organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-4-Hydr­­oxy-3-meth­oxy­benzyl­­idene]benzohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 October 2009; accepted 23 October 2009; online 28 October 2009)

In the title compound, C15H14N2O3, the phenyl ring is disordered over two set of sites with an occupancy ratio of 0.810 (3):0.190 (3); the dihedral angle between the two components is 72.3 (4)°. The benzene and phenyl rings are oriented at dihedral angles of 69.18 (8) and 26.0 (5)° (major and minor orientations, respectively), and an intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯O and C—H⋯O inter­actions, generating a three-dimensional network.

Related literature

For related structures, see: Shafiq et al. (2009a[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496.],b[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2501.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3917-o3918.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Tetragonal, I 41 /a

  • a = 18.6994 (8) Å

  • c = 15.7223 (12) Å

  • V = 5497.6 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.979

  • 15310 measured reflections

  • 3393 independent reflections

  • 1656 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 0.99

  • 3393 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.21 2.653 (2) 115
N1—H1⋯O1i 0.86 2.14 2.8633 (19) 142
O2—H2⋯O1ii 0.82 2.05 2.773 (2) 146
C2A—H2A⋯O1i 0.93 2.43 3.165 (2) 136
Symmetry codes: (i) [-y+{\script{1\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{5\over 4}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently we have reported the crystal structures of (II) N'-[(E)-(4-Bromo-2-thienyl)methylene]isonicotinohydrazide (Shafiq et al., 2009a) and (III) N'-[(E)-(4-Bromo-2-thienyl)methylidene]benzohydrazide 0.06-hydrate (Shafiq et al., 2009b). The title compound (I, Fig. 1), has been prepared in continuation of synthesizing various hydrazide derivatives.

The crystal structure of (IV) (E)-N-Benzoyl-N'-(3-hydroxy-4-methoxybenzylidene)hydrazine (Shi, 2005) has been published which differs from (I) due to positional change of hydroxy and methoxy.

In the title compound benzene ring of benzohydrazide is disordered over two set of sites with occupancy ratio of 0.810 (3):0.190 (3). The majority and miniority groups A (C1A—C6A) and B (C1B—C6B) respectively, are oriented at a dihedral angle of 72.27 (36)°. The benzene ring C (C9—C14) of 4-Hydroxy-3-methoxyphenyl is of course planar. The dihedral angle between A/C and B/C is 69.18 (8)° and 25.98 (51)°, respectively. The molecules are stabilized in the form of three dimensional polymeric network due to strong intra as well as intermolecular H-bondings (Table 1, Fig.2).

Related literature top

For related structures, see: Shafiq et al. (2009a,b); Shi (2005).

Experimental top

To a hot stirred solution of benzoic hydrazide (1.36 g, 0.01 mol) in ethanol (15 ml) was added vanillin (1.52 g, 0.01 mol). The resultant mixture was then heated under reflux. After an hour precipitates were formed. The reaction mixture was further heated about 30 min for the completion of the reaction which was monitored through TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot ethanol. Colourless prisms of (I) were obtained by recrystallization of the crude product in 1,4-dioxan:ethanol (1:1) after four days.

Refinement top

The disordered phenyl rings A (C1A—C6A) and B (C1B—C6B) were refined using AFIX 66 and all atoms have independent anisotropic thermal parameters.

The H-atoms were positioned geometrically (O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

Recently we have reported the crystal structures of (II) N'-[(E)-(4-Bromo-2-thienyl)methylene]isonicotinohydrazide (Shafiq et al., 2009a) and (III) N'-[(E)-(4-Bromo-2-thienyl)methylidene]benzohydrazide 0.06-hydrate (Shafiq et al., 2009b). The title compound (I, Fig. 1), has been prepared in continuation of synthesizing various hydrazide derivatives.

The crystal structure of (IV) (E)-N-Benzoyl-N'-(3-hydroxy-4-methoxybenzylidene)hydrazine (Shi, 2005) has been published which differs from (I) due to positional change of hydroxy and methoxy.

In the title compound benzene ring of benzohydrazide is disordered over two set of sites with occupancy ratio of 0.810 (3):0.190 (3). The majority and miniority groups A (C1A—C6A) and B (C1B—C6B) respectively, are oriented at a dihedral angle of 72.27 (36)°. The benzene ring C (C9—C14) of 4-Hydroxy-3-methoxyphenyl is of course planar. The dihedral angle between A/C and B/C is 69.18 (8)° and 25.98 (51)°, respectively. The molecules are stabilized in the form of three dimensional polymeric network due to strong intra as well as intermolecular H-bondings (Table 1, Fig.2).

For related structures, see: Shafiq et al. (2009a,b); Shi (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) showing the major disorder component. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius.
[Figure 2] Fig. 2. View of (I) showing the minor disorder component. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius.
[Figure 3] Fig. 3. The partial packing of (I), which shows that molecules form three dimensional polymeric network. H-atoms not involved in H-bondings have been omitted for clarity.
N'-[(E)-4-Hydroxy-3-methoxybenzylidene]benzohydrazide top
Crystal data top
C15H14N2O3Dx = 1.306 Mg m3
Mr = 270.28Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3393 reflections
Hall symbol: -I 4adθ = 1.7–28.3°
a = 18.6994 (8) ŵ = 0.09 mm1
c = 15.7223 (12) ÅT = 296 K
V = 5497.6 (5) Å3Prism, colourless
Z = 160.28 × 0.24 × 0.22 mm
F(000) = 2272
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3393 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2424
Tmin = 0.976, Tmax = 0.979l = 2020
15310 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.071P)2 + 0.721P]
where P = (Fo2 + 2Fc2)/3
3393 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H14N2O3Z = 16
Mr = 270.28Mo Kα radiation
Tetragonal, I41/aµ = 0.09 mm1
a = 18.6994 (8) ÅT = 296 K
c = 15.7223 (12) Å0.28 × 0.24 × 0.22 mm
V = 5497.6 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1656 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.979Rint = 0.036
15310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.99Δρmax = 0.22 e Å3
3393 reflectionsΔρmin = 0.14 e Å3
214 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31015 (8)0.09452 (8)0.50043 (7)0.0639 (5)
O20.07897 (8)0.13841 (8)0.63057 (9)0.0715 (6)
O30.00552 (9)0.02825 (9)0.69117 (8)0.0751 (6)
N10.23647 (9)0.04528 (9)0.40397 (9)0.0577 (6)
N20.19267 (9)0.01533 (10)0.46558 (9)0.0578 (6)
C1A0.32949 (10)0.12512 (10)0.35611 (10)0.0491 (15)0.813 (3)
C2A0.29168 (9)0.15525 (12)0.28897 (12)0.0678 (10)0.813 (3)
C3A0.32797 (12)0.19079 (13)0.22442 (11)0.0813 (15)0.813 (3)
C4A0.40207 (12)0.19620 (12)0.22701 (11)0.0810 (16)0.813 (3)
C5A0.43989 (9)0.16606 (11)0.29416 (13)0.0760 (12)0.813 (3)
C6A0.40360 (10)0.13052 (10)0.35871 (10)0.0619 (10)0.813 (3)
C70.29070 (11)0.08778 (10)0.42620 (10)0.0495 (7)
C80.14721 (12)0.02955 (12)0.43724 (12)0.0584 (7)
C90.09173 (11)0.06060 (11)0.49065 (11)0.0550 (7)
C100.05165 (12)0.11712 (12)0.46193 (12)0.0638 (8)
C110.00483 (12)0.14403 (11)0.51003 (13)0.0636 (8)
C120.02232 (11)0.11260 (11)0.58606 (12)0.0559 (7)
C130.01804 (11)0.05554 (11)0.61574 (11)0.0564 (7)
C140.07470 (11)0.02999 (11)0.56916 (11)0.0576 (7)
C150.03358 (16)0.02801 (17)0.72880 (14)0.0990 (11)
C2B0.3203 (5)0.1020 (4)0.2723 (5)0.059 (4)0.187 (3)
C3B0.3506 (6)0.1424 (5)0.2075 (4)0.076 (5)0.187 (3)
C4B0.3772 (7)0.2103 (5)0.2246 (5)0.078 (7)0.187 (3)
C5B0.3737 (6)0.2377 (4)0.3067 (6)0.092 (6)0.187 (3)
C6B0.3434 (5)0.1973 (4)0.3716 (4)0.070 (5)0.187 (3)
C1B0.3167 (5)0.1294 (4)0.3544 (4)0.055 (7)0.187 (3)
H5A0.489470.169670.295900.0913*0.813 (3)
H6A0.428900.110360.403630.0743*0.813 (3)
H100.062330.137740.409620.0766*
H110.030640.183280.490610.0763*
H140.101840.007840.589970.0691*
H15A0.036170.067540.689960.1486*
H15B0.081020.011790.741920.1486*
H15C0.010140.042980.780130.1486*
H80.149590.042940.380340.0701*
H10.228660.036420.351110.0692*
H20.084510.114590.673870.1072*
H2A0.242100.151640.287230.0814*0.813 (3)
H3A0.302670.210960.179490.0978*0.813 (3)
H4A0.426350.219970.183830.0970*0.813 (3)
H2B0.302420.056610.260820.0709*0.187 (3)
H3B0.352960.124070.152540.0912*0.187 (3)
H4B0.397500.237330.181230.0932*0.187 (3)
H5B0.391510.283120.318190.1097*0.187 (3)
H6B0.340980.215650.426460.0839*0.187 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0871 (11)0.0700 (10)0.0346 (6)0.0024 (8)0.0072 (6)0.0015 (6)
O20.0768 (11)0.0677 (11)0.0699 (9)0.0116 (8)0.0145 (8)0.0004 (7)
O30.0816 (11)0.0916 (12)0.0521 (8)0.0187 (9)0.0146 (7)0.0128 (7)
N10.0632 (11)0.0790 (12)0.0309 (7)0.0057 (9)0.0011 (7)0.0057 (7)
N20.0605 (11)0.0739 (12)0.0390 (8)0.0006 (10)0.0052 (7)0.0098 (8)
C1A0.064 (3)0.050 (3)0.0334 (19)0.0030 (19)0.0007 (14)0.0007 (18)
C2A0.0692 (19)0.083 (2)0.0512 (14)0.0108 (16)0.0127 (13)0.0175 (14)
C3A0.099 (3)0.092 (3)0.0528 (16)0.015 (2)0.0081 (18)0.0242 (17)
C4A0.105 (3)0.068 (3)0.070 (2)0.017 (2)0.0224 (19)0.0005 (19)
C5A0.064 (2)0.077 (2)0.087 (2)0.0071 (16)0.0126 (16)0.0008 (16)
C6A0.0558 (19)0.0681 (19)0.0618 (15)0.0009 (13)0.0030 (12)0.0011 (12)
C70.0602 (13)0.0538 (12)0.0346 (9)0.0093 (10)0.0013 (8)0.0004 (8)
C80.0648 (14)0.0671 (14)0.0433 (10)0.0071 (11)0.0044 (9)0.0017 (9)
C90.0589 (13)0.0566 (13)0.0494 (10)0.0046 (10)0.0034 (9)0.0041 (9)
C100.0740 (15)0.0623 (15)0.0552 (11)0.0051 (12)0.0086 (11)0.0063 (10)
C110.0727 (16)0.0500 (13)0.0680 (13)0.0021 (11)0.0014 (11)0.0046 (10)
C120.0618 (14)0.0516 (13)0.0544 (11)0.0014 (10)0.0027 (10)0.0070 (9)
C130.0640 (14)0.0615 (14)0.0437 (10)0.0030 (11)0.0025 (9)0.0010 (9)
C140.0619 (14)0.0634 (14)0.0474 (10)0.0053 (10)0.0008 (9)0.0013 (9)
C150.110 (2)0.127 (2)0.0599 (14)0.0388 (18)0.0150 (13)0.0343 (14)
C2B0.053 (7)0.058 (8)0.067 (7)0.013 (6)0.004 (5)0.002 (6)
C3B0.081 (10)0.089 (11)0.058 (7)0.012 (9)0.008 (6)0.007 (7)
C4B0.098 (15)0.084 (14)0.051 (9)0.001 (11)0.026 (8)0.008 (8)
C5B0.094 (11)0.063 (9)0.118 (12)0.014 (8)0.003 (8)0.001 (8)
C6B0.084 (9)0.066 (9)0.060 (6)0.011 (7)0.000 (6)0.005 (6)
C1B0.029 (7)0.066 (15)0.071 (14)0.016 (7)0.013 (7)0.013 (11)
Geometric parameters (Å, º) top
O1—C71.229 (2)C9—C141.397 (3)
O2—C121.358 (2)C9—C101.372 (3)
O3—C131.364 (2)C10—C111.393 (3)
O3—C151.411 (3)C11—C121.372 (3)
O2—H20.8200C12—C131.388 (3)
N1—N21.387 (2)C13—C141.374 (3)
N1—C71.335 (3)C2A—H2A0.9300
N2—C81.275 (3)C2B—H2B0.9300
N1—H10.8600C3A—H3A0.9300
C1A—C6A1.390 (3)C3B—H3B0.9300
C1A—C71.493 (2)C4A—H4A0.9300
C1A—C2A1.390 (3)C4B—H4B0.9300
C1B—C2B1.390 (10)C5A—H5A0.9300
C1B—C6B1.391 (11)C5B—H5B0.9300
C1B—C71.455 (7)C6A—H6A0.9300
C2A—C3A1.390 (3)C6B—H6B0.9300
C2B—C3B1.389 (12)C8—H80.9300
C3A—C4A1.390 (3)C10—H100.9300
C3B—C4B1.390 (14)C11—H110.9300
C4A—C5A1.390 (3)C14—H140.9300
C4B—C5B1.390 (12)C15—H15B0.9600
C5A—C6A1.390 (3)C15—H15C0.9600
C5B—C6B1.390 (12)C15—H15A0.9600
C8—C91.456 (3)
C13—O3—C15118.43 (18)C12—C13—C14120.50 (17)
C12—O2—H2109.00O3—C13—C12113.85 (18)
N2—N1—C7120.41 (14)C9—C14—C13120.28 (19)
N1—N2—C8114.55 (15)C1A—C2A—H2A120.00
N2—N1—H1120.00C3A—C2A—H2A120.00
C7—N1—H1120.00C1B—C2B—H2B120.00
C2A—C1A—C6A120.00 (16)C3B—C2B—H2B120.00
C2A—C1A—C7120.21 (17)C4A—C3A—H3A120.00
C6A—C1A—C7119.78 (15)C2A—C3A—H3A120.00
C2B—C1B—C6B120.0 (7)C4B—C3B—H3B120.00
C2B—C1B—C7122.6 (6)C2B—C3B—H3B120.00
C6B—C1B—C7117.2 (5)C3A—C4A—H4A120.00
C1A—C2A—C3A120.00 (17)C5A—C4A—H4A120.00
C1B—C2B—C3B120.0 (7)C5B—C4B—H4B120.00
C2A—C3A—C4A120.01 (18)C3B—C4B—H4B120.00
C2B—C3B—C4B120.1 (7)C6A—C5A—H5A120.00
C3A—C4A—C5A120.00 (18)C4A—C5A—H5A120.00
C3B—C4B—C5B120.0 (8)C4B—C5B—H5B120.00
C4A—C5A—C6A120.00 (17)C6B—C5B—H5B120.00
C4B—C5B—C6B120.0 (8)C1A—C6A—H6A120.00
C1A—C6A—C5A120.00 (16)C5A—C6A—H6A120.00
C1B—C6B—C5B120.0 (6)C5B—C6B—H6B120.00
O1—C7—C1A120.62 (18)C1B—C6B—H6B120.00
O1—C7—C1B125.7 (3)C9—C8—H8119.00
O1—C7—N1122.31 (17)N2—C8—H8119.00
N1—C7—C1A117.02 (14)C9—C10—H10120.00
N1—C7—C1B111.7 (3)C11—C10—H10120.00
N2—C8—C9122.43 (17)C12—C11—H11120.00
C8—C9—C10120.45 (17)C10—C11—H11120.00
C8—C9—C14120.57 (18)C13—C14—H14120.00
C10—C9—C14118.80 (18)C9—C14—H14120.00
C9—C10—C11120.91 (18)O3—C15—H15C109.00
C10—C11—C12119.94 (19)O3—C15—H15B109.00
C11—C12—C13119.53 (19)H15B—C15—H15C109.00
O2—C12—C11118.86 (18)H15A—C15—H15B109.00
O2—C12—C13121.61 (17)H15A—C15—H15C109.00
O3—C13—C14125.62 (18)O3—C15—H15A109.00
C15—O3—C13—C12177.4 (2)C4A—C5A—C6A—C1A0.0 (3)
C15—O3—C13—C144.5 (3)N2—C8—C9—C10169.1 (2)
C7—N1—N2—C8173.59 (19)N2—C8—C9—C1415.8 (3)
N2—N1—C7—O110.0 (3)C8—C9—C10—C11175.5 (2)
N2—N1—C7—C1A172.51 (17)C14—C9—C10—C110.3 (3)
N1—N2—C8—C9173.17 (18)C8—C9—C14—C13174.08 (19)
C6A—C1A—C2A—C3A0.0 (3)C10—C9—C14—C131.1 (3)
C7—C1A—C2A—C3A179.15 (19)C9—C10—C11—C121.9 (3)
C2A—C1A—C6A—C5A0.0 (3)C10—C11—C12—O2178.01 (19)
C7—C1A—C6A—C5A179.15 (17)C10—C11—C12—C132.1 (3)
C2A—C1A—C7—O1140.5 (2)O2—C12—C13—O31.2 (3)
C2A—C1A—C7—N142.0 (3)O2—C12—C13—C14179.40 (18)
C6A—C1A—C7—O138.6 (3)C11—C12—C13—O3178.91 (18)
C6A—C1A—C7—N1138.89 (19)C11—C12—C13—C140.7 (3)
C1A—C2A—C3A—C4A0.0 (3)O3—C13—C14—C9177.09 (19)
C2A—C3A—C4A—C5A0.0 (3)C12—C13—C14—C90.9 (3)
C3A—C4A—C5A—C6A0.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.212.653 (2)115
N1—H1···O1i0.862.142.8633 (19)142
O2—H2···O1ii0.822.052.773 (2)146
C2A—H2A···O1i0.932.433.165 (2)136
Symmetry codes: (i) y+1/4, x1/4, z1/4; (ii) y1/4, x+1/4, z+5/4.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupTetragonal, I41/a
Temperature (K)296
a, c (Å)18.6994 (8), 15.7223 (12)
V3)5497.6 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.976, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
15310, 3393, 1656
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.151, 0.99
No. of reflections3393
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.212.653 (2)115
N1—H1···O1i0.862.142.8633 (19)142
O2—H2···O1ii0.822.052.773 (2)146
C2A—H2A···O1i0.932.433.165 (2)136
Symmetry codes: (i) y+1/4, x1/4, z1/4; (ii) y1/4, x+1/4, z+5/4.
 

Acknowledgements

AH gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholarship under the Indigenous PhD Program (PIN 063–121531-PS3–127).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3917–o3918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds