metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-trans-1,2-Di-4-pyridylethyl­ene-κ2N:N′)bis­­[bis­­(N,N-di­ethyl­di­thio­carbamato-κ2S,S′)zinc(II)] chloro­form solvate

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 October 2009; accepted 24 October 2009; online 31 October 2009)

The dinuclear title solvate, [Zn2(C5H10NS2)4(C12H10N2)]·CHCl3, features two five-coordinate Zn atoms; both coordination polyhedra are distorted, but one has an NS4 donor set approximating to a square pyramid (with the N atom in the apical site), while the other is closer to a ZnNS4 trigonal-bipyramidal arrangement (with the N atom in an equatorial site). In both cases, the ZnII atom is chelated by two S,S′-bidentate dithiol­ate ligands. In the crystal, the chloro­form solvent mol­ecules reside in cavities defined by the dinuclear species and are held in place via C—H⋯S contacts.

Related literature

For background to supra­molecular polymers of zinc 1,1-dithiol­ates, see: Lai et al. (2002[Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596-600.]); Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]). For a related structure and the synthesis, see: Lai & Tiekink (2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]). For additional geometrical analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C5H10NS2)4(C12H10N2)]·CHCl3

  • Mr = 1025.37

  • Orthorhombic, P n a 21

  • a = 17.443 (3) Å

  • b = 15.739 (3) Å

  • c = 16.823 (3) Å

  • V = 4618.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 98 K

  • 0.35 × 0.21 × 0.09 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.824, Tmax = 1

  • 36476 measured reflections

  • 9260 independent reflections

  • 8995 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.07

  • 9260 reflections

  • 477 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3766 Friedel pairs

  • Flack parameter: −0.004 (8)

Table 1
Selected bond lengths (Å)

Zn1—N5 2.069 (3)
Zn1—S1 2.3567 (9)
Zn1—S3 2.3659 (9)
Zn1—S2 2.5629 (9)
Zn1—S4 2.5654 (9)
Zn2—N6 2.075 (3)
Zn2—S7 2.3381 (10)
Zn2—S5 2.3526 (9)
Zn2—S6 2.4934 (10)
Zn2—S8 2.6575 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯S8i 1.00 2.72 3.598 (4) 149
Symmetry code: (i) [-x+1, -y+2, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was prepared in connection with crystal engineering studies of zinc(II) 1,1-dithiolates (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007). The dinuclear compound features two five coordinate Zn atoms, each being coordinated by two dithiocarbamate ligands and a pyridine-N atom. The dithiocarbamate ligands are chelating but form disparate Zn—S bond distances that range from 2.3381 (10) to 2.6575 (9) Å. The coordination geometries for the Zn1 and Zn2 atoms are each based on a NS4 donor set but are distinct. Thus, the geometries for the Zn1 and Zn2 atoms are distorted towards trigonal bipyramidal (TB) and square pyramidal (SP), respectively. This is quantified by the values of τ = 0.56 and 0.36, respectively, compared with the ideal values of 1.0 and 0.0 for TB and SP, respectively (Addison et al., 1984).

The most closely related structure available for comparison is the diethyldithiocarbamate analogue of (I) which was co-crystallized with a trans-1,2-bis(4-pyridyl)ethylene molecule (Lai & Tiekink, 2003) rather than a solvent chloroform molecule as for (I). In the former, the range of Zn—S bond distances was considerably narrower, i.e. 2.4100 (10) to 2.4914 (11) Å, and the coordination geometry for Zn (the dinuclear molecule is centrosymmetric) was close to SP (τ = 0.13).

The solvent chlorofrom molecules in (I) reside in cavities defined by the dinuclear molecules and are held in place by C—H···S interactions, Table 1,

Related literature top

For background to supramolecular polymers of zinc 1,1-dithiolates, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison et al. (1984).

Experimental top

Compound (I) was prepared by following a standard literature procedure (Lai & Tiekink, 2003) whereby two equivalents of Zn(S2CNEt2)2 were added to trans-1,2-bis(4-pyridyl)ethylene. Crystals were obtained from slow evaporation of a chloroform solution. When heated, the crystals turned opaque at 349–351 K and melted at 401–403 K.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

The title compound (I) was prepared in connection with crystal engineering studies of zinc(II) 1,1-dithiolates (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007). The dinuclear compound features two five coordinate Zn atoms, each being coordinated by two dithiocarbamate ligands and a pyridine-N atom. The dithiocarbamate ligands are chelating but form disparate Zn—S bond distances that range from 2.3381 (10) to 2.6575 (9) Å. The coordination geometries for the Zn1 and Zn2 atoms are each based on a NS4 donor set but are distinct. Thus, the geometries for the Zn1 and Zn2 atoms are distorted towards trigonal bipyramidal (TB) and square pyramidal (SP), respectively. This is quantified by the values of τ = 0.56 and 0.36, respectively, compared with the ideal values of 1.0 and 0.0 for TB and SP, respectively (Addison et al., 1984).

The most closely related structure available for comparison is the diethyldithiocarbamate analogue of (I) which was co-crystallized with a trans-1,2-bis(4-pyridyl)ethylene molecule (Lai & Tiekink, 2003) rather than a solvent chloroform molecule as for (I). In the former, the range of Zn—S bond distances was considerably narrower, i.e. 2.4100 (10) to 2.4914 (11) Å, and the coordination geometry for Zn (the dinuclear molecule is centrosymmetric) was close to SP (τ = 0.13).

The solvent chlorofrom molecules in (I) reside in cavities defined by the dinuclear molecules and are held in place by C—H···S interactions, Table 1,

For background to supramolecular polymers of zinc 1,1-dithiolates, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molcular structure of (I) showing displacement ellipsoids at the 70% probability level.
(µ-trans-1,2-Di-4-pyridylethylene- κ2N:N')bis[bis(N,N- diethyldithiocarbamato-κ2S,S')zinc(II)] chloroform solvate top
Crystal data top
[Zn2(C5H10NS2)4(C12H10N2)]·CHCl3F(000) = 2120
Mr = 1025.37Dx = 1.475 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2nCell parameters from 19833 reflections
a = 17.443 (3) Åθ = 2.1–40.8°
b = 15.739 (3) ŵ = 1.61 mm1
c = 16.823 (3) ÅT = 98 K
V = 4618.5 (14) Å3Block, yellow
Z = 40.35 × 0.21 × 0.09 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
9260 independent reflections
Radiation source: fine-focus sealed tube8995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.824, Tmax = 1k = 2020
36476 measured reflectionsl = 1721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0266P)2 + 3.3574P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
9260 reflectionsΔρmax = 0.83 e Å3
477 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983), 3766 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (8)
Crystal data top
[Zn2(C5H10NS2)4(C12H10N2)]·CHCl3V = 4618.5 (14) Å3
Mr = 1025.37Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.443 (3) ŵ = 1.61 mm1
b = 15.739 (3) ÅT = 98 K
c = 16.823 (3) Å0.35 × 0.21 × 0.09 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
9260 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
8995 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 1Rint = 0.050
36476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.83 e Å3
S = 1.07Δρmin = 0.40 e Å3
9260 reflectionsAbsolute structure: Flack (1983), 3766 Friedel pairs
477 parametersAbsolute structure parameter: 0.004 (8)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.48561 (2)0.46529 (2)0.25986 (2)0.01771 (8)
Zn20.52421 (2)1.04699 (2)0.32727 (2)0.01811 (8)
S10.37402 (5)0.47688 (5)0.33808 (5)0.02142 (17)
S20.39216 (5)0.35268 (5)0.20769 (5)0.02060 (16)
S30.60161 (4)0.38777 (5)0.26719 (5)0.01975 (16)
S40.58224 (5)0.55975 (5)0.33339 (5)0.02023 (16)
S50.64756 (4)1.10741 (5)0.32528 (6)0.02142 (16)
S60.59961 (5)0.96317 (5)0.42580 (5)0.02180 (17)
S70.40173 (5)1.06415 (6)0.38140 (6)0.02441 (18)
S80.45491 (5)1.17094 (5)0.24764 (5)0.02131 (16)
N10.25911 (16)0.38216 (17)0.28033 (17)0.0202 (6)
N20.71730 (16)0.47956 (17)0.32773 (17)0.0202 (6)
N30.74526 (16)1.01190 (18)0.40881 (17)0.0220 (6)
N40.30787 (18)1.1551 (2)0.2899 (2)0.0353 (8)
N50.47859 (15)0.54237 (15)0.16051 (18)0.0165 (6)
N60.51719 (15)0.95913 (15)0.2356 (2)0.0179 (5)
C10.33315 (19)0.40127 (18)0.2750 (2)0.0193 (6)
C20.22382 (19)0.3145 (2)0.2327 (2)0.0214 (7)
H2A0.18220.28770.26390.026*
H2B0.26270.27040.22120.026*
C30.1911 (3)0.3475 (2)0.1547 (2)0.0349 (9)
H3A0.15490.39370.16550.052*
H3B0.16440.30130.12710.052*
H3C0.23290.36880.12120.052*
C40.2053 (2)0.4269 (2)0.3333 (2)0.0259 (7)
H4A0.15550.43370.30590.031*
H4B0.22560.48420.34520.031*
C50.1932 (2)0.3788 (3)0.4108 (2)0.0343 (9)
H5A0.17580.32090.39920.051*
H5B0.15430.40810.44280.051*
H5C0.24150.37660.44040.051*
C60.64211 (18)0.4769 (2)0.3119 (2)0.0182 (6)
C70.7699 (2)0.4104 (2)0.3059 (2)0.0254 (7)
H7A0.81930.43510.28860.030*
H7B0.74800.37880.26030.030*
C80.7845 (2)0.3483 (3)0.3742 (3)0.0358 (9)
H8A0.81330.37710.41640.054*
H8B0.81430.29980.35460.054*
H8C0.73540.32820.39540.054*
C90.7508 (2)0.5538 (2)0.3680 (2)0.0243 (7)
H9A0.72680.60590.34640.029*
H9B0.80620.55620.35550.029*
C100.7411 (3)0.5535 (3)0.4577 (2)0.0343 (9)
H10A0.68680.54660.47090.051*
H10B0.75990.60740.47960.051*
H10C0.77050.50640.48060.051*
C110.67278 (19)1.0258 (2)0.3888 (2)0.0185 (6)
C120.7677 (2)0.9474 (2)0.4679 (2)0.0278 (8)
H12A0.81560.96560.49440.033*
H12B0.72720.94300.50900.033*
C130.7798 (2)0.8609 (2)0.4302 (2)0.0340 (9)
H13A0.82040.86470.39000.051*
H13B0.79480.81990.47120.051*
H13C0.73210.84210.40490.051*
C140.80844 (19)1.0610 (2)0.3729 (2)0.0274 (8)
H14A0.85471.02470.36980.033*
H14B0.79401.07730.31800.033*
C150.8274 (2)1.1405 (2)0.4197 (2)0.0322 (8)
H15A0.84831.12450.47160.048*
H15B0.86541.17410.39050.048*
H15C0.78071.17420.42720.048*
C160.38029 (19)1.1340 (2)0.3040 (2)0.0212 (7)
C170.2414 (2)1.1077 (3)0.3288 (3)0.0414 (10)
H17A0.25691.04850.34050.050*
H17B0.19711.10610.29210.050*
C180.2196 (3)1.1518 (3)0.4038 (3)0.0451 (11)
H18A0.20031.20870.39140.068*
H18B0.17951.11910.43090.068*
H18C0.26461.15640.43840.068*
C190.2882 (2)1.2217 (2)0.2313 (2)0.0301 (8)
H19A0.24161.25210.24930.036*
H19B0.33061.26330.22830.036*
C200.2740 (2)1.1845 (3)0.1493 (3)0.0383 (10)
H20A0.23131.14400.15190.058*
H20B0.26111.23020.11210.058*
H20C0.32021.15510.13090.058*
C210.47506 (18)0.62720 (19)0.1688 (2)0.0187 (6)
H210.47230.65030.22090.022*
C220.47521 (19)0.6821 (2)0.1050 (2)0.0199 (7)
H220.47180.74170.11360.024*
C230.48044 (18)0.6501 (2)0.0279 (2)0.0185 (6)
C240.48146 (19)0.5615 (2)0.0190 (2)0.0209 (7)
H240.48260.53660.03240.025*
C250.48072 (18)0.5108 (2)0.0864 (2)0.0199 (7)
H250.48180.45090.07980.024*
C260.48606 (19)0.7044 (2)0.0429 (2)0.0197 (7)
H260.48150.67840.09370.024*
C270.4971 (2)0.7877 (2)0.0400 (2)0.0212 (7)
H270.50040.81290.01130.025*
C280.50485 (19)0.8446 (2)0.10882 (19)0.0170 (6)
C290.5127 (2)0.9317 (2)0.0959 (2)0.0233 (7)
H290.51400.95360.04330.028*
C300.51845 (19)0.9857 (2)0.1599 (2)0.0208 (7)
H300.52361.04480.15000.025*
C310.51125 (18)0.87512 (19)0.2482 (2)0.0197 (6)
H310.51190.85490.30140.024*
C320.5043 (2)0.8172 (2)0.1877 (2)0.0212 (7)
H320.49920.75850.19950.025*
C330.4971 (2)0.7614 (3)0.4505 (2)0.0313 (8)
H330.53060.78200.40630.038*
Cl10.44088 (7)0.84716 (6)0.48451 (7)0.0425 (2)
Cl20.43669 (6)0.68037 (8)0.41320 (8)0.0503 (3)
Cl30.55577 (7)0.72255 (6)0.52699 (7)0.0431 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01558 (16)0.02010 (16)0.01744 (19)0.00015 (13)0.00102 (15)0.00359 (15)
Zn20.01462 (16)0.02072 (17)0.01900 (19)0.00070 (13)0.00125 (15)0.00434 (15)
S10.0177 (4)0.0264 (4)0.0202 (4)0.0051 (3)0.0021 (3)0.0059 (3)
S20.0192 (4)0.0200 (4)0.0226 (4)0.0006 (3)0.0035 (3)0.0026 (3)
S30.0168 (3)0.0178 (3)0.0247 (4)0.0009 (3)0.0000 (3)0.0002 (3)
S40.0200 (4)0.0203 (4)0.0204 (4)0.0006 (3)0.0014 (3)0.0009 (3)
S50.0165 (3)0.0225 (3)0.0253 (4)0.0024 (3)0.0019 (3)0.0017 (3)
S60.0208 (4)0.0244 (4)0.0202 (4)0.0017 (3)0.0016 (3)0.0008 (3)
S70.0187 (4)0.0318 (4)0.0227 (4)0.0054 (3)0.0028 (3)0.0070 (4)
S80.0191 (4)0.0207 (3)0.0241 (4)0.0002 (3)0.0003 (3)0.0009 (3)
N10.0179 (13)0.0221 (13)0.0206 (15)0.0028 (10)0.0016 (11)0.0041 (11)
N20.0175 (13)0.0220 (13)0.0210 (15)0.0029 (10)0.0000 (11)0.0011 (11)
N30.0175 (14)0.0279 (14)0.0205 (15)0.0030 (11)0.0009 (11)0.0035 (12)
N40.0213 (16)0.0437 (19)0.041 (2)0.0091 (14)0.0024 (14)0.0157 (16)
N50.0147 (12)0.0169 (12)0.0178 (16)0.0021 (9)0.0002 (10)0.0002 (10)
N60.0172 (12)0.0188 (12)0.0179 (14)0.0014 (9)0.0004 (11)0.0018 (11)
C10.0212 (15)0.0160 (13)0.0206 (17)0.0023 (11)0.0013 (12)0.0031 (12)
C20.0191 (15)0.0206 (15)0.0246 (18)0.0026 (12)0.0009 (13)0.0035 (13)
C30.043 (2)0.0285 (18)0.034 (2)0.0029 (16)0.0098 (18)0.0050 (16)
C40.0174 (16)0.0299 (17)0.030 (2)0.0014 (13)0.0040 (14)0.0107 (15)
C50.0229 (18)0.054 (2)0.026 (2)0.0052 (17)0.0018 (15)0.0114 (18)
C60.0171 (15)0.0217 (14)0.0159 (16)0.0040 (12)0.0006 (12)0.0020 (12)
C70.0163 (16)0.0306 (17)0.029 (2)0.0020 (13)0.0011 (14)0.0009 (15)
C80.031 (2)0.035 (2)0.041 (3)0.0033 (16)0.0037 (18)0.0049 (18)
C90.0196 (17)0.0286 (17)0.0249 (19)0.0063 (13)0.0022 (14)0.0006 (14)
C100.039 (2)0.040 (2)0.024 (2)0.0037 (18)0.0075 (17)0.0049 (17)
C110.0173 (15)0.0226 (15)0.0156 (15)0.0035 (12)0.0038 (12)0.0048 (12)
C120.0229 (18)0.0343 (19)0.026 (2)0.0108 (14)0.0054 (15)0.0014 (16)
C130.041 (2)0.037 (2)0.024 (2)0.0156 (17)0.0002 (17)0.0029 (16)
C140.0120 (15)0.042 (2)0.028 (2)0.0027 (14)0.0019 (13)0.0044 (16)
C150.0198 (17)0.042 (2)0.035 (2)0.0045 (15)0.0030 (16)0.0036 (18)
C160.0192 (16)0.0223 (15)0.0222 (19)0.0017 (12)0.0007 (13)0.0006 (13)
C170.0250 (19)0.052 (2)0.047 (3)0.0083 (17)0.007 (2)0.008 (2)
C180.034 (2)0.050 (3)0.051 (3)0.0033 (19)0.002 (2)0.006 (2)
C190.0235 (17)0.0352 (18)0.032 (2)0.0109 (14)0.0013 (15)0.0086 (17)
C200.035 (2)0.035 (2)0.046 (3)0.0018 (17)0.0116 (19)0.0060 (19)
C210.0184 (14)0.0202 (14)0.0174 (16)0.0011 (11)0.0007 (13)0.0028 (13)
C220.0213 (16)0.0183 (14)0.0201 (18)0.0009 (12)0.0032 (13)0.0008 (13)
C230.0150 (15)0.0225 (16)0.0181 (17)0.0012 (12)0.0005 (12)0.0012 (13)
C240.0198 (16)0.0209 (15)0.0218 (18)0.0029 (12)0.0012 (13)0.0035 (14)
C250.0210 (16)0.0191 (15)0.0197 (17)0.0008 (12)0.0002 (13)0.0026 (13)
C260.0222 (17)0.0220 (15)0.0149 (16)0.0010 (12)0.0016 (12)0.0019 (13)
C270.0250 (17)0.0225 (15)0.0161 (16)0.0000 (13)0.0006 (13)0.0021 (13)
C280.0166 (15)0.0185 (14)0.0159 (16)0.0014 (12)0.0021 (12)0.0023 (12)
C290.0290 (19)0.0216 (16)0.0192 (18)0.0011 (13)0.0012 (14)0.0007 (14)
C300.0227 (16)0.0171 (15)0.0227 (18)0.0007 (11)0.0005 (13)0.0013 (13)
C310.0217 (15)0.0206 (14)0.0167 (17)0.0012 (12)0.0002 (13)0.0006 (13)
C320.0262 (17)0.0178 (14)0.0196 (17)0.0029 (12)0.0005 (14)0.0003 (13)
C330.0268 (19)0.040 (2)0.027 (2)0.0002 (16)0.0031 (16)0.0057 (17)
Cl10.0430 (6)0.0343 (5)0.0501 (7)0.0026 (4)0.0076 (5)0.0064 (5)
Cl20.0277 (5)0.0651 (7)0.0579 (7)0.0034 (5)0.0009 (5)0.0286 (6)
Cl30.0532 (7)0.0335 (5)0.0426 (6)0.0029 (4)0.0174 (5)0.0094 (4)
Geometric parameters (Å, º) top
Zn1—N52.069 (3)C9—H9B0.9900
Zn1—S12.3567 (9)C10—H10A0.9800
Zn1—S32.3659 (9)C10—H10B0.9800
Zn1—S22.5629 (9)C10—H10C0.9800
Zn1—S42.5654 (9)C12—C131.517 (5)
Zn2—N62.075 (3)C12—H12A0.9900
Zn2—S72.3381 (10)C12—H12B0.9900
Zn2—S52.3526 (9)C13—H13A0.9800
Zn2—S62.4934 (10)C13—H13B0.9800
Zn2—S82.6575 (9)C13—H13C0.9800
S1—C11.746 (3)C14—C151.514 (5)
S2—C11.711 (3)C14—H14A0.9900
S3—C61.741 (3)C14—H14B0.9900
S4—C61.709 (3)C15—H15A0.9800
S5—C111.728 (3)C15—H15B0.9800
S6—C111.728 (3)C15—H15C0.9800
S7—C161.745 (3)C17—C181.490 (7)
S8—C161.712 (3)C17—H17A0.9900
N1—C11.329 (4)C17—H17B0.9900
N1—C21.468 (4)C18—H18A0.9800
N1—C41.473 (4)C18—H18B0.9800
N2—C61.339 (4)C18—H18C0.9800
N2—C71.470 (4)C19—C201.519 (6)
N2—C91.472 (4)C19—H19A0.9900
N3—C111.326 (4)C19—H19B0.9900
N3—C141.476 (4)C20—H20A0.9800
N3—C121.473 (5)C20—H20B0.9800
N4—C161.327 (4)C20—H20C0.9800
N4—C191.479 (5)C21—C221.377 (5)
N4—C171.525 (5)C21—H210.9500
N5—C251.343 (5)C22—C231.396 (5)
N5—C211.344 (4)C22—H220.9500
N6—C301.341 (5)C23—C241.402 (4)
N6—C311.343 (4)C23—C261.470 (5)
C2—C31.523 (5)C24—C251.386 (5)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900C25—H250.9500
C3—H3A0.9800C26—C271.326 (4)
C3—H3B0.9800C26—H260.9500
C3—H3C0.9800C27—C281.470 (5)
C4—C51.522 (6)C27—H270.9500
C4—H4A0.9900C28—C291.395 (5)
C4—H4B0.9900C28—C321.395 (5)
C5—H5A0.9800C29—C301.375 (5)
C5—H5B0.9800C29—H290.9500
C5—H5C0.9800C30—H300.9500
C7—C81.530 (5)C31—C321.372 (5)
C7—H7A0.9900C31—H310.9500
C7—H7B0.9900C32—H320.9500
C8—H8A0.9800C33—Cl31.754 (4)
C8—H8B0.9800C33—Cl11.764 (4)
C8—H8C0.9800C33—Cl21.769 (4)
C9—C101.519 (5)C33—H331.0000
C9—H9A0.9900
N5—Zn1—S1110.90 (8)H10A—C10—H10C109.5
N5—Zn1—S3113.27 (8)H10B—C10—H10C109.5
S1—Zn1—S3135.82 (4)N3—C11—S6121.3 (3)
N5—Zn1—S295.23 (8)N3—C11—S5121.4 (3)
S1—Zn1—S273.70 (3)S6—C11—S5117.29 (19)
S3—Zn1—S2101.84 (3)N3—C12—C13111.9 (3)
N5—Zn1—S495.08 (7)N3—C12—H12A109.2
S1—Zn1—S4103.21 (3)C13—C12—H12A109.2
S3—Zn1—S473.25 (3)N3—C12—H12B109.2
S2—Zn1—S4169.66 (3)C13—C12—H12B109.2
N6—Zn2—S7108.20 (8)H12A—C12—H12B107.9
N6—Zn2—S5108.23 (8)C12—C13—H13A109.5
S7—Zn2—S5142.61 (4)C12—C13—H13B109.5
N6—Zn2—S699.94 (8)H13A—C13—H13B109.5
S7—Zn2—S6106.51 (3)C12—C13—H13C109.5
S5—Zn2—S674.98 (3)H13A—C13—H13C109.5
N6—Zn2—S895.04 (8)H13B—C13—H13C109.5
S7—Zn2—S872.29 (3)N3—C14—C15112.5 (3)
S5—Zn2—S896.44 (3)N3—C14—H14A109.1
S6—Zn2—S8164.46 (3)C15—C14—H14A109.1
C1—S1—Zn186.85 (12)N3—C14—H14B109.1
C1—S2—Zn181.19 (11)C15—C14—H14B109.1
C6—S3—Zn187.36 (11)H14A—C14—H14B107.8
C6—S4—Zn181.79 (11)C14—C15—H15A109.5
C11—S5—Zn285.61 (11)C14—C15—H15B109.5
C11—S6—Zn281.30 (11)H15A—C15—H15B109.5
C16—S7—Zn288.75 (12)C14—C15—H15C109.5
C16—S8—Zn279.48 (12)H15A—C15—H15C109.5
C1—N1—C2122.3 (3)H15B—C15—H15C109.5
C1—N1—C4123.5 (3)N4—C16—S8122.7 (3)
C2—N1—C4114.2 (3)N4—C16—S7119.7 (3)
C6—N2—C7122.5 (3)S8—C16—S7117.67 (19)
C6—N2—C9120.4 (3)C18—C17—N4109.2 (4)
C7—N2—C9117.1 (3)C18—C17—H17A109.8
C11—N3—C14121.5 (3)N4—C17—H17A109.8
C11—N3—C12122.5 (3)C18—C17—H17B109.8
C14—N3—C12116.1 (3)N4—C17—H17B109.8
C16—N4—C19121.1 (3)H17A—C17—H17B108.3
C16—N4—C17121.6 (3)C17—C18—H18A109.5
C19—N4—C17117.1 (3)C17—C18—H18B109.5
C25—N5—C21117.7 (3)H18A—C18—H18B109.5
C25—N5—Zn1122.1 (2)C17—C18—H18C109.5
C21—N5—Zn1120.1 (2)H18A—C18—H18C109.5
C30—N6—C31117.2 (3)H18B—C18—H18C109.5
C30—N6—Zn2119.8 (2)N4—C19—C20111.7 (3)
C31—N6—Zn2123.0 (3)N4—C19—H19A109.3
N1—C1—S2121.9 (3)C20—C19—H19A109.3
N1—C1—S1120.6 (3)N4—C19—H19B109.3
S2—C1—S1117.47 (19)C20—C19—H19B109.3
N1—C2—C3112.4 (3)H19A—C19—H19B107.9
N1—C2—H2A109.1C19—C20—H20A109.5
C3—C2—H2A109.1C19—C20—H20B109.5
N1—C2—H2B109.1H20A—C20—H20B109.5
C3—C2—H2B109.1C19—C20—H20C109.5
H2A—C2—H2B107.9H20A—C20—H20C109.5
C2—C3—H3A109.5H20B—C20—H20C109.5
C2—C3—H3B109.5N5—C21—C22122.9 (3)
H3A—C3—H3B109.5N5—C21—H21118.6
C2—C3—H3C109.5C22—C21—H21118.6
H3A—C3—H3C109.5C21—C22—C23119.8 (3)
H3B—C3—H3C109.5C21—C22—H22120.1
N1—C4—C5111.7 (3)C23—C22—H22120.1
N1—C4—H4A109.3C22—C23—C24117.4 (3)
C5—C4—H4A109.3C22—C23—C26123.2 (3)
N1—C4—H4B109.3C24—C23—C26119.4 (3)
C5—C4—H4B109.3C25—C24—C23119.0 (3)
H4A—C4—H4B107.9C25—C24—H24120.5
C4—C5—H5A109.5C23—C24—H24120.5
C4—C5—H5B109.5N5—C25—C24123.1 (3)
H5A—C5—H5B109.5N5—C25—H25118.4
C4—C5—H5C109.5C24—C25—H25118.4
H5A—C5—H5C109.5C27—C26—C23123.7 (3)
H5B—C5—H5C109.5C27—C26—H26118.2
N2—C6—S4122.2 (2)C23—C26—H26118.2
N2—C6—S3120.6 (2)C26—C27—C28125.9 (3)
S4—C6—S3117.27 (19)C26—C27—H27117.1
N2—C7—C8112.9 (3)C28—C27—H27117.1
N2—C7—H7A109.0C29—C28—C32116.9 (3)
C8—C7—H7A109.0C29—C28—C27119.0 (3)
N2—C7—H7B109.0C32—C28—C27124.1 (3)
C8—C7—H7B109.0C30—C29—C28119.6 (3)
H7A—C7—H7B107.8C30—C29—H29120.2
C7—C8—H8A109.5C28—C29—H29120.2
C7—C8—H8B109.5N6—C30—C29123.3 (3)
H8A—C8—H8B109.5N6—C30—H30118.3
C7—C8—H8C109.5C29—C30—H30118.3
H8A—C8—H8C109.5N6—C31—C32123.0 (3)
H8B—C8—H8C109.5N6—C31—H31118.5
N2—C9—C10114.3 (3)C32—C31—H31118.5
N2—C9—H9A108.7C31—C32—C28120.0 (3)
C10—C9—H9A108.7C31—C32—H32120.0
N2—C9—H9B108.7C28—C32—H32120.0
C10—C9—H9B108.7Cl3—C33—Cl1110.7 (2)
H9A—C9—H9B107.6Cl3—C33—Cl2110.9 (2)
C9—C10—H10A109.5Cl1—C33—Cl2109.6 (2)
C9—C10—H10B109.5Cl3—C33—H33108.5
H10A—C10—H10B109.5Cl1—C33—H33108.5
C9—C10—H10C109.5Cl2—C33—H33108.5
N5—Zn1—S1—C184.10 (13)C9—N2—C6—S42.7 (4)
S3—Zn1—S1—C195.67 (11)C7—N2—C6—S32.5 (4)
S2—Zn1—S1—C15.33 (11)C9—N2—C6—S3177.9 (2)
S4—Zn1—S1—C1175.12 (11)Zn1—S4—C6—N2174.3 (3)
N5—Zn1—S2—C1104.77 (13)Zn1—S4—C6—S35.19 (17)
S1—Zn1—S2—C15.50 (11)Zn1—S3—C6—N2173.9 (3)
S3—Zn1—S2—C1140.11 (11)Zn1—S3—C6—S45.58 (18)
S4—Zn1—S2—C179.5 (2)C6—N2—C7—C896.2 (4)
N5—Zn1—S3—C684.91 (14)C9—N2—C7—C884.2 (4)
S1—Zn1—S3—C695.33 (12)C6—N2—C9—C1081.3 (4)
S2—Zn1—S3—C6174.04 (11)C7—N2—C9—C1099.1 (4)
S4—Zn1—S3—C63.45 (11)C14—N3—C11—S6175.4 (2)
N5—Zn1—S4—C6109.25 (13)C12—N3—C11—S64.8 (4)
S1—Zn1—S4—C6137.86 (11)C14—N3—C11—S54.9 (4)
S3—Zn1—S4—C63.54 (11)C12—N3—C11—S5174.8 (2)
S2—Zn1—S4—C666.5 (2)Zn2—S6—C11—N3172.1 (3)
N6—Zn2—S5—C1190.19 (14)Zn2—S6—C11—S58.27 (16)
S7—Zn2—S5—C11103.21 (12)Zn2—S5—C11—N3171.6 (3)
S6—Zn2—S5—C115.53 (11)Zn2—S5—C11—S68.69 (17)
S8—Zn2—S5—C11172.33 (11)C11—N3—C12—C1388.1 (4)
N6—Zn2—S6—C11100.79 (13)C14—N3—C12—C1392.1 (4)
S7—Zn2—S6—C11146.70 (11)C11—N3—C14—C1590.3 (4)
S5—Zn2—S6—C115.58 (11)C12—N3—C14—C1589.5 (4)
S8—Zn2—S6—C1163.49 (16)C19—N4—C16—S88.8 (5)
N6—Zn2—S7—C1681.52 (14)C17—N4—C16—S8166.8 (3)
S5—Zn2—S7—C1685.08 (13)C19—N4—C16—S7172.7 (3)
S6—Zn2—S7—C16171.80 (12)C17—N4—C16—S711.7 (5)
S8—Zn2—S7—C168.02 (11)Zn2—S8—C16—N4166.5 (3)
N6—Zn2—S8—C1699.21 (14)Zn2—S8—C16—S712.03 (17)
S7—Zn2—S8—C168.31 (12)Zn2—S7—C16—N4165.1 (3)
S5—Zn2—S8—C16151.76 (12)Zn2—S7—C16—S813.47 (19)
S6—Zn2—S8—C1696.33 (16)C16—N4—C17—C1892.5 (5)
S1—Zn1—N5—C25118.7 (2)C19—N4—C17—C1891.7 (5)
S3—Zn1—N5—C2561.1 (2)C16—N4—C19—C2092.2 (5)
S2—Zn1—N5—C2544.2 (2)C17—N4—C19—C2083.6 (4)
S4—Zn1—N5—C25135.0 (2)C25—N5—C21—C221.4 (5)
S1—Zn1—N5—C2164.2 (2)Zn1—N5—C21—C22175.8 (2)
S3—Zn1—N5—C21116.0 (2)N5—C21—C22—C231.1 (5)
S2—Zn1—N5—C21138.7 (2)C21—C22—C23—C243.1 (5)
S4—Zn1—N5—C2142.0 (2)C21—C22—C23—C26175.9 (3)
S7—Zn2—N6—C30103.6 (2)C22—C23—C24—C252.8 (5)
S5—Zn2—N6—C3067.9 (2)C26—C23—C24—C25176.2 (3)
S6—Zn2—N6—C30145.2 (2)C21—N5—C25—C241.7 (5)
S8—Zn2—N6—C3030.6 (2)Zn1—N5—C25—C24175.4 (3)
S7—Zn2—N6—C3176.4 (3)C23—C24—C25—N50.4 (5)
S5—Zn2—N6—C31112.2 (2)C22—C23—C26—C279.5 (5)
S6—Zn2—N6—C3134.8 (3)C24—C23—C26—C27169.5 (3)
S8—Zn2—N6—C31149.4 (2)C23—C26—C27—C28178.6 (3)
C2—N1—C1—S24.0 (4)C26—C27—C28—C29177.0 (4)
C4—N1—C1—S2175.4 (3)C26—C27—C28—C322.5 (6)
C2—N1—C1—S1175.2 (2)C32—C28—C29—C300.8 (5)
C4—N1—C1—S15.4 (5)C27—C28—C29—C30178.7 (3)
Zn1—S2—C1—N1172.7 (3)C31—N6—C30—C291.1 (5)
Zn1—S2—C1—S18.05 (16)Zn2—N6—C30—C29178.8 (3)
Zn1—S1—C1—N1172.1 (3)C28—C29—C30—N60.2 (5)
Zn1—S1—C1—S28.67 (17)C30—N6—C31—C321.9 (5)
C1—N1—C2—C391.9 (4)Zn2—N6—C31—C32178.0 (3)
C4—N1—C2—C387.6 (4)N6—C31—C32—C281.3 (5)
C1—N1—C4—C597.5 (4)C29—C28—C32—C310.1 (5)
C2—N1—C4—C583.0 (4)C27—C28—C32—C31179.4 (3)
C7—N2—C6—S4176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···S8i1.002.723.598 (4)149
Symmetry code: (i) x+1, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C5H10NS2)4(C12H10N2)]·CHCl3
Mr1025.37
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)98
a, b, c (Å)17.443 (3), 15.739 (3), 16.823 (3)
V3)4618.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.35 × 0.21 × 0.09
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.824, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
36476, 9260, 8995
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.07
No. of reflections9260
No. of parameters477
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.40
Absolute structureFlack (1983), 3766 Friedel pairs
Absolute structure parameter0.004 (8)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Zn1—N52.069 (3)Zn2—N62.075 (3)
Zn1—S12.3567 (9)Zn2—S72.3381 (10)
Zn1—S32.3659 (9)Zn2—S52.3526 (9)
Zn1—S22.5629 (9)Zn2—S62.4934 (10)
Zn1—S42.5654 (9)Zn2—S82.6575 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···S8i1.002.723.598 (4)149
Symmetry code: (i) x+1, y+2, z+1/2.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds