organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Nitro-2-oxoindolin-3-yl­­idene)-4-o-tolyl­thio­semicarbazide methanol monosolvate

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, C16H13N5O3S·CH4O, the dihedral angle between the isatin unit and the 2-methyl­phenyl group is 41.81 (2)° and intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, generating S(6) and S(5) rings, respectively. In the crystal, polymeric chains arise as a result of N—H⋯O, O—H⋯S and C—H⋯O inter­actions.

Related literature

For related structures, see: Revenko et al. (1994[Revenko, M. D., Kravtsov, V. K. & Simonov, Yu. A. (1994). Crystallogr. Rep. 39, 42-46.]); Pervez et al. (2009[Pervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2698-o2699.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N5O3S·CH4O

  • Mr = 387.42

  • Monoclinic, P 21 /c

  • a = 14.2485 (5) Å

  • b = 7.6986 (3) Å

  • c = 18.5937 (6) Å

  • β = 119.847 (2)°

  • V = 1769.07 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.30 × 0.16 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.974

  • 18543 measured reflections

  • 4005 independent reflections

  • 2975 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.03

  • 4005 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.86 2.04 2.7074 (17) 134
N4—H4A⋯N2 0.86 2.20 2.6254 (18) 110
N1—H1⋯O4i 0.86 2.02 2.8394 (19) 160
O4—H4B⋯S1ii 0.82 2.55 3.3485 (14) 164
C16—H16C⋯O3iii 0.96 2.45 3.342 (3) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently we have reported the preparation and crystal structure of (Z)-4-Hexyl-1-(5-nitro-2-oxo-2,3-dihydro-1H-indol-3-ylidene) thiosemicarbazide (Pervez et al., 2009). The title compound (I, Fig. 1) has been prepared and being reported in continuation of synthesizing various isatin derivatives due to their importance.

The crystal structure of (II) Isatin β-4-(p-tolyl)thiosemicarbazone (Revenko et al., 1994) has been published. The title compound (I) differs from (II) due to attachment of NO2 group with isatin and positional change of CH3 group on the benzene ring.

In the crystal structure of (I), the group A (C1—C8/N1/N2/N3/O1) of isatin moiety and 2-methylphenyl group B (C10–C17) are planar with a maximum r. m. s. deviations of 0.0187 and 0.0065 Å respectively, from their mean square plane. The dihedral angle between A/B is 41.81 (2)°. The nitro group C (N2/O2/O3) is oriented at a dihedral angle of 5.7 (2)° with group A. In (I), there exist two interamolecular H-bondings resulting in S(5) and S(6) ring motifs (Bernstein et al., 1995). Methanol monosolvate interlinks the molecules through H-bondings (Table 1., Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains.

Related literature top

For related structures, see: Revenko et al. (1994); Pervez et al. (2009). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

4-o-Tolylthiosemicarbazide (0.45 g, 2.5 mmol) dissolved in ethanol (10 ml) was added to a hot solution of 5-nitroisatin (0.46 g, 2.5 mmol) in 50% aqueous ethanol (30 ml) containing a few drops of glacial acetic acid. The reaction mixture was then refluxed for 2 h. The yellow crystalline solid formed during heating under reflux was collected by suction filtration. Thorough washing with hot aqueous ethanol furnished the title compound (I) in pure form (0.71 g, 80%), m.p. 499 K. The yellow needles of (I) were grown in ethanol:n-hexane (1:4) system at room temperature by diffusion method.

Refinement top

The H-atoms were positioned geometrically (O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

Recently we have reported the preparation and crystal structure of (Z)-4-Hexyl-1-(5-nitro-2-oxo-2,3-dihydro-1H-indol-3-ylidene) thiosemicarbazide (Pervez et al., 2009). The title compound (I, Fig. 1) has been prepared and being reported in continuation of synthesizing various isatin derivatives due to their importance.

The crystal structure of (II) Isatin β-4-(p-tolyl)thiosemicarbazone (Revenko et al., 1994) has been published. The title compound (I) differs from (II) due to attachment of NO2 group with isatin and positional change of CH3 group on the benzene ring.

In the crystal structure of (I), the group A (C1—C8/N1/N2/N3/O1) of isatin moiety and 2-methylphenyl group B (C10–C17) are planar with a maximum r. m. s. deviations of 0.0187 and 0.0065 Å respectively, from their mean square plane. The dihedral angle between A/B is 41.81 (2)°. The nitro group C (N2/O2/O3) is oriented at a dihedral angle of 5.7 (2)° with group A. In (I), there exist two interamolecular H-bondings resulting in S(5) and S(6) ring motifs (Bernstein et al., 1995). Methanol monosolvate interlinks the molecules through H-bondings (Table 1., Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains.

For related structures, see: Revenko et al. (1994); Pervez et al. (2009). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius and the dotted lines represent the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form infinite one dimensional polymeric chains.
1-(5-Nitro-2-oxoindolin-3-ylidene)-4-o-tolylthiosemicarbazide methanol monosolvate top
Crystal data top
C16H13N5O3S·CH4OF(000) = 808
Mr = 387.42Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2975 reflections
a = 14.2485 (5) Åθ = 2.5–27.5°
b = 7.6986 (3) ŵ = 0.22 mm1
c = 18.5937 (6) ÅT = 296 K
β = 119.847 (2)°Cut needle, yellow
V = 1769.07 (11) Å30.30 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4005 independent reflections
Radiation source: fine-focus sealed tube2975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.60 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.963, Tmax = 0.974l = 2323
18543 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4905P]
where P = (Fo2 + 2Fc2)/3
4005 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13N5O3S·CH4OV = 1769.07 (11) Å3
Mr = 387.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2485 (5) ŵ = 0.22 mm1
b = 7.6986 (3) ÅT = 296 K
c = 18.5937 (6) Å0.30 × 0.16 × 0.12 mm
β = 119.847 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4005 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2975 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.031
18543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
4005 reflectionsΔρmin = 0.22 e Å3
249 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36128 (4)0.18526 (6)0.42815 (3)0.0480 (2)
O10.43184 (10)0.09444 (15)0.66176 (7)0.0471 (4)
O20.09516 (11)0.88792 (17)0.44105 (8)0.0535 (5)
O30.14063 (12)1.04229 (17)0.54995 (9)0.0631 (5)
N10.39348 (11)0.35294 (18)0.70502 (8)0.0388 (4)
N20.28711 (10)0.24879 (17)0.49325 (8)0.0342 (4)
N30.33161 (11)0.09298 (17)0.49406 (8)0.0390 (4)
N40.20990 (10)0.06337 (17)0.35699 (8)0.0364 (4)
N50.14422 (11)0.90750 (18)0.51621 (9)0.0408 (5)
C10.28486 (11)0.4853 (2)0.58087 (9)0.0309 (4)
C20.22200 (12)0.6183 (2)0.52973 (10)0.0329 (5)
C30.21086 (12)0.7648 (2)0.56800 (10)0.0342 (5)
C40.25938 (13)0.7812 (2)0.65330 (10)0.0380 (5)
C50.32173 (13)0.6488 (2)0.70422 (10)0.0385 (5)
C60.33402 (12)0.5016 (2)0.66721 (9)0.0330 (4)
C70.38889 (12)0.2370 (2)0.64829 (10)0.0362 (5)
C80.31690 (12)0.3173 (2)0.56487 (9)0.0314 (4)
C90.29577 (12)0.0024 (2)0.42330 (9)0.0346 (5)
C100.14634 (12)0.0135 (2)0.27704 (9)0.0330 (5)
C110.11584 (12)0.0923 (2)0.20843 (10)0.0367 (5)
C120.04962 (14)0.0193 (3)0.13070 (10)0.0470 (6)
C130.01474 (14)0.1498 (3)0.12170 (11)0.0501 (6)
C140.04524 (13)0.2512 (2)0.19058 (12)0.0466 (6)
C150.11076 (14)0.1830 (2)0.26893 (11)0.0413 (5)
C160.15262 (16)0.2771 (3)0.21779 (12)0.0543 (6)
O40.46564 (14)0.2556 (2)0.37038 (8)0.0764 (6)
C170.43827 (17)0.4240 (3)0.37829 (13)0.0599 (7)
H10.428790.336380.757750.0465*
H20.188750.609780.472310.0395*
H30.383410.053370.539990.0468*
H40.249710.882340.676210.0456*
H4A0.190140.165310.363070.0437*
H50.354500.658000.761590.0462*
H120.028440.086850.083610.0563*
H130.029450.195500.069050.0601*
H140.021870.365850.184590.0559*
H150.130640.250810.315750.0496*
H16A0.230260.280890.246740.0814*
H16B0.126300.340330.248660.0814*
H16C0.124900.328640.163960.0814*
H4B0.508680.216970.416310.0916*
H17A0.383900.422150.394420.0898*
H17B0.410660.483190.326180.0898*
H17C0.501250.483630.419750.0898*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0570 (3)0.0429 (3)0.0355 (3)0.0174 (2)0.0165 (2)0.0014 (2)
O10.0506 (7)0.0385 (7)0.0345 (7)0.0088 (5)0.0077 (5)0.0026 (5)
O20.0627 (8)0.0480 (8)0.0382 (8)0.0117 (6)0.0164 (6)0.0063 (6)
O30.0910 (10)0.0387 (8)0.0612 (9)0.0172 (7)0.0390 (8)0.0016 (7)
N10.0443 (7)0.0392 (8)0.0220 (7)0.0009 (6)0.0083 (6)0.0004 (6)
N20.0372 (7)0.0302 (7)0.0291 (7)0.0014 (5)0.0119 (6)0.0027 (6)
N30.0428 (7)0.0361 (8)0.0265 (7)0.0084 (6)0.0084 (6)0.0021 (6)
N40.0441 (7)0.0288 (7)0.0285 (7)0.0046 (6)0.0121 (6)0.0030 (6)
N50.0475 (8)0.0347 (8)0.0436 (9)0.0026 (6)0.0253 (7)0.0013 (7)
C10.0333 (7)0.0308 (8)0.0254 (8)0.0043 (6)0.0122 (6)0.0032 (6)
C20.0359 (8)0.0346 (8)0.0251 (8)0.0021 (6)0.0129 (6)0.0012 (7)
C30.0361 (8)0.0322 (8)0.0341 (9)0.0005 (6)0.0174 (7)0.0012 (7)
C40.0428 (8)0.0359 (9)0.0364 (9)0.0039 (7)0.0205 (7)0.0094 (7)
C50.0430 (9)0.0437 (10)0.0258 (8)0.0063 (7)0.0149 (7)0.0077 (7)
C60.0346 (7)0.0333 (8)0.0269 (8)0.0052 (6)0.0122 (6)0.0016 (7)
C70.0355 (8)0.0348 (9)0.0285 (8)0.0031 (7)0.0085 (6)0.0006 (7)
C80.0325 (7)0.0305 (8)0.0254 (8)0.0024 (6)0.0100 (6)0.0006 (7)
C90.0397 (8)0.0339 (9)0.0288 (8)0.0004 (7)0.0159 (7)0.0005 (7)
C100.0339 (7)0.0347 (9)0.0278 (8)0.0030 (6)0.0134 (6)0.0027 (7)
C110.0347 (8)0.0391 (9)0.0333 (9)0.0045 (7)0.0146 (7)0.0024 (7)
C120.0433 (9)0.0588 (12)0.0279 (9)0.0085 (8)0.0095 (7)0.0049 (8)
C130.0396 (9)0.0605 (12)0.0356 (10)0.0019 (8)0.0077 (8)0.0153 (9)
C140.0428 (9)0.0401 (10)0.0518 (11)0.0056 (8)0.0196 (8)0.0132 (9)
C150.0472 (9)0.0368 (9)0.0390 (10)0.0003 (7)0.0207 (8)0.0001 (8)
C160.0581 (11)0.0461 (11)0.0468 (11)0.0016 (9)0.0171 (9)0.0114 (9)
O40.1094 (13)0.0594 (9)0.0329 (8)0.0304 (9)0.0147 (8)0.0028 (7)
C170.0589 (11)0.0478 (12)0.0609 (14)0.0006 (9)0.0206 (10)0.0080 (10)
Geometric parameters (Å, º) top
S1—C91.6666 (17)C5—C61.381 (2)
O1—C71.220 (2)C7—C81.502 (2)
O2—N51.2215 (19)C10—C111.389 (2)
O3—N51.227 (2)C10—C151.381 (2)
O4—C171.383 (3)C11—C161.496 (3)
O4—H4B0.8200C11—C121.392 (2)
N1—C71.358 (2)C12—C131.374 (3)
N1—C61.389 (2)C13—C141.373 (3)
N2—N31.353 (2)C14—C151.384 (3)
N2—C81.292 (2)C2—H20.9300
N3—C91.365 (2)C4—H40.9300
N4—C101.428 (2)C5—H50.9300
N4—C91.331 (2)C12—H120.9300
N5—C31.458 (2)C13—H130.9300
N1—H10.8600C14—H140.9300
N3—H30.8600C15—H150.9300
N4—H4A0.8600C16—H16C0.9600
C1—C21.381 (2)C16—H16A0.9600
C1—C81.451 (2)C16—H16B0.9600
C1—C61.402 (2)C17—H17A0.9600
C2—C31.384 (2)C17—H17B0.9600
C3—C41.385 (2)C17—H17C0.9600
C4—C51.374 (2)
C17—O4—H4B109.00N4—C10—C15120.89 (14)
C6—N1—C7111.53 (13)N4—C10—C11117.36 (14)
N3—N2—C8116.02 (13)C10—C11—C12117.23 (16)
N2—N3—C9121.18 (13)C10—C11—C16121.31 (15)
C9—N4—C10128.37 (14)C12—C11—C16121.46 (16)
O2—N5—C3118.45 (14)C11—C12—C13121.76 (17)
O3—N5—C3118.61 (14)C12—C13—C14119.86 (17)
O2—N5—O3122.94 (15)C13—C14—C15120.05 (16)
C6—N1—H1124.00C10—C15—C14119.48 (15)
C7—N1—H1124.00C1—C2—H2122.00
N2—N3—H3119.00C3—C2—H2122.00
C9—N3—H3119.00C5—C4—H4120.00
C10—N4—H4A116.00C3—C4—H4120.00
C9—N4—H4A116.00C4—C5—H5121.00
C2—C1—C6120.36 (15)C6—C5—H5121.00
C2—C1—C8133.02 (14)C13—C12—H12119.00
C6—C1—C8106.61 (13)C11—C12—H12119.00
C1—C2—C3116.82 (15)C12—C13—H13120.00
N5—C3—C4118.52 (14)C14—C13—H13120.00
N5—C3—C2118.56 (14)C15—C14—H14120.00
C2—C3—C4122.92 (15)C13—C14—H14120.00
C3—C4—C5120.31 (15)C10—C15—H15120.00
C4—C5—C6117.66 (15)C14—C15—H15120.00
N1—C6—C1109.71 (14)C11—C16—H16B109.00
N1—C6—C5128.35 (14)C11—C16—H16C109.00
C1—C6—C5121.94 (15)C11—C16—H16A109.00
N1—C7—C8106.00 (13)H16A—C16—H16C109.00
O1—C7—C8126.66 (15)H16B—C16—H16C109.00
O1—C7—N1127.32 (15)H16A—C16—H16B109.00
N2—C8—C1126.86 (14)O4—C17—H17A109.00
C1—C8—C7106.14 (13)O4—C17—H17B109.00
N2—C8—C7126.98 (15)O4—C17—H17C109.00
N3—C9—N4114.76 (14)H17A—C17—H17B109.00
S1—C9—N4127.11 (12)H17A—C17—H17C109.00
S1—C9—N3118.14 (12)H17B—C17—H17C109.00
C11—C10—C15121.60 (15)
C7—N1—C6—C11.2 (2)C6—C1—C8—N2178.05 (18)
C7—N1—C6—C5178.24 (19)C6—C1—C8—C70.3 (2)
C6—N1—C7—O1179.54 (19)C1—C2—C3—N5179.37 (17)
C6—N1—C7—C81.4 (2)C1—C2—C3—C40.0 (3)
C8—N2—N3—C9171.16 (17)N5—C3—C4—C5179.22 (18)
N3—N2—C8—C1177.28 (17)C2—C3—C4—C50.2 (3)
N3—N2—C8—C74.8 (3)C3—C4—C5—C60.3 (3)
N2—N3—C9—S1175.23 (13)C4—C5—C6—N1179.14 (19)
N2—N3—C9—N45.1 (2)C4—C5—C6—C10.3 (3)
C10—N4—C9—S17.3 (3)O1—C7—C8—N20.9 (3)
C10—N4—C9—N3172.36 (17)O1—C7—C8—C1179.19 (19)
C9—N4—C10—C11137.33 (19)N1—C7—C8—N2177.33 (18)
C9—N4—C10—C1547.0 (3)N1—C7—C8—C11.0 (2)
O2—N5—C3—C24.6 (3)N4—C10—C11—C12177.02 (18)
O2—N5—C3—C4174.76 (18)N4—C10—C11—C162.9 (3)
O3—N5—C3—C2174.74 (18)C15—C10—C11—C121.4 (3)
O3—N5—C3—C45.9 (3)C15—C10—C11—C16178.6 (2)
C6—C1—C2—C30.0 (3)N4—C10—C15—C14177.10 (18)
C8—C1—C2—C3178.49 (19)C11—C10—C15—C141.6 (3)
C2—C1—C6—N1179.38 (17)C10—C11—C12—C130.6 (3)
C2—C1—C6—C50.1 (3)C16—C11—C12—C13179.4 (2)
C8—C1—C6—N10.5 (2)C11—C12—C13—C140.0 (3)
C8—C1—C6—C5178.98 (18)C12—C13—C14—C150.2 (3)
C2—C1—C8—N23.3 (3)C13—C14—C15—C101.0 (3)
C2—C1—C8—C7178.38 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.862.042.7074 (17)134
N4—H4A···N20.862.202.6254 (18)110
N1—H1···O4i0.862.022.8394 (19)160
O4—H4B···S1ii0.822.553.3485 (14)164
C16—H16C···O3iii0.962.453.342 (3)154
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13N5O3S·CH4O
Mr387.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.2485 (5), 7.6986 (3), 18.5937 (6)
β (°) 119.847 (2)
V3)1769.07 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.16 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
18543, 4005, 2975
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.03
No. of reflections4005
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.862.042.7074 (17)134
N4—H4A···N20.862.202.6254 (18)110
N1—H1···O4i0.862.022.8394 (19)160
O4—H4B···S1ii0.822.553.3485 (14)164
C16—H16C···O3iii0.962.453.342 (3)154
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+3/2, z1/2.
 

Acknowledgements

We acknowledge partial funding of this research work and the award of an Indigenous Ph.D. scholarship to NM by the Higher Education Commission, Islamabad, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2698–o2699.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRevenko, M. D., Kravtsov, V. K. & Simonov, Yu. A. (1994). Crystallogr. Rep. 39, 42–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds