0388 (14)0.071 (2)0.0056 (11)0.0093 (14)0.0040 (13)
C30.0412 (15)0.0483 (16)0.0574 (17)0.0102 (12)0.0071 (13)0.0147 (13)
C40.0400 (14)0.0520 (16)0.0393 (14)0.0122 (12)0.0092 (11)0.0124 (12)
C50.0319 (12)0.0368 (12)0.0333 (12)0.0144 (10)0.0095 (9)0.0023 (10)
C70.0338 (12)0.0372 (12)0.0312 (12)0.0138 (10)0.0093 (10)0.0004 (10)
C80.0505 (16)0.0583 (17)0.0315 (13)0.0162 (13)0.0121 (11)0.0055 (12)
C90.0329 (12)0.0288 (11)0.0286 (11)0.0096 (9)0.0070 (10)0.0024 (9)
C110.0301 (11)0.0357 (12)0.0242 (10)0.0137 (9)0.0091 (9)0.0009 (9)
C200.0571 (17)0.0508 (16)0.0447 (15)0.0159 (13)0.0220 (13)0.0172 (13)
N10.0355 (10)0.0348 (10)0.0362 (11)0.0109 (8)0.0090 (9)0.0011 (8)
N20.0384 (11)0.0332 (10)0.0336 (10)0.0108 (8)0.0132 (9)0.0027 (8)
N30.0458 (12)0.0328 (11)0.0432 (12)0.0079 (9)0.0138 (10)0.0036 (9)
O10.0402 (9)0.0347 (9)0.0311 (8)0.0152 (7)0.0014 (7)0.0049 (7)
O20.0393 (9)0.0438 (10)0.0444 (10)0.0208 (8)0.0005 (8)0.0119 (8)
O30.0448 (10)0.0459 (10)0.0487 (10)0.0268 (8)0.0260 (8)0.0158 (8)
O40.0361 (9)0.0426 (9)0.0392 (9)0.0170 (7)0.0197 (7)0.0123 (7)
O50.0519 (13)0.0818 (18)0.0707 (16)0.0203 (13)0.0022 (11)0.0180 (13)
O60.0464 (13)0.103 (2)0.0975 (19)0.0238 (13)0.0171 (13)0.0409 (16)
Geometric parameters (Å, º) top
Cd1—O12.2802 (16)C8—C201.370 (4)
Cd1—O2i2.2850 (17)C8—H80.9300
Cd1—O32.3286 (17)C9—O11.245 (3)
Cd1—O4ii2.3010 (16)C9—O21.253 (3)
Cd1—N12.365 (2)C9—C9i1.571 (4)
Cd1—N22.292 (2)C11—O31.245 (3)
C1—N11.341 (3)C11—O41.247 (3)
C1—C21.369 (4)C11—C11ii1.572 (4)
C1—H10.9300C20—N31.345 (4)
C2—C31.369 (5)C20—H200.9300
C2—H20.9300N2—N31.346 (3)
C3—C41.380 (4)N3—H3A0.8600
C3—H30.9300O2—Cd1i2.2850 (17)
C4—C51.386 (3)O4—Cd1ii2.3010 (16)
C4—H40.9300O5—H1W0.82 (4)
C5—N11.341 (3)O5—H2W0.82 (2)
C5—C71.471 (3)O6—H3W0.82 (4)
C7—N21.334 (3)O6—H4W0.82 (4)
C7—C81.400 (4)
O1—Cd1—O2i73.10 (6)N2—C7—C8110.4 (2)
O1—Cd1—N299.85 (7)N2—C7—C5119.4 (2)
O2i—Cd1—N2110.73 (7)C8—C7—C5130.2 (2)
O1—Cd1—O4ii153.29 (6)C20—C8—C7105.1 (2)
O2i—Cd1—O4ii89.10 (6)C20—C8—H8127.5
N2—Cd1—O4ii105.11 (6)C7—C8—H8127.5
O1—Cd1—O388.25 (6)O1—C9—O2125.3 (2)
O2i—Cd1—O390.72 (7)O1—C9—C9i118.1 (2)
N2—Cd1—O3158.43 (7)O2—C9—C9i116.6 (2)
O4ii—Cd1—O371.86 (6)O3—C11—O4125.3 (2)
O1—Cd1—N1106.71 (6)O3—C11—C11ii117.3 (2)
O2i—Cd1—N1177.56 (7)O4—C11—C11ii117.4 (2)
N2—Cd1—N171.72 (7)N3—C20—C8107.4 (2)
O4ii—Cd1—N190.22 (7)N3—C20—H20126.3
O3—Cd1—N186.84 (7)C8—C20—H20126.3
N1—C1—C2123.5 (3)C1—N1—C5117.8 (2)
N1—C1—H1118.3C1—N1—Cd1126.77 (18)
C2—C1—H1118.3C5—N1—Cd1115.34 (15)
C3—C2—C1118.7 (3)C7—N2—N3105.76 (19)
C3—C2—H2120.7C7—N2—Cd1116.09 (15)
C1—C2—H2120.7N3—N2—Cd1137.04 (15)
C2—C3—C4119.0 (3)C20—N3—N2111.3 (2)
C2—C3—H3120.5C20—N3—H3A124.3
C4—C3—H3120.5N2—N3—H3A124.3
C3—C4—C5119.4 (3)C9—O1—Cd1115.63 (14)
C3—C4—H4120.3C9—O2—Cd1i115.99 (14)
C5—C4—H4120.3C11—O3—Cd1115.95 (14)
N1—C5—C4121.6 (2)C11—O4—Cd1ii116.68 (14)
N1—C5—C7116.4 (2)H1W—O5—H2W115 (4)
C4—C5—C7121.9 (2)H3W—O6—H4W115 (4)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5iii0.861.852.696 (3)169
O5—H2W···O2iv0.82 (2)2.20 (2)2.861 (3)138 (3)
O6—H3W···O4v0.82 (4)2.34 (3)2.878 (3)124 (3)
O6—H4W···O3vi0.82 (4)2.01 (4)2.832 (3)171 (4)
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C2O4)(C8H7N3)]·2H2O
Mr381.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.920 (2), 9.663 (2), 9.675 (2)
α, β, γ (°)92.940 (4), 108.555 (3), 106.164 (4)
V3)666.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.825, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
3416, 2346, 2247
Rint0.008
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.050, 1.00
No. of reflections2346
No. of parameters193
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: SMART (Bruker, 20033), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.2802 (16)Cd1—O4ii2.3010 (16)
Cd1—O2i2.2850 (17)Cd1—N12.365 (2)
Cd1—O32.3286 (17)Cd1—N22.292 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5iii0.861.852.696 (3)169
O5—H2W···O2iv0.82 (2)2.20 (2)2.861 (3)138 (3)
O6—H3W···O4v0.82 (4)2.34 (3)2.878 (3)124 (3)
O6—H4W···O3vi0.82 (4)2.01 (4)2.832 (3)171 (4)
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y, z1.
 

Acknowledgements

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions and the scientific research start-up funds of talent introduction in Maoming University.

References

First citationBruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds