organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl (2-hydr­­oxy-4-phenyl­but-3-en-2-yl)phospho­nate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Faculty of Science, University of Ankara, Ankara, Turkey, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 October 2009; accepted 23 October 2009; online 31 October 2009)

In the title compound, C12H17O4P, the phenyl­butenyl group is disordered over two sets of sites with an occupancy ratio of 0.755 (12):0.245 (12). In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds occur, forming R22(10) ring motifs. The packing is consolidated by weak C—H⋯π inter­actions.

Related literature

For related structures, see: Acar et al. (2009[Acar, N., Tahir, M. N., Tariq, R. H. & Yilmaz, H. (2009). Acta Cryst. E65, o1203.]); Tahir et al. (2007[Tahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817-o3818.], 2009a[Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009a). Acta Cryst. E65, o562.],b[Tahir, M. N., Acar, N., Yilmaz, H. & Tariq, R. H. (2009b). Acta Cryst. E65, o2051.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17O4P

  • Mr = 256.23

  • Monoclinic, C 2/c

  • a = 17.1522 (12) Å

  • b = 8.1571 (13) Å

  • c = 19.5230 (12) Å

  • β = 103.771 (10)°

  • V = 2653.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.25 × 0.14 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.885, Tmax = 0.954

  • 2519 measured reflections

  • 2415 independent reflections

  • 1684 reflections with I > 2σ(I)

  • Rint = 0.095

  • 3 standard reflections frequency: 120 min intensity decay: 0.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.175

  • S = 1.07

  • 2415 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.90 2.721 (3) 176
C6B—H6BCg1ii 0.93 2.83 3.568 (17) 137
C6B—H6BCg2ii 0.93 2.94 3.652 (17) 134
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We have reported the crystal structures which contains α-hydroxy phosphonate such as (II) Dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Tahir et al., 2009a), (III) Dimethyl [hydroxy(2-nitrophenyl)methyl]phosphonate (Tahir et al., 2009b), (IV) (R)-Dimethyl [(2-chlorophenyl)hydroxymethyl]phosphonate (Tahir et al., 2007) and Diethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Acar et al., 2009). The title compound (I, Fig. 1) is in continuation of synthesizing various α-hydroxy phosphonates.

In the crystal structure of title compound phenylbutan is disordered over two possible sites with occupancy ratio of 0.755 (12):0.245 (12). The benzene rings of disordered moieties A (C1A—C6A) and B (C1B—C6B) are nearly planar to one another as the dihedral angle between A/B is 2.76 (1.35)°. The molecules of title compound are dimerized due to O—H···O type of intermolecular H-bondings (Table 1, Fig. 3) forming R22(10) ring motif (Bernstein et al., 1995). The molecules are stabilized due to C–H···π interactions (Table 1).

Related literature top

For related structures, see: Acar et al. (2009); Tahir et al. (2007, 2009a,b). For graph-set theory, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Experimental top

Benzylacetone (4.45 g, 30 mmol) and dimethylphosphonate (3.30 g, 30 mmol) were dissolved in 50 ml of tetrahydrofuran. The mixture was cooled to 273 K and in it KF (1.74 g, 30 mmol) and γ-Al2O3 (1.74 g, 17 mmol) were added and refluxed. The precipitates obtained after 48 h were washed with hot distiled water (50 ml) and dried. The crude material was dissolved in distiled water with few drops of ethyl alcohol and colourless needles of (I) were obtained after 4 days.

Refinement top

The H-atoms were positioned geometrically (O–H = 0.82 Å, C–H = 0.93-0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

The incorrect bond distances and higher thermal parameters of phenylbutan lead to disorder. In the disordered group the benzene rings were refined using AFIX 66. The benzene ring B (C2B—C6B) was refined using EADP.

Structure description top

We have reported the crystal structures which contains α-hydroxy phosphonate such as (II) Dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Tahir et al., 2009a), (III) Dimethyl [hydroxy(2-nitrophenyl)methyl]phosphonate (Tahir et al., 2009b), (IV) (R)-Dimethyl [(2-chlorophenyl)hydroxymethyl]phosphonate (Tahir et al., 2007) and Diethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Acar et al., 2009). The title compound (I, Fig. 1) is in continuation of synthesizing various α-hydroxy phosphonates.

In the crystal structure of title compound phenylbutan is disordered over two possible sites with occupancy ratio of 0.755 (12):0.245 (12). The benzene rings of disordered moieties A (C1A—C6A) and B (C1B—C6B) are nearly planar to one another as the dihedral angle between A/B is 2.76 (1.35)°. The molecules of title compound are dimerized due to O—H···O type of intermolecular H-bondings (Table 1, Fig. 3) forming R22(10) ring motif (Bernstein et al., 1995). The molecules are stabilized due to C–H···π interactions (Table 1).

For related structures, see: Acar et al. (2009); Tahir et al. (2007, 2009a,b). For graph-set theory, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme for atoms of greater occupancy ratio. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. View of the title compound with the atom numbering scheme for atoms of smaller occupancy ratio. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 3] Fig. 3. The partial packing of (I), which shows that molecules form inversion dimers.
Dimethyl (2-hydroxy-4-phenylbut-3-en-2-yl)phosphonate top
Crystal data top
C12H17O4PF(000) = 1088
Mr = 256.23Dx = 1.283 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 17.1522 (12) Åθ = 9.9–13.9°
b = 8.1571 (13) ŵ = 0.21 mm1
c = 19.5230 (12) ÅT = 296 K
β = 103.771 (10)°Needle, colourless
V = 2653.0 (5) Å30.25 × 0.14 × 0.12 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.095
ω/2θ scansθmax = 25.5°, θmin = 2.8°
Absorption correction: ψ scan
(MolEN; Fair, 1990)
h = 2020
Tmin = 0.885, Tmax = 0.954k = 09
2519 measured reflectionsl = 230
2415 independent reflections3 standard reflections every 120 min
1684 reflections with I > 2σ(I) intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.114P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2415 reflectionsΔρmax = 0.53 e Å3
177 parametersΔρmin = 0.42 e Å3
0 restraints
Crystal data top
C12H17O4PV = 2653.0 (5) Å3
Mr = 256.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.1522 (12) ŵ = 0.21 mm1
b = 8.1571 (13) ÅT = 296 K
c = 19.5230 (12) Å0.25 × 0.14 × 0.12 mm
β = 103.771 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1684 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.095
Tmin = 0.885, Tmax = 0.9543 standard reflections every 120 min
2519 measured reflections intensity decay: 0.6%
2415 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.07Δρmax = 0.53 e Å3
2415 reflectionsΔρmin = 0.42 e Å3
177 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.43961 (4)0.29251 (9)0.06739 (4)0.0399 (3)
O10.43699 (13)0.6068 (3)0.08493 (11)0.0548 (8)
O20.49603 (12)0.2946 (3)0.02130 (12)0.0528 (8)
O30.37510 (12)0.1526 (2)0.05085 (11)0.0500 (7)
O40.48115 (13)0.2636 (3)0.14713 (12)0.0597 (8)
C1A0.2124 (3)0.4228 (6)0.1674 (2)0.0453 (16)0.755 (12)
C2A0.23963 (19)0.4970 (7)0.2329 (3)0.058 (2)0.755 (12)
C3A0.1939 (3)0.4884 (9)0.28271 (18)0.078 (2)0.755 (12)
C4A0.1209 (3)0.4058 (9)0.2671 (3)0.072 (2)0.755 (12)
C5A0.0937 (2)0.3316 (6)0.2017 (3)0.062 (2)0.755 (12)
C6A0.1395 (3)0.3401 (6)0.15183 (15)0.0524 (17)0.755 (12)
C7A0.2601 (3)0.4283 (6)0.1139 (2)0.0451 (16)0.755 (12)
C8A0.3344 (4)0.4814 (7)0.1215 (3)0.0414 (19)0.755 (12)
C90.37966 (18)0.4799 (3)0.06310 (16)0.0440 (10)
C100.3323 (2)0.5090 (4)0.01138 (18)0.0584 (11)
C110.4001 (2)0.0152 (4)0.0447 (2)0.0644 (13)
C120.5626 (2)0.3125 (6)0.1775 (2)0.0896 (19)
C6B0.1066 (9)0.341 (2)0.1847 (9)0.061 (3)0.245 (12)
C7B0.3065 (12)0.441 (2)0.0916 (13)0.046 (6)0.245 (12)
C1B0.1670 (11)0.380 (2)0.1509 (5)0.061 (3)0.245 (12)
C2B0.2328 (8)0.471 (2)0.1857 (9)0.061 (3)0.245 (12)
C3B0.2381 (8)0.525 (2)0.2543 (9)0.061 (3)0.245 (12)
C4B0.1777 (12)0.486 (3)0.2880 (7)0.061 (3)0.245 (12)
C5B0.1119 (10)0.395 (3)0.2532 (9)0.061 (3)0.245 (12)
C8B0.2981 (10)0.5086 (19)0.1470 (10)0.057 (6)0.245 (12)
H10.457060.631430.052180.0821*
H2A0.288440.552260.243310.0697*0.755 (12)
H10C0.368120.512920.042330.0875*
H11A0.355940.087620.044460.0966*
H11B0.417200.027950.001650.0966*
H11C0.443810.041170.084030.0966*
H12A0.597640.261870.152020.1344*
H12B0.566930.429500.174850.1344*
H12C0.577620.278620.225980.1344*
H3A0.212030.538060.326500.0928*0.755 (12)
H4A0.090260.400080.300470.0865*0.755 (12)
H5A0.044890.276300.191240.0741*0.755 (12)
H6A0.121300.290500.108040.0629*0.755 (12)
H7A0.234850.389560.069320.0541*0.755 (12)
H8A0.360860.522420.165320.0500*0.755 (12)
H10A0.294440.421470.025550.0875*
H10B0.303980.611210.013710.0875*
H1B0.163420.343690.105030.0729*0.245 (12)
H3B0.282130.586350.277580.0729*0.245 (12)
H4B0.181260.522180.333910.0729*0.245 (12)
H5B0.071470.368760.275800.0729*0.245 (12)
H6B0.062550.279510.161360.0729*0.245 (12)
H7B0.268150.366540.068050.0543*0.245 (12)
H8B0.335140.589220.166260.0680*0.245 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0354 (4)0.0436 (5)0.0463 (5)0.0019 (3)0.0206 (3)0.0024 (3)
O10.0676 (15)0.0482 (12)0.0568 (13)0.0064 (11)0.0312 (12)0.0074 (10)
O20.0520 (13)0.0542 (13)0.0644 (14)0.0030 (10)0.0382 (11)0.0013 (10)
O30.0399 (12)0.0423 (11)0.0723 (15)0.0011 (9)0.0225 (10)0.0003 (10)
O40.0499 (13)0.0785 (15)0.0530 (14)0.0069 (12)0.0167 (11)0.0118 (11)
C1A0.037 (3)0.064 (3)0.036 (2)0.007 (2)0.011 (2)0.005 (2)
C2A0.043 (3)0.093 (4)0.045 (4)0.002 (2)0.022 (2)0.011 (3)
C3A0.055 (4)0.140 (5)0.047 (3)0.025 (4)0.031 (3)0.022 (3)
C4A0.053 (4)0.121 (5)0.051 (3)0.013 (3)0.029 (3)0.020 (3)
C5A0.046 (3)0.096 (4)0.054 (4)0.000 (2)0.033 (2)0.008 (3)
C6A0.035 (3)0.078 (3)0.051 (3)0.002 (2)0.024 (2)0.007 (2)
C7A0.040 (3)0.061 (3)0.040 (2)0.007 (2)0.021 (2)0.011 (2)
C8A0.038 (4)0.047 (3)0.040 (3)0.002 (2)0.011 (3)0.005 (2)
C90.0388 (16)0.0440 (16)0.0560 (18)0.0029 (13)0.0245 (14)0.0051 (13)
C100.051 (2)0.0560 (19)0.069 (2)0.0017 (15)0.0160 (17)0.0091 (16)
C110.066 (2)0.0462 (18)0.085 (3)0.0049 (16)0.026 (2)0.0011 (16)
C120.065 (3)0.119 (4)0.074 (3)0.015 (2)0.005 (2)0.003 (2)
C6B0.037 (4)0.112 (7)0.040 (5)0.002 (4)0.024 (3)0.003 (4)
C7B0.034 (10)0.047 (9)0.058 (13)0.003 (7)0.015 (9)0.002 (7)
C1B0.037 (4)0.112 (7)0.040 (5)0.002 (4)0.024 (3)0.003 (4)
C2B0.037 (4)0.112 (7)0.040 (5)0.002 (4)0.024 (3)0.003 (4)
C3B0.037 (4)0.112 (7)0.040 (5)0.002 (4)0.024 (3)0.003 (4)
C4B0.037 (4)0.112 (7)0.040 (5)0.002 (4)0.024 (3)0.003 (4)
C5B0.037 (4)0.112 (7)0.040 (5)0.002 (4)0.024 (3)0.003 (4)
C8B0.036 (8)0.056 (9)0.083 (12)0.010 (7)0.023 (9)0.028 (8)
Geometric parameters (Å, º) top
P1—O21.470 (2)C8A—C91.525 (7)
P1—O31.569 (2)C9—C101.506 (5)
P1—O41.568 (2)C1B—H1B0.9300
P1—C91.833 (3)C2A—H2A0.9300
O1—C91.422 (4)C3A—H3A0.9300
O3—C111.448 (4)C3B—H3B0.9300
O4—C121.438 (4)C4A—H4A0.9300
O1—H10.8200C4B—H4B0.9300
C1A—C2A1.391 (7)C5A—H5A0.9300
C1A—C7A1.473 (7)C5B—H5B0.9300
C1A—C6A1.389 (7)C6A—H6A0.9300
C1B—C2B1.39 (2)C6B—H6B0.9300
C1B—C6B1.39 (2)C7A—H7A0.9300
C2A—C3A1.389 (6)C7B—H7B0.9300
C2B—C8B1.52 (2)C8A—H8A0.9300
C2B—C3B1.39 (2)C8B—H8B0.9300
C3A—C4A1.390 (8)C10—H10B0.9600
C3B—C4B1.39 (2)C10—H10A0.9600
C4A—C5A1.390 (8)C10—H10C0.9600
C4B—C5B1.39 (3)C11—H11A0.9600
C5A—C6A1.391 (6)C11—H11B0.9600
C5B—C6B1.39 (2)C11—H11C0.9600
C7A—C8A1.321 (9)C12—H12A0.9600
C7B—C8B1.25 (3)C12—H12B0.9600
C7B—C91.52 (2)C12—H12C0.9600
O2—P1—O3114.66 (13)C2A—C3A—H3A120.00
O2—P1—O4113.56 (13)C4A—C3A—H3A120.00
O2—P1—C9113.97 (14)C2B—C3B—H3B120.00
O3—P1—O4103.09 (12)C4B—C3B—H3B120.00
O3—P1—C9103.70 (12)C3A—C4A—H4A120.00
O4—P1—C9106.75 (14)C5A—C4A—H4A120.00
P1—O3—C11119.8 (2)C3B—C4B—H4B120.00
P1—O4—C12122.3 (2)C5B—C4B—H4B120.00
C9—O1—H1109.00C4A—C5A—H5A120.00
C2A—C1A—C7A121.1 (4)C6A—C5A—H5A120.00
C6A—C1A—C7A118.9 (4)C4B—C5B—H5B120.00
C2A—C1A—C6A120.0 (4)C6B—C5B—H5B120.00
C2B—C1B—C6B120.1 (12)C5A—C6A—H6A120.00
C1A—C2A—C3A120.0 (4)C1A—C6A—H6A120.00
C1B—C2B—C3B120.0 (14)C1B—C6B—H6B120.00
C1B—C2B—C8B118.3 (14)C5B—C6B—H6B120.00
C3B—C2B—C8B121.7 (14)C1A—C7A—H7A116.00
C2A—C3A—C4A120.0 (5)C8A—C7A—H7A116.00
C2B—C3B—C4B119.8 (15)C9—C7B—H7B120.00
C3A—C4A—C5A120.0 (5)C8B—C7B—H7B120.00
C3B—C4B—C5B120.2 (15)C7A—C8A—H8A118.00
C4A—C5A—C6A120.0 (4)C9—C8A—H8A118.00
C4B—C5B—C6B120.0 (16)C2B—C8B—H8B117.00
C1A—C6A—C5A120.0 (4)C7B—C8B—H8B117.00
C1B—C6B—C5B119.9 (15)C9—C10—H10C110.00
C1A—C7A—C8A127.9 (4)C9—C10—H10B109.00
C8B—C7B—C9119.9 (17)C9—C10—H10A109.00
C7A—C8A—C9124.3 (5)H10B—C10—H10C109.00
C2B—C8B—C7B126.1 (17)H10A—C10—H10B109.00
C7B—C9—C1094.8 (9)H10A—C10—H10C110.00
O1—C9—C10110.5 (2)H11A—C11—H11B110.00
O1—C9—C7B127.9 (8)O3—C11—H11A109.00
C8A—C9—C10117.9 (3)O3—C11—H11B109.00
P1—C9—O1104.7 (2)O3—C11—H11C109.00
P1—C9—C8A110.6 (3)H11A—C11—H11C109.00
P1—C9—C10110.1 (2)H11B—C11—H11C109.00
P1—C9—C7B108.2 (7)H12B—C12—H12C109.00
O1—C9—C8A102.1 (3)O4—C12—H12A109.00
C2B—C1B—H1B120.00O4—C12—H12B109.00
C6B—C1B—H1B120.00O4—C12—H12C109.00
C1A—C2A—H2A120.00H12A—C12—H12B110.00
C3A—C2A—H2A120.00H12A—C12—H12C109.00
O2—P1—O3—C1150.8 (3)C6A—C1A—C2A—C3A0.0 (8)
O4—P1—O3—C1173.1 (2)C7A—C1A—C2A—C3A179.3 (5)
C9—P1—O3—C11175.7 (2)C2A—C1A—C6A—C5A0.1 (7)
O2—P1—O4—C1228.4 (3)C7A—C1A—C6A—C5A179.3 (4)
O3—P1—O4—C12153.1 (3)C2A—C1A—C7A—C8A8.7 (8)
C9—P1—O4—C1298.0 (3)C6A—C1A—C7A—C8A170.6 (5)
O2—P1—C9—O160.4 (2)C1A—C2A—C3A—C4A0.1 (9)
O2—P1—C9—C8A169.6 (3)C2A—C3A—C4A—C5A0.1 (10)
O2—P1—C9—C1058.4 (3)C3A—C4A—C5A—C6A0.1 (9)
O3—P1—C9—O1174.29 (18)C4A—C5A—C6A—C1A0.0 (8)
O3—P1—C9—C8A65.1 (3)C1A—C7A—C8A—C9179.0 (4)
O3—P1—C9—C1067.0 (2)C7A—C8A—C9—P193.6 (6)
O4—P1—C9—O165.8 (2)C7A—C8A—C9—O1155.5 (5)
O4—P1—C9—C8A43.4 (3)C7A—C8A—C9—C1034.2 (7)
O4—P1—C9—C10175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.721 (3)176
C6B—H6B···Cg1ii0.932.833.568 (17)137
C6B—H6B···Cg2ii0.932.943.652 (17)134
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H17O4P
Mr256.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.1522 (12), 8.1571 (13), 19.5230 (12)
β (°) 103.771 (10)
V3)2653.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.14 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.885, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
2519, 2415, 1684
Rint0.095
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.175, 1.07
No. of reflections2415
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.42

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1993), MolEN (Fair, 1990), WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.721 (3)176
C6B—H6B···Cg1ii0.932.833.568 (17)137
C6B—H6B···Cg2ii0.932.943.652 (17)134
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationAcar, N., Tahir, M. N., Tariq, R. H. & Yilmaz, H. (2009). Acta Cryst. E65, o1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1993). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Acar, N., Yilmaz, H. & Tariq, R. H. (2009b). Acta Cryst. E65, o2051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009a). Acta Cryst. E65, o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds