organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-4-Hydr­­oxy-3-meth­oxy­benzyl­­idene]pyridine-4-carbohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, bDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 October 2009; accepted 23 October 2009; online 28 October 2009)

In the title compound, C14H13N3O3, the two six-membered rings are oriented at a dihedral angle of 15.17 (11)° and an intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, mol­ecules inter­act by way of N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, thereby generating S(5) chain and R21(7) ring motifs.

Related literature

For related structures, see: Liu & Shi (2007[Liu, X. & Shi, X.-F. (2007). Acta Cryst. E63, o4807.]); Shi et al. (2007[Shi, X.-F., He, L., Ma, G.-Z. & Yuan, C.-C. (2007). Acta Cryst. E63, o1119-o1120.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3

  • Mr = 271.27

  • Monoclinic, C c

  • a = 14.8543 (10) Å

  • b = 12.4943 (9) Å

  • c = 7.7162 (5) Å

  • β = 116.716 (2)°

  • V = 1279.20 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.984

  • 7060 measured reflections

  • 1613 independent reflections

  • 1431 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.04

  • 1613 reflections

  • 183 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3 0.82 2.25 2.694 (2) 114
N2—H2A⋯O1i 0.86 2.25 3.089 (2) 164
O2—H2B⋯N1ii 0.82 1.96 2.703 (3) 150
C5—H5⋯O1i 0.93 2.55 3.410 (3) 153
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x+1, -y, z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structures of (II) N'-[(E)-(4-Hydroxy-3-methoxyphenyl)methylidene]benzohydrazide (Shafiq et al., 2009). The title compound (I, Fig. 1), has been prepared in continuation of synthesizing hydrazide derivatives.

The crystal structure of (III) N'-(4-Hydroxy-3-methoxybenzylidene)isonicotinohydrazide monohydrate (Shi et al., 2007) and (IV) N'-(4-Hydroxy-3-methoxybenzylidene)isonicotinohydrazide methanol solvate (Liu & Shi, 2007) have also been reported. The title compound differs from (III) and (IV) as there is no solvate.

In the title compound the pyridine ring A (C1–C3/N1/C4/C5) and the benzene ring of vanilline B (C8—C13) are planar with a maximum r. m. s. deviations of 0.0061 and 0.0122 Å respectively, from their mean square planes. The dihedral angle between A/B is 15.17 (11)°. The intramolecular H-bonding of O—H···O type completes S(5) ring motif (Bernstein et al., 1995). There also exist R21(7) ring motif due to intermolecular H-bondings of C—H···O and N—H···O type (Table 1, Fig. 2). The molecules are stabilized in the form of two dimensional polymeric sheets owing to intermolecular H-bondings of O—H···N type (Fig. 2).

Related literature top

For related structures, see: Liu & Shi (2007); Shi et al. (2007); Shafiq et al. (2009). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of isoniazid (1.37 g, 0.01 mol) in ethanol (15 ml) was added vanillin (1.52 g, 0.01 mol). The resultant mixture was then heated under reflux. After an hour precipitates were formed. The reaction mixture was further heated about 30 min for the completion of the reaction which was monitored through TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot ethanol. Yellow needles of (I) were obtained by recrystallization of the crude product in 1,4-dioxan:ethanol (1:1) after two days.

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged before refinement.

The H-atoms were positioned geometrically (O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

We have reported the crystal structures of (II) N'-[(E)-(4-Hydroxy-3-methoxyphenyl)methylidene]benzohydrazide (Shafiq et al., 2009). The title compound (I, Fig. 1), has been prepared in continuation of synthesizing hydrazide derivatives.

The crystal structure of (III) N'-(4-Hydroxy-3-methoxybenzylidene)isonicotinohydrazide monohydrate (Shi et al., 2007) and (IV) N'-(4-Hydroxy-3-methoxybenzylidene)isonicotinohydrazide methanol solvate (Liu & Shi, 2007) have also been reported. The title compound differs from (III) and (IV) as there is no solvate.

In the title compound the pyridine ring A (C1–C3/N1/C4/C5) and the benzene ring of vanilline B (C8—C13) are planar with a maximum r. m. s. deviations of 0.0061 and 0.0122 Å respectively, from their mean square planes. The dihedral angle between A/B is 15.17 (11)°. The intramolecular H-bonding of O—H···O type completes S(5) ring motif (Bernstein et al., 1995). There also exist R21(7) ring motif due to intermolecular H-bondings of C—H···O and N—H···O type (Table 1, Fig. 2). The molecules are stabilized in the form of two dimensional polymeric sheets owing to intermolecular H-bondings of O—H···N type (Fig. 2).

For related structures, see: Liu & Shi (2007); Shi et al. (2007); Shafiq et al. (2009). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by spheres of arbitrary radius. The dotted line represent the intramolecular H-bondings.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form two dimensional polymeric chains.
N'-[(E)-4-Hydroxy-3-methoxybenzylidene]pyridine-4-carbohydrazide top
Crystal data top
C14H13N3O3F(000) = 568
Mr = 271.27Dx = 1.409 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1613 reflections
a = 14.8543 (10) Åθ = 2.2–28.7°
b = 12.4943 (9) ŵ = 0.10 mm1
c = 7.7162 (5) ÅT = 296 K
β = 116.716 (2)°Needle, yellow
V = 1279.20 (15) Å30.32 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1613 independent reflections
Radiation source: fine-focus sealed tube1431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.2°
ω scansh = 1719
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1616
Tmin = 0.973, Tmax = 0.984l = 105
7060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2451P]
where P = (Fo2 + 2Fc2)/3
1613 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H13N3O3V = 1279.20 (15) Å3
Mr = 271.27Z = 4
Monoclinic, CcMo Kα radiation
a = 14.8543 (10) ŵ = 0.10 mm1
b = 12.4943 (9) ÅT = 296 K
c = 7.7162 (5) Å0.32 × 0.14 × 0.10 mm
β = 116.716 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1431 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.984Rint = 0.028
7060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
1613 reflectionsΔρmin = 0.21 e Å3
183 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20978 (12)0.14131 (15)0.1499 (2)0.0464 (5)
O20.74733 (14)0.23723 (14)0.7114 (3)0.0495 (5)
O30.71022 (13)0.02563 (13)0.6995 (3)0.0462 (5)
N10.10456 (14)0.14377 (17)0.4734 (3)0.0415 (6)
N20.24963 (13)0.01999 (16)0.0200 (2)0.0357 (5)
N30.34327 (13)0.00082 (17)0.1376 (3)0.0371 (5)
C10.08684 (14)0.10723 (18)0.1727 (3)0.0302 (6)
C20.03464 (17)0.2001 (2)0.1794 (3)0.0400 (7)
C30.06004 (17)0.2154 (2)0.3320 (4)0.0455 (8)
C40.05475 (16)0.0540 (2)0.4634 (3)0.0387 (6)
C50.04083 (16)0.03215 (18)0.3174 (3)0.0342 (6)
C60.18841 (15)0.09215 (18)0.0012 (3)0.0317 (6)
C70.38334 (15)0.08629 (19)0.1254 (3)0.0355 (6)
C80.48092 (15)0.12099 (18)0.2766 (3)0.0322 (6)
C90.54708 (16)0.05029 (18)0.4162 (3)0.0338 (6)
C100.63784 (15)0.08723 (18)0.5602 (3)0.0320 (6)
C110.66190 (15)0.19614 (18)0.5701 (3)0.0318 (6)
C120.59690 (16)0.26504 (19)0.4295 (3)0.0353 (6)
C130.50728 (15)0.22751 (19)0.2826 (3)0.0360 (6)
C140.70271 (18)0.08742 (19)0.6725 (4)0.0424 (7)
H20.062820.251440.082490.0480*
H2A0.231750.014140.127200.0428*
H2B0.779670.189450.786400.0594*
H30.094200.278500.336360.0546*
H40.085690.002890.559790.0465*
H50.073250.031620.316950.0411*
H70.349700.129470.016960.0425*
H90.530130.021630.412310.0405*
H120.613410.337100.433420.0424*
H130.464570.274310.187440.0432*
H14A0.704090.104980.552540.0636*
H14B0.640620.112050.668590.0636*
H14C0.758360.121400.778000.0636*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0372 (9)0.0570 (11)0.0298 (8)0.0070 (8)0.0015 (7)0.0075 (7)
O20.0341 (8)0.0373 (9)0.0468 (9)0.0080 (7)0.0086 (7)0.0022 (8)
O30.0347 (8)0.0346 (9)0.0433 (9)0.0031 (7)0.0056 (7)0.0066 (7)
N10.0238 (8)0.0486 (12)0.0369 (10)0.0013 (8)0.0001 (7)0.0017 (8)
N20.0252 (9)0.0448 (11)0.0234 (8)0.0053 (8)0.0013 (7)0.0011 (7)
N30.0233 (8)0.0481 (11)0.0253 (8)0.0042 (8)0.0021 (7)0.0012 (8)
C10.0226 (9)0.0371 (11)0.0235 (9)0.0011 (8)0.0037 (8)0.0041 (8)
C20.0317 (12)0.0392 (12)0.0366 (11)0.0011 (9)0.0042 (10)0.0068 (10)
C30.0302 (12)0.0441 (14)0.0484 (13)0.0087 (10)0.0054 (10)0.0025 (11)
C40.0258 (10)0.0455 (13)0.0316 (10)0.0017 (9)0.0011 (8)0.0037 (9)
C50.0260 (10)0.0387 (12)0.0295 (10)0.0028 (9)0.0050 (8)0.0021 (9)
C60.0242 (9)0.0376 (12)0.0240 (9)0.0021 (8)0.0027 (8)0.0028 (8)
C70.0257 (10)0.0421 (12)0.0281 (10)0.0004 (9)0.0028 (8)0.0005 (9)
C80.0230 (9)0.0403 (12)0.0269 (9)0.0028 (9)0.0055 (8)0.0015 (9)
C90.0280 (10)0.0311 (11)0.0327 (10)0.0059 (8)0.0052 (8)0.0006 (8)
C100.0258 (9)0.0326 (11)0.0291 (9)0.0010 (8)0.0048 (8)0.0027 (8)
C110.0242 (9)0.0343 (11)0.0296 (10)0.0037 (8)0.0055 (8)0.0018 (8)
C120.0323 (11)0.0304 (11)0.0358 (11)0.0033 (9)0.0087 (9)0.0007 (9)
C130.0295 (11)0.0387 (12)0.0305 (10)0.0035 (9)0.0053 (9)0.0039 (9)
C140.0352 (12)0.0342 (12)0.0485 (13)0.0013 (10)0.0105 (10)0.0065 (10)
Geometric parameters (Å, º) top
O1—C61.227 (3)C8—C131.382 (3)
O2—C111.349 (3)C8—C91.398 (3)
O3—C101.366 (3)C9—C101.385 (3)
O3—C141.425 (3)C10—C111.400 (3)
O2—H2B0.8200C11—C121.382 (3)
N1—C31.334 (3)C12—C131.386 (3)
N1—C41.327 (3)C2—H20.9300
N2—C61.334 (3)C3—H30.9300
N2—N31.396 (3)C4—H40.9300
N3—C71.264 (3)C5—H50.9300
N2—H2A0.8600C7—H70.9300
C1—C51.381 (3)C9—H90.9300
C1—C21.384 (3)C12—H120.9300
C1—C61.506 (3)C13—H130.9300
C2—C31.383 (4)C14—H14A0.9600
C4—C51.386 (3)C14—H14B0.9600
C7—C81.459 (3)C14—H14C0.9600
C10—O3—C14117.5 (2)O2—C11—C10122.6 (2)
C11—O2—H2B109.00C10—C11—C12119.5 (2)
C3—N1—C4117.5 (2)C11—C12—C13120.5 (2)
N3—N2—C6118.82 (17)C8—C13—C12120.5 (2)
N2—N3—C7113.6 (2)C1—C2—H2120.00
C6—N2—H2A121.00C3—C2—H2120.00
N3—N2—H2A121.00N1—C3—H3119.00
C2—C1—C5118.3 (2)C2—C3—H3119.00
C2—C1—C6117.45 (19)N1—C4—H4118.00
C5—C1—C6124.2 (2)C5—C4—H4118.00
C1—C2—C3119.1 (2)C1—C5—H5121.00
N1—C3—C2123.0 (2)C4—C5—H5121.00
N1—C4—C5123.7 (2)N3—C7—H7119.00
C1—C5—C4118.5 (2)C8—C7—H7119.00
O1—C6—N2123.0 (2)C8—C9—H9120.00
N2—C6—C1116.85 (18)C10—C9—H9120.00
O1—C6—C1120.1 (2)C11—C12—H12120.00
N3—C7—C8121.9 (2)C13—C12—H12120.00
C7—C8—C13118.5 (2)C8—C13—H13120.00
C7—C8—C9122.0 (2)C12—C13—H13120.00
C9—C8—C13119.5 (2)O3—C14—H14A109.00
C8—C9—C10120.1 (2)O3—C14—H14B109.00
O3—C10—C9125.6 (2)O3—C14—H14C109.00
O3—C10—C11114.4 (2)H14A—C14—H14B109.00
C9—C10—C11120.0 (2)H14A—C14—H14C109.00
O2—C11—C12118.0 (2)H14B—C14—H14C110.00
C14—O3—C10—C914.0 (4)N1—C4—C5—C10.7 (4)
C14—O3—C10—C11165.5 (2)N3—C7—C8—C916.8 (4)
C4—N1—C3—C20.6 (4)N3—C7—C8—C13162.1 (2)
C3—N1—C4—C51.3 (4)C7—C8—C9—C10178.3 (2)
C6—N2—N3—C7162.0 (2)C13—C8—C9—C100.6 (4)
N3—N2—C6—O11.4 (3)C7—C8—C13—C12176.7 (2)
N3—N2—C6—C1177.92 (19)C9—C8—C13—C122.3 (4)
N2—N3—C7—C8179.5 (2)C8—C9—C10—O3177.3 (2)
C5—C1—C2—C31.5 (4)C8—C9—C10—C112.2 (4)
C6—C1—C2—C3178.3 (2)O3—C10—C11—O23.1 (3)
C2—C1—C5—C40.8 (3)O3—C10—C11—C12176.2 (2)
C6—C1—C5—C4177.4 (2)C9—C10—C11—O2177.4 (2)
C2—C1—C6—O121.5 (3)C9—C10—C11—C123.4 (4)
C2—C1—C6—N2161.9 (2)O2—C11—C12—C13179.0 (2)
C5—C1—C6—O1155.1 (2)C10—C11—C12—C131.7 (4)
C5—C1—C6—N221.5 (3)C11—C12—C13—C81.1 (4)
C1—C2—C3—N10.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O30.822.252.694 (2)114
N2—H2A···O1i0.862.253.089 (2)164
O2—H2B···N1ii0.821.962.703 (3)150
C5—H5···O1i0.932.553.410 (3)153
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O3
Mr271.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)14.8543 (10), 12.4943 (9), 7.7162 (5)
β (°) 116.716 (2)
V3)1279.20 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.14 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7060, 1613, 1431
Rint0.028
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.04
No. of reflections1613
No. of parameters183
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O30.822.252.694 (2)114
N2—H2A···O1i0.862.253.089 (2)164
O2—H2B···N1ii0.821.962.703 (3)150
C5—H5···O1i0.932.553.410 (3)153
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+3/2.
 

Acknowledgements

AH gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 063–121531-PS3–127).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, X. & Shi, X.-F. (2007). Acta Cryst. E63, o4807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., He, L., Ma, G.-Z. & Yuan, C.-C. (2007). Acta Cryst. E63, o1119–o1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds