metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[[3-(2-pyrid­yl)-1H-pyrazole]manganese(II)]-μ-oxalato] sesquihydrate]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 20 October 2009; accepted 24 October 2009; online 31 October 2009)

In the title compound, {[Mn(C2O4)(C8H7N3)]·1.5H2O}n, the MnII ion is chelated by two O,O′-bidentate oxalate ions and an N,N′-bidentate 3-(2-pyrid­yl)pyrazole mol­ecule, resulting in a distorted cis-MnN2O4 octa­hedral geometry for the metal ion. The bridging oxalate ions generate wave-like polymeric chains propagating in [001]. The packing is consolidated by N—H⋯O and O—H⋯O hydrogen bonds. One of the water O atoms lies on a crystallographic twofold axis.

Related literature

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998[Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.], 2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2O4)(C8H7N3)]·1.5H2O

  • Mr = 315.15

  • Monoclinic, C 2/c

  • a = 29.460 (8) Å

  • b = 9.236 (3) Å

  • c = 9.875 (3) Å

  • β = 102.706 (5)°

  • V = 2621.0 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 296 K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.665, Tmax = 0.805

  • 6809 measured reflections

  • 2438 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.078

  • S = 1.00

  • 2438 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.280 (4)
Mn1—N2 2.223 (4)
Mn1—O4i 2.150 (3)
Mn1—O2 2.168 (3)
Mn1—O1 2.191 (4)
Mn1—O3i 2.208 (3)
N2—Mn1—N1 73.01 (16)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1W 0.86 1.89 2.748 (7) 175
O1W—H1W⋯O1ii 0.83 (5) 2.08 (4) 2.851 (6) 155 (6)
O1W—H2W⋯O2Wiii 0.82 (4) 2.10 (5) 2.819 (6) 148 (6)
O2W—H3W⋯O3iv 0.82 (5) 2.06 (4) 2.823 (4) 156 (6)
Symmetry codes: (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART or APEX2? (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tridentate ligand 3-(2-pyridyl)pyrazole and its derivatives have been used widely in the construction of supramolecular architectures by way of metal-organic coordination (Ward, Fleming et al. 1998; Ward, 2001).

As a continuation of these studies, we now report the crystal structure of the title complex, (I).

The Mn ion is hexcoordianted, chelated by two oxalate and one 3-(2-pyridyl)pyrazole ligand (Table 1). While each oxalate ligand acts as one bridige to chalate two Mn ions, forming one wave-like line with Mn···Mn distance being 5.652 /%A, shown in Figure 2. The structure is consolidated by N—H···O and O—H···O hydrogen bonds (Table 2, Figure 3).

Related literature top

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001).

Experimental top

A mixture of Mn(CH3COO)2.4H2O (1 mmol), 3-(2-pyridyl)pyrazole (1 mmol), oxalic acid (1 mmol), sodium hydroxide (1 mmol) and H2O (10 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, pink prisms of (I) were obtained from the reaction mixture.

Refinement top

The C-bound H atoms were geometrically planced (C—H = 0.93/%A) and refined as riding with Uiso = 1.2Ueq(C). The N– and O-bound H atoms were located in difference maps and refined with distance restraints: N—H = 0.97 (1)/%A, O—H = 0.82 (2)/%A, H···H = 1.38 (2)/%A.

Structure description top

The tridentate ligand 3-(2-pyridyl)pyrazole and its derivatives have been used widely in the construction of supramolecular architectures by way of metal-organic coordination (Ward, Fleming et al. 1998; Ward, 2001).

As a continuation of these studies, we now report the crystal structure of the title complex, (I).

The Mn ion is hexcoordianted, chelated by two oxalate and one 3-(2-pyridyl)pyrazole ligand (Table 1). While each oxalate ligand acts as one bridige to chalate two Mn ions, forming one wave-like line with Mn···Mn distance being 5.652 /%A, shown in Figure 2. The structure is consolidated by N—H···O and O—H···O hydrogen bonds (Table 2, Figure 3).

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique-atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of (I) showing the extended chain strcuture.
[Figure 3] Fig. 3. A view of (I) showing the packing.
catena-Poly[[[[3-(2-pyridyl)-1H-pyrazole]manganese(II)]- µ-oxalato] sesquihydrate] top
Crystal data top
[Mn(C2O4)(C8H7N3)]·1.5H2OF(000) = 1280
Mr = 315.15Dx = 1.597 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2634 reflections
a = 29.460 (8) Åθ = 2.8–25.4°
b = 9.236 (3) ŵ = 1.03 mm1
c = 9.875 (3) ÅT = 296 K
β = 102.706 (5)°Block, pink
V = 2621.0 (13) Å30.43 × 0.28 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2438 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3535
Tmin = 0.665, Tmax = 0.805k = 1011
6809 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.045P)2 + 0.7224P]
where P = (Fo2 + 2Fc2)/3
2438 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Mn(C2O4)(C8H7N3)]·1.5H2OV = 2621.0 (13) Å3
Mr = 315.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.460 (8) ŵ = 1.03 mm1
b = 9.236 (3) ÅT = 296 K
c = 9.875 (3) Å0.43 × 0.28 × 0.22 mm
β = 102.706 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2004 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.805Rint = 0.020
6809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.22 e Å3
2438 reflectionsΔρmin = 0.17 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2903 (2)0.3204 (7)0.3530 (6)0.0620 (16)
H10.27800.22840.35940.074*
C20.2697 (2)0.4365 (8)0.4029 (7)0.0732 (19)
H20.24410.42290.44230.088*
C30.2872 (2)0.5721 (8)0.3938 (7)0.077 (2)
H30.27400.65180.42790.092*
C40.3246 (2)0.5889 (7)0.3340 (7)0.0685 (17)
H40.33670.68060.32570.082*
C50.34421 (19)0.4681 (6)0.2858 (5)0.0483 (13)
C60.3844 (2)0.4772 (6)0.2209 (6)0.0506 (13)
C70.4082 (3)0.5950 (7)0.1822 (8)0.079 (2)
H70.40240.69260.19400.095*
C80.4416 (3)0.5372 (7)0.1235 (8)0.085 (2)
H80.46320.58860.08680.102*
C90.39499 (16)0.0253 (5)0.5065 (5)0.0374 (11)
C100.34569 (16)0.0362 (5)0.4432 (5)0.0367 (11)
N10.32730 (15)0.3343 (5)0.2955 (5)0.0472 (11)
N20.40299 (15)0.3533 (4)0.1877 (5)0.0470 (11)
N30.43793 (17)0.3939 (6)0.1279 (5)0.0628 (13)
H3A0.45560.33460.09650.075*
Mn10.36805 (2)0.14892 (8)0.22637 (7)0.0395 (3)
O10.41292 (12)0.1050 (4)0.4304 (4)0.0476 (9)
O20.32916 (13)0.0076 (4)0.3189 (4)0.0514 (9)
O30.41261 (12)0.0083 (4)0.6295 (3)0.0477 (9)
O40.32667 (11)0.1102 (4)0.5215 (3)0.0433 (8)
O1W0.49441 (17)0.2150 (6)0.0153 (6)0.0849 (14)
O2W0.50000.8860 (7)0.25000.0754 (19)
H1W0.5197 (14)0.181 (7)0.056 (5)0.080*
H2W0.485 (2)0.183 (7)0.063 (4)0.080*
H3W0.4792 (17)0.944 (6)0.222 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (3)0.068 (4)0.070 (4)0.001 (3)0.027 (3)0.007 (3)
C20.054 (4)0.092 (5)0.080 (5)0.015 (4)0.028 (3)0.012 (4)
C30.074 (4)0.079 (5)0.078 (5)0.028 (4)0.019 (4)0.021 (4)
C40.079 (4)0.049 (3)0.076 (4)0.008 (3)0.016 (4)0.018 (3)
C50.054 (3)0.043 (3)0.046 (3)0.004 (2)0.007 (2)0.007 (2)
C60.057 (3)0.040 (3)0.055 (3)0.003 (2)0.012 (3)0.002 (2)
C70.101 (5)0.041 (3)0.104 (6)0.009 (3)0.039 (5)0.007 (3)
C80.091 (5)0.065 (4)0.112 (6)0.022 (4)0.047 (5)0.013 (4)
C90.042 (3)0.035 (3)0.037 (3)0.002 (2)0.013 (2)0.003 (2)
C100.043 (3)0.032 (2)0.038 (3)0.003 (2)0.013 (2)0.004 (2)
N10.048 (2)0.046 (3)0.051 (3)0.0022 (19)0.017 (2)0.0065 (19)
N20.051 (3)0.041 (2)0.053 (3)0.0033 (19)0.021 (2)0.0016 (19)
N30.061 (3)0.063 (3)0.074 (3)0.006 (2)0.035 (3)0.008 (3)
Mn10.0490 (5)0.0355 (5)0.0370 (5)0.0002 (3)0.0160 (3)0.0001 (3)
O10.046 (2)0.055 (2)0.043 (2)0.0140 (16)0.0116 (16)0.0073 (16)
O20.056 (2)0.059 (2)0.037 (2)0.0187 (18)0.0051 (16)0.0048 (16)
O30.046 (2)0.057 (2)0.039 (2)0.0124 (16)0.0069 (16)0.0062 (16)
O40.0449 (19)0.0467 (19)0.0401 (19)0.0105 (15)0.0132 (16)0.0017 (15)
O1W0.060 (3)0.103 (4)0.097 (4)0.016 (3)0.027 (3)0.002 (3)
O2W0.047 (4)0.069 (4)0.102 (5)0.0000.002 (4)0.000
Geometric parameters (Å, º) top
C1—N11.342 (7)C9—O31.250 (6)
C1—C21.376 (8)C9—C101.557 (7)
C1—H10.9300C10—O21.245 (6)
C2—C31.365 (10)C10—O41.253 (5)
C2—H20.9300N2—N31.348 (6)
C3—C41.367 (9)N3—H3A0.8600
C3—H30.9300Mn1—N12.280 (4)
C4—C51.388 (8)Mn1—N22.223 (4)
C4—H40.9300Mn1—O4i2.150 (3)
C5—N11.344 (6)Mn1—O22.168 (3)
C5—C61.468 (8)Mn1—O12.191 (4)
C6—N21.339 (7)Mn1—O3i2.208 (3)
C6—C71.392 (8)O3—Mn1ii2.208 (3)
C7—C81.357 (10)O4—Mn1ii2.150 (3)
C7—H70.9300O1W—H1W0.83 (5)
C8—N31.329 (8)O1W—H2W0.82 (4)
C8—H80.9300O2W—H3W0.82 (5)
C9—O11.250 (6)
N1—C1—C2122.7 (6)C1—N1—C5117.8 (5)
N1—C1—H1118.7C1—N1—Mn1125.8 (4)
C2—C1—H1118.7C5—N1—Mn1116.2 (3)
C3—C2—C1119.2 (6)C6—N2—N3105.2 (4)
C3—C2—H2120.4C6—N2—Mn1117.0 (3)
C1—C2—H2120.4N3—N2—Mn1137.6 (4)
C2—C3—C4119.0 (6)C8—N3—N2111.5 (5)
C2—C3—H3120.5C8—N3—H3A124.2
C4—C3—H3120.5N2—N3—H3A124.2
C3—C4—C5119.5 (6)O4i—Mn1—O292.44 (13)
C3—C4—H4120.3O4i—Mn1—O1159.58 (14)
C5—C4—H4120.3O2—Mn1—O175.93 (13)
N1—C5—C4121.7 (5)O4i—Mn1—O3i76.27 (12)
N1—C5—C6115.5 (4)O2—Mn1—O3i102.10 (16)
C4—C5—C6122.8 (5)O1—Mn1—O3i89.63 (13)
N2—C6—C7110.1 (5)O4i—Mn1—N299.67 (15)
N2—C6—C5118.1 (4)O2—Mn1—N2161.17 (16)
C7—C6—C5131.8 (5)O1—Mn1—N296.12 (15)
C8—C7—C6105.4 (6)O3i—Mn1—N294.79 (14)
C8—C7—H7127.3O4i—Mn1—N1100.36 (14)
C6—C7—H7127.3O2—Mn1—N190.74 (16)
N3—C8—C7107.8 (6)O1—Mn1—N196.58 (15)
N3—C8—H8126.1O3i—Mn1—N1166.79 (15)
C7—C8—H8126.1N2—Mn1—N173.01 (16)
O1—C9—O3126.2 (4)C9—O1—Mn1114.4 (3)
O1—C9—C10117.0 (4)C10—O2—Mn1115.4 (3)
O3—C9—C10116.8 (4)C9—O3—Mn1ii114.0 (3)
O2—C10—O4126.4 (4)C10—O4—Mn1ii115.7 (3)
O2—C10—C9116.5 (4)H1W—O1W—H2W114 (4)
O4—C10—C9117.1 (4)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1W0.861.892.748 (7)175
O1W—H1W···O1iii0.83 (5)2.08 (4)2.851 (6)155 (6)
O1W—H2W···O2Wiv0.82 (4)2.10 (5)2.819 (6)148 (6)
O2W—H3W···O3v0.82 (5)2.06 (4)2.823 (4)156 (6)
Symmetry codes: (iii) x+1, y, z+1/2; (iv) x+1, y+1, z; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C2O4)(C8H7N3)]·1.5H2O
Mr315.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.460 (8), 9.236 (3), 9.875 (3)
β (°) 102.706 (5)
V3)2621.0 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.665, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
6809, 2438, 2004
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.078, 1.00
No. of reflections2438
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—N12.280 (4)Mn1—O22.168 (3)
Mn1—N22.223 (4)Mn1—O12.191 (4)
Mn1—O4i2.150 (3)Mn1—O3i2.208 (3)
N2—Mn1—N173.01 (16)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1W0.861.892.748 (7)175
O1W—H1W···O1ii0.83 (5)2.08 (4)2.851 (6)155 (6)
O1W—H2W···O2Wiii0.82 (4)2.10 (5)2.819 (6)148 (6)
O2W—H3W···O3iv0.82 (5)2.06 (4)2.823 (4)156 (6)
Symmetry codes: (ii) x+1, y, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions and the scientific research start-up funds of talent introduction in Maoming University.

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds