metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-1,1′-Bis(di­phenyl­phosphino)ferrocene-κ2P:P′-bis­­{[(Z)-O-iso­propyl N-(4-nitro­phen­yl)thio­carbamato-κS]gold(I)} chloro­form disolvate

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 October 2009; accepted 23 October 2009; online 31 October 2009)

The dinuclear title mol­ecule, [Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3, has crystallographic twofold symmetry with the Fe atom (bonded to two η5-cyclo­penta­dienyl rings) situated on the rotation axis. The Au atom exists within a linear geometry defined by an S,P-donor set with a deviation from linearity [S—Au—P = 176.86 (6)°] due to the close approach of the thio­carbamate O atom [Au⋯O = 3.108 (5) Å]. The mol­ecule has a U-shaped geometry which facilitates the formation of an intra­molecular Au⋯Au inter­action [3.0231 (5) Å]. In the crystal, the presence of C—H⋯Onitro contacts leads to the formation of layers with substantial voids; these are occupied by the solvent mol­ecules of crystallization, which are held in place by C—H⋯S contacts.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3

  • Mr = 1665.56

  • Monoclinic, C 2/c

  • a = 25.9661 (13) Å

  • b = 11.5544 (6) Å

  • c = 23.3615 (13) Å

  • β = 117.293 (1)°

  • V = 6228.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.36 mm−1

  • T = 223 K

  • 0.36 × 0.07 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.572, Tmax = 1

  • 21839 measured reflections

  • 7148 independent reflections

  • 4988 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 0.97

  • 7148 reflections

  • 357 parameters

  • H-atom parameters constrained

  • Δρmax = 2.08 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—S1 2.3127 (16)
Au—P1 2.2594 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2i 0.94 2.54 3.403 (9) 154
C25—H25⋯O3ii 0.94 2.46 3.254 (12) 142
C28—H28⋯S1iii 0.99 2.61 3.527 (8) 154
Symmetry codes: (i) [-x, y+1, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The dinuclear title compound, dppf{Au[SC(O-iPr)NC6H4NO2-p]}2, was investigated as a part of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). Crystals were isolated as the di-chloroform solvate, (I), and are isomorphous with the methoxy analogue (Ho et al., 2006). The dinuclear molecule has crystallographic twofold symmetry with the Fe atom lying on the axis; the asymmetric unit comprises half a dinuclear molecule and one chloroform molecule. The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity is ascribed to the close approach of the O1 atom, Au···O = 3.108 (5) Å. The anion, with a Z configuration about the C1N1 bond, shows the expected characteristics. Overall, the molecule has a U-shaped configuration which allows for the formation of an aurophilic interaction, Au···Aui = 3.0231 (5) Å; (i): -x, y, 1/2 - z.

In the crystal structure of (I), supramolecular layers are formed in the bc plane that are mediated by C—H···O interactions, Table 2 and Fig. 2. The resulting framework has solvent accessible voids and these are occupied by the chloroform molecules which are connected via C—H···S contacts, Table 2. Layer thus formed stack along the a direction.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see: Hall et al. (1993).

Experimental top

The unsolvated compound was prepared following the standard literature procedure from the reaction of dppf(AuCl)2 and i-PrOC(S)N(H)C6H4NO2-4 in the presence of base (Hall et al., 1993); m. pt. 409–410 K. Analysis for C54H50Au2FeN4O6P2S2: found (calculated): C: 45.64 (45.45); H: 3.49 (3.53). IR (cm-1): ν(C—S) 1100 s, 899m; ν(C—N) 1585 s; ν(C—O) 1153 s. 31P{1H} NMR: δ 32.0 p.p.m. Orange crystals of the di-chloroform solvate (I) were obtained from the layering of ethanol on a chloroform solution of the characterized product.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.08 and 0.74 e Å-3, respectively, were located 0.83 Å and 0.74 Å from the Au atom.

Structure description top

The dinuclear title compound, dppf{Au[SC(O-iPr)NC6H4NO2-p]}2, was investigated as a part of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). Crystals were isolated as the di-chloroform solvate, (I), and are isomorphous with the methoxy analogue (Ho et al., 2006). The dinuclear molecule has crystallographic twofold symmetry with the Fe atom lying on the axis; the asymmetric unit comprises half a dinuclear molecule and one chloroform molecule. The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity is ascribed to the close approach of the O1 atom, Au···O = 3.108 (5) Å. The anion, with a Z configuration about the C1N1 bond, shows the expected characteristics. Overall, the molecule has a U-shaped configuration which allows for the formation of an aurophilic interaction, Au···Aui = 3.0231 (5) Å; (i): -x, y, 1/2 - z.

In the crystal structure of (I), supramolecular layers are formed in the bc plane that are mediated by C—H···O interactions, Table 2 and Fig. 2. The resulting framework has solvent accessible voids and these are occupied by the chloroform molecules which are connected via C—H···S contacts, Table 2. Layer thus formed stack along the a direction.

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see: Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the dinuclear complex in (I) showing displacement ellipsoids at the 35% probability level. The molecule has twofold symmetry and unlabelled atoms are generated by the symmetry operation -x, y, 1/2 - z.
[Figure 2] Fig. 2. Supramolecular layer formation in (I) mediated by C—H···O contacts (blue dashed lines). The chloroform molecules are connected via C—H···S contacts (orange dashed lines). Colour code: Au, orange; Cl, cyan; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
µ-1,1'-Bis(diphenylphosphino)ferrocene-κ2P:P'- bis{[(Z)-O-isopropyl N-(4-nitrophenyl)thiocarbamato-κS]gold(I)} chloroform disolvate top
Crystal data top
[Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3F(000) = 3248
Mr = 1665.56Dx = 1.776 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 3297 reflections
a = 25.9661 (13) Åθ = 4.4–23.2°
b = 11.5544 (6) ŵ = 5.36 mm1
c = 23.3615 (13) ÅT = 223 K
β = 117.293 (1)°Needle, orange
V = 6228.7 (6) Å30.36 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
7148 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3133
Tmin = 0.572, Tmax = 1k = 1515
21839 measured reflectionsl = 3016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
7148 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 2.08 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3V = 6228.7 (6) Å3
Mr = 1665.56Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.9661 (13) ŵ = 5.36 mm1
b = 11.5544 (6) ÅT = 223 K
c = 23.3615 (13) Å0.36 × 0.07 × 0.04 mm
β = 117.293 (1)°
Data collection top
Bruker SMART CCD
diffractometer
7148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4988 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 1Rint = 0.056
21839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.97Δρmax = 2.08 e Å3
7148 reflectionsΔρmin = 0.74 e Å3
357 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.038384 (9)0.040380 (18)0.217132 (11)0.03822 (9)
Fe0.00000.36727 (10)0.25000.0348 (3)
Cl10.09462 (11)0.1755 (2)0.62226 (16)0.1115 (10)
Cl20.09451 (11)0.4042 (2)0.66861 (19)0.1263 (13)
Cl30.00491 (9)0.2607 (2)0.63203 (13)0.0870 (7)
S10.08961 (7)0.09108 (14)0.29813 (8)0.0475 (4)
P10.00697 (6)0.17293 (13)0.13880 (7)0.0354 (3)
O10.17098 (19)0.0531 (4)0.3072 (2)0.0568 (13)
O20.1974 (2)0.6234 (5)0.4520 (3)0.0835 (19)
O30.1523 (4)0.5385 (5)0.4984 (3)0.097 (2)
N10.2054 (2)0.1139 (5)0.3638 (3)0.0548 (15)
N20.1784 (3)0.5363 (5)0.4654 (3)0.0637 (18)
C10.1632 (3)0.0518 (5)0.3277 (3)0.0458 (16)
C20.1963 (2)0.2195 (6)0.3880 (3)0.0480 (17)
C30.2107 (3)0.3236 (6)0.3689 (4)0.0560 (18)
H30.22460.32330.33810.067*
C40.2049 (3)0.4253 (6)0.3942 (4)0.0542 (19)
H40.21470.49510.38100.065*
C50.1849 (3)0.4263 (6)0.4384 (3)0.0509 (17)
C60.1698 (3)0.3254 (6)0.4587 (3)0.0588 (19)
H60.15570.32750.48930.071*
C70.1757 (3)0.2224 (6)0.4334 (3)0.0556 (19)
H70.16580.15300.44680.067*
C80.2304 (3)0.0878 (8)0.3263 (5)0.075 (3)
H80.25690.05090.36780.089*
C90.2330 (4)0.2145 (8)0.3331 (6)0.113 (4)
H9A0.22540.23640.36860.170*
H9B0.20420.24930.29360.170*
H9C0.27130.24140.34150.170*
C100.2436 (4)0.0462 (9)0.2737 (6)0.107 (4)
H10A0.24240.03770.27230.160*
H10B0.28190.07240.28200.160*
H10C0.21500.07690.23270.160*
C110.0392 (2)0.2915 (5)0.1610 (3)0.0340 (13)
C120.0298 (2)0.4126 (5)0.1557 (3)0.0378 (14)
H120.00750.44460.13730.045*
C130.0598 (3)0.4751 (5)0.1828 (3)0.0445 (16)
H130.06100.55610.18550.053*
C140.0877 (3)0.3958 (5)0.2052 (3)0.0445 (15)
H140.11040.41490.22560.053*
C150.0756 (2)0.2828 (5)0.1919 (3)0.0354 (13)
H150.08910.21370.20160.042*
C160.0634 (2)0.1105 (5)0.0653 (3)0.0342 (13)
C170.0487 (3)0.0138 (5)0.0404 (3)0.0483 (17)
H170.01050.01420.06060.058*
C180.0892 (3)0.0405 (6)0.0132 (4)0.0547 (18)
H180.07910.10590.02980.066*
C190.1452 (3)0.0012 (6)0.0428 (3)0.0529 (18)
H190.17320.03530.08000.063*
C200.1603 (3)0.0951 (6)0.0183 (3)0.0569 (19)
H200.19870.12210.03830.068*
C210.1191 (3)0.1504 (5)0.0357 (3)0.0499 (17)
H210.12940.21560.05220.060*
C220.0426 (3)0.2447 (5)0.1154 (3)0.0423 (15)
C230.1015 (3)0.2386 (6)0.1572 (3)0.0490 (16)
H230.11500.19440.19510.059*
C240.1405 (3)0.2984 (7)0.1426 (4)0.068 (2)
H240.18040.29350.17050.081*
C250.1213 (4)0.3646 (6)0.0878 (4)0.070 (2)
H250.14770.40710.07900.084*
C260.0623 (4)0.3680 (6)0.0455 (4)0.064 (2)
H260.04890.41080.00710.077*
C270.0234 (3)0.3085 (5)0.0599 (3)0.0525 (17)
H270.01650.31190.03140.063*
C280.0705 (3)0.2630 (6)0.6651 (4)0.062 (2)
H280.08670.23280.70960.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03377 (13)0.03382 (12)0.04130 (14)0.00501 (10)0.01225 (10)0.00307 (11)
Fe0.0327 (6)0.0341 (6)0.0337 (6)0.0000.0118 (5)0.000
Cl10.0976 (18)0.1016 (18)0.161 (3)0.0139 (15)0.0819 (19)0.0543 (19)
Cl20.0878 (17)0.0519 (12)0.239 (4)0.0138 (12)0.074 (2)0.0203 (18)
Cl30.0653 (13)0.0782 (14)0.121 (2)0.0069 (11)0.0461 (14)0.0200 (14)
S10.0364 (8)0.0424 (8)0.0557 (10)0.0049 (7)0.0142 (8)0.0126 (8)
P10.0335 (8)0.0328 (7)0.0369 (8)0.0014 (6)0.0135 (7)0.0007 (6)
O10.037 (2)0.048 (3)0.072 (3)0.003 (2)0.014 (2)0.017 (2)
O20.073 (4)0.041 (3)0.136 (6)0.006 (3)0.047 (4)0.004 (3)
O30.152 (7)0.061 (4)0.103 (5)0.014 (4)0.079 (5)0.004 (3)
N10.030 (3)0.058 (3)0.068 (4)0.007 (3)0.015 (3)0.019 (3)
N20.060 (4)0.046 (4)0.075 (5)0.010 (3)0.022 (4)0.001 (3)
C10.044 (4)0.045 (4)0.046 (4)0.000 (3)0.019 (3)0.005 (3)
C20.029 (3)0.055 (4)0.051 (4)0.005 (3)0.011 (3)0.008 (3)
C30.044 (4)0.061 (4)0.066 (5)0.008 (3)0.028 (4)0.006 (4)
C40.039 (4)0.046 (4)0.076 (5)0.005 (3)0.024 (4)0.001 (4)
C50.043 (4)0.050 (4)0.053 (4)0.003 (3)0.015 (3)0.003 (3)
C60.077 (5)0.052 (4)0.051 (4)0.006 (4)0.032 (4)0.002 (3)
C70.064 (5)0.042 (4)0.055 (4)0.011 (3)0.023 (4)0.002 (3)
C80.035 (4)0.079 (6)0.091 (6)0.000 (4)0.013 (4)0.030 (5)
C90.065 (6)0.091 (7)0.146 (10)0.037 (5)0.016 (6)0.003 (7)
C100.066 (6)0.108 (8)0.159 (11)0.005 (5)0.063 (7)0.021 (8)
C110.035 (3)0.031 (3)0.028 (3)0.003 (2)0.008 (3)0.001 (2)
C120.038 (3)0.034 (3)0.035 (3)0.001 (2)0.011 (3)0.003 (3)
C130.044 (3)0.037 (3)0.041 (3)0.007 (3)0.010 (3)0.003 (3)
C140.035 (3)0.051 (4)0.042 (4)0.007 (3)0.013 (3)0.002 (3)
C150.023 (3)0.043 (3)0.035 (3)0.002 (2)0.010 (2)0.003 (3)
C160.035 (3)0.032 (3)0.030 (3)0.002 (2)0.011 (2)0.005 (2)
C170.043 (4)0.046 (4)0.050 (4)0.009 (3)0.017 (3)0.004 (3)
C180.060 (4)0.045 (4)0.062 (4)0.001 (3)0.031 (4)0.013 (3)
C190.043 (4)0.061 (4)0.047 (4)0.014 (3)0.015 (3)0.015 (3)
C200.036 (3)0.062 (4)0.056 (4)0.005 (3)0.006 (3)0.009 (4)
C210.048 (4)0.039 (3)0.057 (4)0.007 (3)0.019 (3)0.008 (3)
C220.052 (4)0.034 (3)0.051 (4)0.000 (3)0.033 (3)0.006 (3)
C230.044 (4)0.048 (4)0.057 (4)0.007 (3)0.026 (3)0.009 (3)
C240.055 (4)0.082 (6)0.075 (6)0.013 (4)0.037 (4)0.016 (5)
C250.097 (6)0.052 (4)0.097 (7)0.032 (4)0.076 (6)0.029 (5)
C260.103 (7)0.046 (4)0.068 (5)0.005 (4)0.060 (5)0.003 (4)
C270.076 (5)0.042 (4)0.053 (4)0.001 (3)0.041 (4)0.006 (3)
C280.054 (4)0.047 (4)0.084 (6)0.005 (3)0.030 (4)0.000 (4)
Geometric parameters (Å, º) top
Au—S12.3127 (16)C8—H80.9900
Au—P12.2594 (15)C9—H9A0.9700
Au—Aui3.0231 (5)C9—H9B0.9700
Fe—C12i2.041 (6)C9—H9C0.9700
Fe—C122.041 (6)C10—H10A0.9700
Fe—C112.045 (5)C10—H10B0.9700
Fe—C11i2.045 (5)C10—H10C0.9700
Fe—C13i2.047 (6)C11—C151.431 (8)
Fe—C132.047 (6)C11—C121.436 (8)
Fe—C14i2.050 (6)C12—C131.407 (9)
Fe—C142.050 (6)C12—H120.9400
Fe—C152.051 (5)C13—C141.409 (9)
Fe—C15i2.051 (5)C13—H130.9400
Cl1—C281.729 (8)C14—C151.411 (8)
Cl2—C281.736 (7)C14—H140.9400
Cl3—C281.744 (7)C15—H150.9400
S1—C11.767 (6)C16—C211.365 (8)
P1—C111.802 (6)C16—C171.392 (8)
P1—C221.812 (6)C17—C181.363 (9)
P1—C161.818 (5)C17—H170.9400
O1—C11.353 (7)C18—C191.380 (9)
O1—C81.453 (8)C18—H180.9400
O2—N21.223 (8)C19—C201.363 (10)
O3—N21.239 (9)C19—H190.9400
N1—C11.257 (7)C20—C211.382 (8)
N1—C21.410 (8)C20—H200.9400
N2—C51.463 (9)C21—H210.9400
C2—C71.390 (10)C22—C271.372 (9)
C2—C31.392 (9)C22—C231.389 (8)
C3—C41.355 (9)C23—C241.390 (10)
C3—H30.9400C23—H230.9400
C4—C51.353 (10)C24—C251.373 (11)
C4—H40.9400C24—H240.9400
C5—C61.381 (10)C25—C261.391 (11)
C6—C71.369 (9)C25—H250.9400
C6—H60.9400C26—C271.386 (9)
C7—H70.9400C26—H260.9400
C8—C91.470 (12)C27—H270.9400
C8—C101.498 (14)C28—H280.9900
P1—Au—S1176.86 (6)C10—C8—H8110.3
P1—Au—Aui101.03 (4)C8—C9—H9A109.5
S1—Au—Aui81.38 (5)C8—C9—H9B109.5
C12i—Fe—C12150.2 (3)H9A—C9—H9B109.5
C12i—Fe—C11166.6 (2)C8—C9—H9C109.5
C12—Fe—C1141.1 (2)H9A—C9—H9C109.5
C12i—Fe—C11i41.1 (2)H9B—C9—H9C109.5
C12—Fe—C11i166.6 (2)C8—C10—H10A109.5
C11—Fe—C11i129.3 (3)C8—C10—H10B109.5
C12i—Fe—C13i40.3 (3)H10A—C10—H10B109.5
C12—Fe—C13i116.8 (2)C8—C10—H10C109.5
C11—Fe—C13i152.7 (3)H10A—C10—H10C109.5
C11i—Fe—C13i68.4 (2)H10B—C10—H10C109.5
C12i—Fe—C13116.8 (2)C15—C11—C12106.9 (5)
C12—Fe—C1340.3 (2)C15—C11—P1126.4 (4)
C11—Fe—C1368.4 (2)C12—C11—P1126.6 (5)
C11i—Fe—C13152.7 (3)C15—C11—Fe69.8 (3)
C13i—Fe—C13105.0 (3)C12—C11—Fe69.3 (3)
C12i—Fe—C14i68.0 (3)P1—C11—Fe122.5 (3)
C12—Fe—C14i107.0 (3)C13—C12—C11108.0 (6)
C11—Fe—C14i120.4 (2)C13—C12—Fe70.1 (4)
C11i—Fe—C14i68.4 (2)C11—C12—Fe69.6 (3)
C13i—Fe—C14i40.2 (3)C13—C12—H12126.0
C13—Fe—C14i124.6 (3)C11—C12—H12126.0
C12i—Fe—C14107.0 (3)Fe—C12—H12125.9
C12—Fe—C1468.0 (3)C12—C13—C14108.6 (5)
C11—Fe—C1468.4 (2)C12—C13—Fe69.6 (3)
C11i—Fe—C14120.4 (2)C14—C13—Fe70.0 (3)
C13i—Fe—C14124.6 (3)C12—C13—H13125.7
C13—Fe—C1440.2 (3)C14—C13—H13125.7
C14i—Fe—C14161.5 (4)Fe—C13—H13126.3
C12i—Fe—C15127.7 (2)C13—C14—C15108.4 (6)
C12—Fe—C1568.5 (2)C13—C14—Fe69.8 (3)
C11—Fe—C1540.9 (2)C15—C14—Fe69.9 (3)
C11i—Fe—C15110.4 (2)C13—C14—H14125.8
C13i—Fe—C15163.0 (3)C15—C14—H14125.8
C13—Fe—C1567.8 (2)Fe—C14—H14126.1
C14i—Fe—C15156.4 (3)C14—C15—C11108.1 (5)
C14—Fe—C1540.2 (2)C14—C15—Fe69.8 (3)
C12i—Fe—C15i68.5 (2)C11—C15—Fe69.4 (3)
C12—Fe—C15i127.7 (2)C14—C15—H15125.9
C11—Fe—C15i110.4 (2)C11—C15—H15125.9
C11i—Fe—C15i40.9 (2)Fe—C15—H15126.4
C13i—Fe—C15i67.8 (2)C21—C16—C17119.2 (5)
C13—Fe—C15i163.0 (3)C21—C16—P1123.5 (5)
C14i—Fe—C15i40.2 (2)C17—C16—P1117.2 (4)
C14—Fe—C15i156.4 (3)C18—C17—C16120.6 (6)
C15—Fe—C15i123.1 (3)C18—C17—H17119.7
C1—S1—Au105.3 (2)C16—C17—H17119.7
C11—P1—C22103.1 (3)C17—C18—C19119.4 (6)
C11—P1—C16107.1 (3)C17—C18—H18120.3
C22—P1—C16105.8 (3)C19—C18—H18120.3
C11—P1—Au114.88 (19)C20—C19—C18120.4 (6)
C22—P1—Au112.1 (2)C20—C19—H19119.8
C16—P1—Au113.01 (18)C18—C19—H19119.8
C1—O1—C8116.6 (5)C19—C20—C21120.0 (6)
C1—N1—C2120.5 (5)C19—C20—H20120.0
O2—N2—O3122.9 (7)C21—C20—H20120.0
O2—N2—C5117.7 (8)C16—C21—C20120.2 (6)
O3—N2—C5119.3 (7)C16—C21—H21119.9
N1—C1—O1121.5 (6)C20—C21—H21119.9
N1—C1—S1124.8 (5)C27—C22—C23119.8 (6)
O1—C1—S1113.7 (4)C27—C22—P1122.0 (5)
C7—C2—C3118.6 (6)C23—C22—P1118.1 (5)
C7—C2—N1121.4 (6)C22—C23—C24119.6 (7)
C3—C2—N1120.0 (7)C22—C23—H23120.2
C4—C3—C2120.5 (7)C24—C23—H23120.2
C4—C3—H3119.7C25—C24—C23120.7 (7)
C2—C3—H3119.7C25—C24—H24119.6
C5—C4—C3120.0 (7)C23—C24—H24119.6
C5—C4—H4120.0C24—C25—C26119.3 (7)
C3—C4—H4120.0C24—C25—H25120.3
C4—C5—C6121.6 (7)C26—C25—H25120.3
C4—C5—N2119.8 (7)C27—C26—C25120.0 (7)
C6—C5—N2118.6 (7)C27—C26—H26120.0
C7—C6—C5118.7 (7)C25—C26—H26120.0
C7—C6—H6120.7C22—C27—C26120.5 (7)
C5—C6—H6120.7C22—C27—H27119.8
C6—C7—C2120.6 (7)C26—C27—H27119.8
C6—C7—H7119.7Cl1—C28—Cl2111.1 (5)
C2—C7—H7119.7Cl1—C28—Cl3111.5 (4)
O1—C8—C9107.3 (7)Cl2—C28—Cl3109.9 (4)
O1—C8—C10105.6 (7)Cl1—C28—H28108.1
C9—C8—C10113.0 (9)Cl2—C28—H28108.1
O1—C8—H8110.3Cl3—C28—H28108.1
C9—C8—H8110.3
Aui—Au—S1—C1136.1 (2)C11—Fe—C13—C1238.2 (3)
Aui—Au—P1—C1135.1 (2)C11i—Fe—C13—C12174.3 (4)
Aui—Au—P1—C22152.3 (2)C13i—Fe—C13—C12113.9 (4)
Aui—Au—P1—C1688.2 (2)C14i—Fe—C13—C1274.6 (4)
C2—N1—C1—O1175.8 (6)C14—Fe—C13—C12119.8 (5)
C2—N1—C1—S15.1 (10)C15—Fe—C13—C1282.4 (4)
C8—O1—C1—N12.9 (10)C15i—Fe—C13—C1251.0 (9)
C8—O1—C1—S1176.2 (6)C12i—Fe—C13—C1484.9 (4)
Au—S1—C1—N1166.5 (6)C12—Fe—C13—C14119.8 (5)
Au—S1—C1—O112.6 (5)C11—Fe—C13—C1481.6 (4)
C1—N1—C2—C769.1 (9)C11i—Fe—C13—C1454.4 (6)
C1—N1—C2—C3114.0 (8)C13i—Fe—C13—C14126.3 (4)
C7—C2—C3—C40.2 (10)C14i—Fe—C13—C14165.5 (3)
N1—C2—C3—C4176.8 (6)C15—Fe—C13—C1437.4 (4)
C2—C3—C4—C50.0 (10)C15i—Fe—C13—C14170.9 (7)
C3—C4—C5—C60.3 (11)C12—C13—C14—C150.4 (7)
C3—C4—C5—N2179.7 (6)Fe—C13—C14—C1559.5 (4)
O2—N2—C5—C47.8 (10)C12—C13—C14—Fe59.1 (4)
O3—N2—C5—C4169.4 (7)C12i—Fe—C14—C13111.6 (4)
O2—N2—C5—C6172.8 (7)C12—Fe—C14—C1337.2 (4)
O3—N2—C5—C610.0 (10)C11—Fe—C14—C1381.7 (4)
C4—C5—C6—C70.4 (11)C11i—Fe—C14—C13154.4 (4)
N2—C5—C6—C7179.8 (6)C13i—Fe—C14—C1370.9 (6)
C5—C6—C7—C20.2 (11)C14i—Fe—C14—C1340.4 (3)
C3—C2—C7—C60.1 (10)C15—Fe—C14—C13119.5 (5)
N1—C2—C7—C6176.8 (6)C15i—Fe—C14—C13173.3 (5)
C1—O1—C8—C9148.5 (8)C12i—Fe—C14—C15128.9 (4)
C1—O1—C8—C1090.7 (8)C12—Fe—C14—C1582.3 (4)
C22—P1—C11—C15170.5 (5)C11—Fe—C14—C1537.8 (4)
C16—P1—C11—C1578.1 (5)C11i—Fe—C14—C1586.1 (4)
Au—P1—C11—C1548.3 (5)C13i—Fe—C14—C15169.6 (4)
C22—P1—C11—C124.3 (6)C13—Fe—C14—C15119.5 (5)
C16—P1—C11—C12107.1 (5)C14i—Fe—C14—C15159.9 (4)
Au—P1—C11—C12126.6 (4)C15i—Fe—C14—C1553.8 (9)
C22—P1—C11—Fe82.8 (4)C13—C14—C15—C110.4 (6)
C16—P1—C11—Fe165.8 (3)Fe—C14—C15—C1159.0 (4)
Au—P1—C11—Fe39.4 (4)C13—C14—C15—Fe59.4 (4)
C12i—Fe—C11—C1534.7 (11)C12—C11—C15—C140.3 (6)
C12—Fe—C11—C15118.1 (5)P1—C11—C15—C14175.4 (4)
C11i—Fe—C11—C1575.1 (3)Fe—C11—C15—C1459.3 (4)
C13i—Fe—C11—C15161.5 (5)C12—C11—C15—Fe59.6 (4)
C13—Fe—C11—C1580.7 (4)P1—C11—C15—Fe116.1 (4)
C14i—Fe—C11—C15160.9 (3)C12i—Fe—C15—C1470.1 (5)
C14—Fe—C11—C1537.2 (3)C12—Fe—C15—C1480.9 (4)
C15i—Fe—C11—C15117.5 (4)C11—Fe—C15—C14119.5 (5)
C12i—Fe—C11—C12152.8 (8)C11i—Fe—C15—C14113.4 (4)
C11i—Fe—C11—C12166.8 (4)C13i—Fe—C15—C1430.7 (10)
C13i—Fe—C11—C1243.4 (6)C13—Fe—C15—C1437.4 (4)
C13—Fe—C11—C1237.4 (4)C14i—Fe—C15—C14164.2 (4)
C14i—Fe—C11—C1281.0 (4)C15i—Fe—C15—C14157.3 (4)
C14—Fe—C11—C1280.9 (4)C12i—Fe—C15—C11170.4 (3)
C15—Fe—C11—C12118.1 (5)C12—Fe—C15—C1138.6 (3)
C15i—Fe—C11—C12124.4 (4)C11i—Fe—C15—C11127.1 (4)
C12i—Fe—C11—P186.2 (11)C13i—Fe—C15—C11150.2 (8)
C12—Fe—C11—P1120.9 (5)C13—Fe—C15—C1182.1 (4)
C11i—Fe—C11—P145.9 (3)C14i—Fe—C15—C1144.7 (7)
C13i—Fe—C11—P177.5 (6)C14—Fe—C15—C11119.5 (5)
C13—Fe—C11—P1158.4 (4)C15i—Fe—C15—C1183.2 (3)
C14i—Fe—C11—P140.0 (5)C11—P1—C16—C210.6 (6)
C14—Fe—C11—P1158.2 (4)C22—P1—C16—C21110.1 (6)
C15—Fe—C11—P1121.0 (5)Au—P1—C16—C21126.9 (5)
C15i—Fe—C11—P13.5 (4)C11—P1—C16—C17177.7 (5)
C15—C11—C12—C130.1 (6)C22—P1—C16—C1772.8 (5)
P1—C11—C12—C13175.6 (4)Au—P1—C16—C1750.2 (5)
Fe—C11—C12—C1359.8 (4)C21—C16—C17—C180.2 (10)
C15—C11—C12—Fe59.9 (4)P1—C16—C17—C18177.4 (6)
P1—C11—C12—Fe115.8 (4)C16—C17—C18—C190.2 (11)
C12i—Fe—C12—C1348.7 (3)C17—C18—C19—C200.9 (12)
C11—Fe—C12—C13119.0 (5)C18—C19—C20—C211.2 (12)
C11i—Fe—C12—C13168.6 (9)C17—C16—C21—C200.1 (10)
C13i—Fe—C12—C1381.6 (5)P1—C16—C21—C20176.9 (6)
C14i—Fe—C12—C13123.9 (4)C19—C20—C21—C160.8 (11)
C14—Fe—C12—C1337.2 (4)C11—P1—C22—C2770.8 (6)
C15—Fe—C12—C1380.7 (4)C16—P1—C22—C2741.6 (6)
C15i—Fe—C12—C13163.3 (4)Au—P1—C22—C27165.1 (5)
C12i—Fe—C12—C11167.7 (4)C11—P1—C22—C23106.0 (5)
C11i—Fe—C12—C1149.5 (13)C16—P1—C22—C23141.7 (5)
C13i—Fe—C12—C11159.4 (3)Au—P1—C22—C2318.1 (5)
C13—Fe—C12—C11119.0 (5)C27—C22—C23—C240.7 (10)
C14i—Fe—C12—C11117.1 (4)P1—C22—C23—C24176.2 (5)
C14—Fe—C12—C1181.8 (4)C22—C23—C24—C250.9 (11)
C15—Fe—C12—C1138.4 (3)C23—C24—C25—C262.4 (11)
C15i—Fe—C12—C1177.6 (4)C24—C25—C26—C272.3 (11)
C11—C12—C13—C140.2 (6)C23—C22—C27—C260.7 (9)
Fe—C12—C13—C1459.3 (4)P1—C22—C27—C26176.0 (5)
C11—C12—C13—Fe59.5 (4)C25—C26—C27—C220.8 (10)
C12i—Fe—C13—C12155.3 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O2ii0.942.543.403 (9)154
C25—H25···O3iii0.942.463.254 (12)142
C28—H28···S1iv0.992.613.527 (8)154
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y, z1/2; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Au2Fe(C10H11N2O3S)2(C17H14P)2]·2CHCl3
Mr1665.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)25.9661 (13), 11.5544 (6), 23.3615 (13)
β (°) 117.293 (1)
V3)6228.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.36
Crystal size (mm)0.36 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.572, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
21839, 7148, 4988
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 0.97
No. of reflections7148
No. of parameters357
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.08, 0.74

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Au—S12.3127 (16)Au—P12.2594 (15)
P1—Au—S1176.86 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O2i0.942.543.403 (9)154
C25—H25···O3ii0.942.463.254 (12)142
C28—H28···S1iii0.992.613.527 (8)154
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z1/2; (iii) x, y, z+1/2.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds