metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl N-(4-nitro­phen­yl)thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I) di­chloro­methane solvate

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 October 2009; accepted 23 October 2009; online 31 October 2009)

An S,P-donor set in the title solvate, [Au(C9H9N2O3S)(C18H15P)]·CH2Cl2, defines a linear geometry for the AuI atom [S—Au—P = 177.75 (7)°], with the minor distortion ascribed to the influence of an intra­molecular Au⋯O contact [3.019 (6) Å]. In the crystal, the packing is stabilized by a network of C—H⋯S, C—H⋯N and C—H⋯O contacts.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9N2O3S)(C18H15P)]·CH2Cl2

  • Mr = 769.40

  • Triclinic, [P \overline 1]

  • a = 8.7525 (7) Å

  • b = 11.1373 (9) Å

  • c = 15.8981 (13) Å

  • α = 104.311 (2)°

  • β = 105.559 (2)°

  • γ = 91.775 (2)°

  • V = 1438.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 238 K

  • 0.39 × 0.34 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.561, Tmax = 1

  • 10007 measured reflections

  • 6534 independent reflections

  • 5162 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.128

  • S = 0.94

  • 6534 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 2.69 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Selected bond lengths (Å)

Au—S1 2.3019 (19)
Au—P1 2.2545 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯N1i 0.94 2.55 3.318 (11) 139
C14—H14⋯O3ii 0.94 2.47 3.366 (12) 160
C28—H28a⋯O1iii 0.98 2.52 3.330 (13) 140
C28—H28b⋯S1iv 0.98 2.86 3.617 (11) 134
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z; (iii) x+1, y, z+1; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of studies into the structural systematics of molecules with the general formula R3PAu[SC(OR')NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title dichloromethane solvate, (I), was characterized. The Au atom in (I) exists in the expected linear geometry defined by S and P atoms, Table 1 and Fig. 1, with the deviation from the ideal 180° angle being related to the close approach of the O1 atom, 3.019 (6) Å. The structure follows closely literature precedents.

The crystal structure of (I) is stabilized by a series of large rings mediated by C—H···S, O and N contacts, Table 2 and Fig. 2. Thus, CphenylH···Onitro contacts link centrosymmetrically related molecules via 30-membered {···ONC4NCSAuPC3H}2 synthons. Smaller centrosymmetric rings are formed through the agency of CphenylH···Nimine contacts that lead to 16-membered {···NCSAuPC2H}2 synthons. Centrosymmetrically related dichloromethane molecules bridge a pair of complex molecules, forming C—H···O1, S1 contacts, leading to the formation of 12-membered {···OCS···HCH}2 synthons.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, seeL Hall et al. (1993).

Experimental top

The unsolvated compound was prepared following the standard literature procedure from the reaction of Ph3PAuCl and EtOC(S)N(H)C6H4NO2-4 in the presence of base (Hall et al., 1993); m. pt. 423–425 K. Analysis for C27H24AuN2O3PS: found (calculated): C: 47.25 (47.38); H: 3.39 (3.53); N: 4.33 (4.09); S: 4.50 (4.68). IR (cm-1): ν(C—S) 1102 s, 849m; ν(C—N) 1582 s; ν(C—O) 1145m. 31P{1H} NMR: δ 37.7 p.p.m. Yellow crystals of the dichloromethane solvate (I) were obtained from the layering of ethanol on a dichloromethane solution of the characterized product.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.69 and 1.19 e Å-3, respectively, were located 0.99 Å and 0.97 Å from the Au atom.

Structure description top

As a continuation of studies into the structural systematics of molecules with the general formula R3PAu[SC(OR')NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title dichloromethane solvate, (I), was characterized. The Au atom in (I) exists in the expected linear geometry defined by S and P atoms, Table 1 and Fig. 1, with the deviation from the ideal 180° angle being related to the close approach of the O1 atom, 3.019 (6) Å. The structure follows closely literature precedents.

The crystal structure of (I) is stabilized by a series of large rings mediated by C—H···S, O and N contacts, Table 2 and Fig. 2. Thus, CphenylH···Onitro contacts link centrosymmetrically related molecules via 30-membered {···ONC4NCSAuPC3H}2 synthons. Smaller centrosymmetric rings are formed through the agency of CphenylH···Nimine contacts that lead to 16-membered {···NCSAuPC2H}2 synthons. Centrosymmetrically related dichloromethane molecules bridge a pair of complex molecules, forming C—H···O1, S1 contacts, leading to the formation of 12-membered {···OCS···HCH}2 synthons.

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, seeL Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell contents for (I) viewed in projection down the a axis. Colour code: Au, orange; Cl, cyan; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[(Z)-O-Ethyl N-(4-nitrophenyl)thiocarbamato-κS](triphenylphosphine- κP)gold(I) dichloromethane solvate top
Crystal data top
[Au(C9H9N2O3S)(C18H15P)]·CH2Cl2Z = 2
Mr = 769.40F(000) = 752
Triclinic, P1Dx = 1.776 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.7525 (7) ÅCell parameters from 3380 reflections
b = 11.1373 (9) Åθ = 2.7–25.5°
c = 15.8981 (13) ŵ = 5.46 mm1
α = 104.311 (2)°T = 238 K
β = 105.559 (2)°Block, yellow
γ = 91.775 (2)°0.39 × 0.34 × 0.10 mm
V = 1438.7 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
6534 independent reflections
Radiation source: fine-focus sealed tube5162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.561, Tmax = 1k = 1214
10007 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0474P)2]
where P = (Fo2 + 2Fc2)/3
6534 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 2.69 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Au(C9H9N2O3S)(C18H15P)]·CH2Cl2γ = 91.775 (2)°
Mr = 769.40V = 1438.7 (2) Å3
Triclinic, P1Z = 2
a = 8.7525 (7) ÅMo Kα radiation
b = 11.1373 (9) ŵ = 5.46 mm1
c = 15.8981 (13) ÅT = 238 K
α = 104.311 (2)°0.39 × 0.34 × 0.10 mm
β = 105.559 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5162 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 1Rint = 0.064
10007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.94Δρmax = 2.69 e Å3
6534 reflectionsΔρmin = 1.19 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.08336 (3)0.29401 (3)0.155405 (19)0.02476 (11)
S10.1369 (2)0.2101 (2)0.02002 (14)0.0337 (5)
P10.0409 (2)0.37531 (18)0.29087 (13)0.0227 (4)
O10.0966 (6)0.3429 (5)0.0214 (4)0.0304 (12)
O20.3929 (8)0.1228 (7)0.3297 (5)0.061 (2)
O30.4680 (9)0.0425 (7)0.3643 (5)0.066 (2)
N10.0125 (8)0.2734 (6)0.1360 (5)0.0347 (16)
N20.3922 (9)0.0126 (8)0.3252 (5)0.048 (2)
C10.0107 (9)0.2789 (7)0.0565 (5)0.0289 (17)
C20.1120 (9)0.2009 (7)0.1789 (5)0.0281 (17)
C30.1034 (10)0.0715 (8)0.1934 (6)0.038 (2)
H30.03360.03150.17070.046*
C40.1951 (9)0.0029 (8)0.2401 (6)0.037 (2)
H40.18890.08400.24930.044*
C50.2968 (9)0.0618 (8)0.2736 (6)0.0337 (19)
C60.3108 (11)0.1898 (9)0.2601 (6)0.044 (2)
H60.38100.22920.28300.053*
C70.2176 (11)0.2575 (8)0.2117 (6)0.038 (2)
H70.22640.34460.20080.046*
C80.2083 (10)0.4005 (8)0.0801 (6)0.035 (2)
H8A0.26960.33770.13490.042*
H8B0.15170.46290.09790.042*
C90.3173 (11)0.4610 (9)0.0275 (7)0.047 (2)
H9A0.39480.50080.06480.070*
H9B0.25520.52300.02640.070*
H9C0.37220.39830.01010.070*
C100.0794 (8)0.2722 (6)0.3657 (5)0.0175 (14)
C110.0100 (9)0.2683 (7)0.4250 (5)0.0289 (17)
H110.09280.31970.42740.035*
C120.0222 (10)0.1895 (8)0.4802 (6)0.0348 (19)
H120.03910.18610.52000.042*
C130.1461 (11)0.1148 (8)0.4770 (6)0.043 (2)
H130.16980.06270.51620.051*
C140.2344 (10)0.1157 (8)0.4174 (6)0.040 (2)
H140.31600.06330.41440.048*
C150.2008 (9)0.1957 (8)0.3617 (6)0.0328 (19)
H150.26070.19790.32100.039*
C160.1630 (8)0.4119 (7)0.2803 (5)0.0244 (16)
C170.1997 (10)0.5095 (8)0.3435 (5)0.0346 (19)
H170.11800.56010.39170.042*
C180.4767 (11)0.4562 (10)0.2640 (7)0.049 (3)
H180.58360.47130.25830.059*
C190.3572 (11)0.5311 (9)0.3346 (6)0.043 (2)
H190.38300.59690.37670.052*
C200.4417 (10)0.3609 (10)0.2025 (8)0.054 (3)
H200.52400.30940.15530.065*
C210.2840 (9)0.3400 (8)0.2099 (6)0.037 (2)
H210.25960.27590.16610.045*
C220.1646 (8)0.5220 (7)0.3530 (5)0.0241 (16)
C230.1571 (9)0.6150 (7)0.3100 (5)0.0281 (17)
H230.08860.60270.25120.034*
C240.2522 (11)0.7291 (8)0.3543 (6)0.042 (2)
H240.24730.79420.32600.051*
C250.3540 (11)0.7435 (8)0.4411 (6)0.041 (2)
H250.41980.81860.47100.049*
C260.3595 (9)0.6500 (8)0.4834 (6)0.0351 (19)
H260.42700.66190.54240.042*
C270.2666 (9)0.5388 (8)0.4397 (5)0.0293 (17)
H270.27190.47400.46850.035*
C280.6962 (11)0.0796 (10)0.9653 (7)0.052 (3)
H28A0.78670.14370.99620.063*
H28B0.70870.01380.99700.063*
Cl10.5199 (3)0.1453 (2)0.9715 (2)0.0559 (7)
Cl20.6994 (4)0.0171 (4)0.8542 (2)0.0823 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02296 (16)0.03345 (18)0.01681 (16)0.00492 (11)0.00790 (11)0.00206 (11)
S10.0337 (11)0.0484 (12)0.0218 (10)0.0176 (10)0.0134 (9)0.0068 (9)
P10.0173 (9)0.0305 (10)0.0186 (10)0.0038 (8)0.0062 (7)0.0019 (8)
O10.029 (3)0.038 (3)0.029 (3)0.015 (2)0.014 (2)0.010 (2)
O20.057 (5)0.050 (4)0.070 (5)0.012 (4)0.034 (4)0.011 (4)
O30.071 (5)0.092 (6)0.065 (5)0.044 (5)0.051 (4)0.036 (4)
N10.039 (4)0.040 (4)0.031 (4)0.016 (3)0.018 (3)0.011 (3)
N20.034 (4)0.065 (6)0.036 (5)0.020 (4)0.012 (4)0.003 (4)
C10.024 (4)0.038 (5)0.026 (4)0.013 (3)0.010 (3)0.007 (3)
C20.031 (4)0.039 (5)0.011 (4)0.015 (4)0.002 (3)0.004 (3)
C30.035 (5)0.042 (5)0.032 (5)0.004 (4)0.013 (4)0.004 (4)
C40.031 (4)0.033 (4)0.034 (5)0.002 (4)0.008 (4)0.014 (4)
C50.022 (4)0.049 (5)0.027 (4)0.008 (4)0.008 (3)0.003 (4)
C60.045 (5)0.057 (6)0.044 (6)0.017 (5)0.028 (5)0.021 (5)
C70.051 (5)0.038 (5)0.042 (5)0.022 (4)0.028 (5)0.022 (4)
C80.034 (4)0.044 (5)0.034 (5)0.025 (4)0.012 (4)0.018 (4)
C90.045 (5)0.047 (5)0.062 (7)0.021 (5)0.036 (5)0.014 (5)
C100.016 (3)0.019 (3)0.014 (3)0.003 (3)0.001 (3)0.004 (3)
C110.031 (4)0.027 (4)0.030 (4)0.003 (3)0.014 (4)0.001 (3)
C120.037 (5)0.042 (5)0.030 (5)0.007 (4)0.014 (4)0.012 (4)
C130.050 (5)0.037 (5)0.044 (6)0.003 (4)0.005 (5)0.024 (4)
C140.038 (5)0.034 (5)0.049 (6)0.014 (4)0.010 (4)0.012 (4)
C150.022 (4)0.048 (5)0.027 (4)0.010 (4)0.010 (3)0.003 (4)
C160.022 (4)0.024 (4)0.028 (4)0.006 (3)0.006 (3)0.010 (3)
C170.031 (4)0.049 (5)0.023 (4)0.012 (4)0.011 (4)0.004 (4)
C180.029 (5)0.073 (7)0.055 (7)0.023 (5)0.011 (5)0.031 (6)
C190.040 (5)0.058 (6)0.044 (6)0.031 (5)0.023 (5)0.022 (5)
C200.017 (4)0.073 (7)0.064 (7)0.004 (4)0.003 (4)0.011 (6)
C210.024 (4)0.047 (5)0.031 (5)0.007 (4)0.002 (4)0.001 (4)
C220.019 (3)0.030 (4)0.020 (4)0.004 (3)0.006 (3)0.001 (3)
C230.030 (4)0.031 (4)0.026 (4)0.005 (3)0.012 (3)0.007 (3)
C240.052 (6)0.039 (5)0.045 (6)0.006 (4)0.030 (5)0.010 (4)
C250.042 (5)0.032 (5)0.039 (5)0.011 (4)0.012 (4)0.008 (4)
C260.024 (4)0.046 (5)0.028 (5)0.009 (4)0.006 (3)0.002 (4)
C270.030 (4)0.040 (5)0.016 (4)0.006 (4)0.007 (3)0.003 (3)
C280.031 (5)0.058 (6)0.065 (7)0.006 (5)0.009 (5)0.015 (5)
Cl10.0490 (14)0.0489 (14)0.0709 (19)0.0094 (12)0.0188 (13)0.0154 (13)
Cl20.0596 (18)0.116 (3)0.064 (2)0.0261 (18)0.0179 (16)0.0083 (18)
Geometric parameters (Å, º) top
Au—S12.3019 (19)C12—C131.391 (12)
Au—P12.2545 (18)C12—H120.9400
S1—C11.755 (8)C13—C141.376 (13)
P1—C161.816 (7)C13—H130.9400
P1—C101.825 (7)C14—C151.389 (12)
P1—C221.826 (8)C14—H140.9400
O1—C11.352 (8)C15—H150.9400
O1—C81.444 (9)C16—C211.373 (11)
O2—N21.212 (10)C16—C171.396 (10)
O3—N21.260 (11)C17—C191.383 (11)
N1—C11.255 (10)C17—H170.9400
N1—C21.401 (9)C18—C201.356 (13)
N2—C51.460 (10)C18—C191.380 (13)
C2—C71.382 (11)C18—H180.9400
C2—C31.397 (12)C19—H190.9400
C3—C41.362 (11)C20—C211.386 (11)
C3—H30.9400C20—H200.9400
C4—C51.377 (12)C21—H210.9400
C4—H40.9400C22—C231.370 (11)
C5—C61.385 (12)C22—C271.390 (10)
C6—C71.383 (11)C23—C241.408 (12)
C6—H60.9400C23—H230.9400
C7—H70.9400C24—C251.395 (13)
C8—C91.500 (10)C24—H240.9400
C8—H8A0.9800C25—C261.367 (13)
C8—H8B0.9800C25—H250.9400
C9—H9A0.9700C26—C271.374 (11)
C9—H9B0.9700C26—H260.9400
C9—H9C0.9700C27—H270.9400
C10—C111.385 (10)C28—Cl21.740 (11)
C10—C151.387 (9)C28—Cl11.743 (9)
C11—C121.373 (11)C28—H28A0.9800
C11—H110.9400C28—H28B0.9800
P1—Au—S1177.75 (7)C11—C12—H12120.1
C1—S1—Au104.1 (2)C13—C12—H12120.1
C16—P1—C10106.1 (3)C14—C13—C12121.1 (8)
C16—P1—C22105.1 (3)C14—C13—H13119.5
C10—P1—C22106.5 (3)C12—C13—H13119.5
C16—P1—Au112.4 (3)C13—C14—C15118.8 (8)
C10—P1—Au113.5 (2)C13—C14—H14120.6
C22—P1—Au112.5 (2)C15—C14—H14120.6
C1—O1—C8116.9 (6)C10—C15—C14120.5 (8)
C1—N1—C2123.2 (7)C10—C15—H15119.7
O2—N2—O3123.5 (7)C14—C15—H15119.7
O2—N2—C5119.3 (8)C21—C16—C17119.3 (7)
O3—N2—C5117.1 (8)C21—C16—P1119.2 (6)
N1—C1—O1120.4 (7)C17—C16—P1121.4 (6)
N1—C1—S1126.9 (6)C19—C17—C16119.4 (8)
O1—C1—S1112.7 (6)C19—C17—H17120.3
C7—C2—C3118.4 (7)C16—C17—H17120.3
C7—C2—N1119.4 (7)C20—C18—C19120.8 (8)
C3—C2—N1122.2 (8)C20—C18—H18119.6
C4—C3—C2120.7 (8)C19—C18—H18119.6
C4—C3—H3119.6C18—C19—C17120.0 (8)
C2—C3—H3119.6C18—C19—H19120.0
C3—C4—C5119.5 (8)C17—C19—H19120.0
C3—C4—H4120.2C18—C20—C21119.6 (9)
C5—C4—H4120.2C18—C20—H20120.2
C4—C5—C6121.9 (7)C21—C20—H20120.2
C4—C5—N2119.2 (8)C16—C21—C20120.8 (8)
C6—C5—N2118.9 (8)C16—C21—H21119.6
C7—C6—C5117.4 (8)C20—C21—H21119.6
C7—C6—H6121.3C23—C22—C27120.6 (7)
C5—C6—H6121.3C23—C22—P1117.4 (6)
C2—C7—C6122.0 (8)C27—C22—P1122.0 (6)
C2—C7—H7119.0C22—C23—C24119.7 (8)
C6—C7—H7119.0C22—C23—H23120.2
O1—C8—C9106.9 (7)C24—C23—H23120.2
O1—C8—H8A110.3C25—C24—C23118.7 (8)
C9—C8—H8A110.3C25—C24—H24120.7
O1—C8—H8B110.3C23—C24—H24120.7
C9—C8—H8B110.3C26—C25—C24121.0 (8)
H8A—C8—H8B108.6C26—C25—H25119.5
C8—C9—H9A109.5C24—C25—H25119.5
C8—C9—H9B109.5C25—C26—C27120.1 (8)
H9A—C9—H9B109.5C25—C26—H26119.9
C8—C9—H9C109.5C27—C26—H26119.9
H9A—C9—H9C109.5C26—C27—C22120.0 (8)
H9B—C9—H9C109.5C26—C27—H27120.0
C11—C10—C15119.9 (7)C22—C27—H27120.0
C11—C10—P1121.6 (5)Cl2—C28—Cl1112.4 (6)
C15—C10—P1118.5 (6)Cl2—C28—H28A109.1
C12—C11—C10120.0 (7)Cl1—C28—H28A109.1
C12—C11—H11120.0Cl2—C28—H28B109.1
C10—C11—H11120.0Cl1—C28—H28B109.1
C11—C12—C13119.7 (8)H28A—C28—H28B107.9
C2—N1—C1—O1174.9 (7)C12—C13—C14—C151.8 (14)
C2—N1—C1—S15.0 (13)C11—C10—C15—C140.6 (12)
C8—O1—C1—N11.3 (11)P1—C10—C15—C14180.0 (6)
C8—O1—C1—S1178.6 (6)C13—C14—C15—C100.6 (13)
Au—S1—C1—N1170.3 (8)C10—P1—C16—C2192.8 (7)
Au—S1—C1—O19.8 (6)C22—P1—C16—C21154.5 (7)
C1—N1—C2—C7122.3 (9)Au—P1—C16—C2131.8 (7)
C1—N1—C2—C360.6 (12)C10—P1—C16—C1785.6 (7)
C7—C2—C3—C41.1 (13)C22—P1—C16—C1727.1 (8)
N1—C2—C3—C4176.0 (8)Au—P1—C16—C17149.8 (6)
C2—C3—C4—C50.3 (13)C21—C16—C17—C190.7 (13)
C3—C4—C5—C61.0 (13)P1—C16—C17—C19177.6 (7)
C3—C4—C5—N2178.7 (8)C20—C18—C19—C170.0 (15)
O2—N2—C5—C47.6 (12)C16—C17—C19—C180.3 (14)
O3—N2—C5—C4171.2 (8)C19—C18—C20—C211.2 (17)
O2—N2—C5—C6172.6 (8)C17—C16—C21—C202.0 (14)
O3—N2—C5—C68.5 (12)P1—C16—C21—C20176.4 (8)
C4—C5—C6—C70.4 (14)C18—C20—C21—C162.3 (16)
N2—C5—C6—C7179.4 (8)C16—P1—C22—C2368.1 (6)
C3—C2—C7—C61.8 (13)C10—P1—C22—C23179.5 (5)
N1—C2—C7—C6175.4 (8)Au—P1—C22—C2354.5 (6)
C5—C6—C7—C21.1 (14)C16—P1—C22—C27113.7 (6)
C1—O1—C8—C9178.0 (7)C10—P1—C22—C271.3 (7)
C16—P1—C10—C1121.5 (7)Au—P1—C22—C27123.7 (6)
C22—P1—C10—C1190.1 (6)C27—C22—C23—C240.6 (11)
Au—P1—C10—C11145.5 (5)P1—C22—C23—C24178.9 (6)
C16—P1—C10—C15157.9 (6)C22—C23—C24—C250.9 (11)
C22—P1—C10—C1590.4 (6)C23—C24—C25—C261.3 (13)
Au—P1—C10—C1534.0 (6)C24—C25—C26—C271.4 (13)
C15—C10—C11—C120.5 (11)C25—C26—C27—C221.2 (12)
P1—C10—C11—C12179.9 (6)C23—C22—C27—C260.8 (11)
C10—C11—C12—C130.7 (12)P1—C22—C27—C26178.9 (6)
C11—C12—C13—C141.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N1i0.942.553.318 (11)139
C14—H14···O3ii0.942.473.366 (12)160
C28—H28a···O1iii0.982.523.330 (13)140
C28—H28b···S1iv0.982.863.617 (11)134
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Au(C9H9N2O3S)(C18H15P)]·CH2Cl2
Mr769.40
Crystal system, space groupTriclinic, P1
Temperature (K)238
a, b, c (Å)8.7525 (7), 11.1373 (9), 15.8981 (13)
α, β, γ (°)104.311 (2), 105.559 (2), 91.775 (2)
V3)1438.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.39 × 0.34 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.561, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10007, 6534, 5162
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.128, 0.94
No. of reflections6534
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.69, 1.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Au—S12.3019 (19)Au—P12.2545 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N1i0.942.553.318 (11)139
C14—H14···O3ii0.942.473.366 (12)160
C28—H28a···O1iii0.982.523.330 (13)140
C28—H28b···S1iv0.982.863.617 (11)134
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds