organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5Z)-5-(2-Hy­droxy­benzyl­­idene)-3-phenyl-2-thioxo-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 October 2009; accepted 24 October 2009; online 28 October 2009)

In the title compound, C16H11NO2S2, the dihedral angles between the heterocyclic ring and the phenyl and anilinic benzene rings are 9.68 (13) and 79.26 (6)°, respectively, and an intra­molecular C—H⋯S inter­action occurs. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds occur, leading to R22(10) loops, and C—H⋯O and weak C—H⋯π inter­actions further consolidate the packing.

Related literature

For related structures, see: Linden et al. (1999[Linden, A., Awad, E. M. A. H. & Heimgartner, H. (1999). Acta Cryst. C55, 1877-1881.]); Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009a). Acta Cryst. E65, o2637.], 2009b[Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009b). Acta Cryst. E65, o2638.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11NO2S2

  • Mr = 313.40

  • Monoclinic, P 21 /n

  • a = 11.6553 (7) Å

  • b = 7.3424 (4) Å

  • c = 16.8256 (10) Å

  • β = 95.131 (2)°

  • V = 1434.13 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.26 × 0.18 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.937

  • 15580 measured reflections

  • 3481 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.01

  • 3481 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯S1 0.93 2.50 3.213 (2) 133
O2—H2A⋯O1i 0.82 1.97 2.767 (2) 163
C10—H10⋯O2i 0.93 2.49 3.375 (3) 160
C2—H2⋯CgBii 0.93 2.91 3.774 (2) 155
C14—H14⋯CgBiii 0.93 2.91 3.515 (2) 124
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]. CgB is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have recently reported the crystal structure of (II) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4- one methanol hemisolvate (Shahwar et al., 2009a) and (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin- 4-one methanol monosolvate (Shahwar et al., 2009b) which contain the rhodanine. In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported. The crystal structure of (IV) 3-Phenyl-5-(phenylmethylidene)-2-thioxo-1,3-thiazolidin-4-one (Linden et al., 1999) has also been published. Title compound (I) differs from (IV) due to attachement of hydroxy group with benzylidene.

In (I) the heterocyclic ring A (N1/C7/S1/C8/C9), two benzene rings B (C1—C6) and C (C11–C16) are planar with maximum r. m. s. deviations of 0.0145, 0.0038 and 0.0070 Å respectively, from the respective mean square planes. The dihedral angles between A/B, A/C and B/C are 79.26 (6), 9.68 (13) and 69.62 (6)°, respectively. The intramolecular H-bondings of C—H···S (Table 1, Fig. 1) form twisted S(6) ring motif (Bernstein et al., 1995). The molecules of (I) are stabilized in the form of dimers due to intermolecular H-bondings (Table 1, Fig. 2) froming R22(7) and R22(10) ring motifs. The C–H···π interactions (Table 1) also play role in stabilizing the molecules.

Related literature top

For related structures, see: Linden et al. (1999); Shahwar et al. (2009a, 2009b). For graph-set theory, see: Bernstein et al. (1995). CgB is the centroid of the C1–C6 ring.

Experimental top

3-Phenyl-2-thioxo-1,3-thiazolidin-4-one (0.419 g, 0.2 mol), 2-Hydroxybenzaldehyde (0.244 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in ethyl acetate to affoard orange yellow prisms of (I).

Refinement top

The H-atoms were positioned geometrically (O–H = 0.82 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

We have recently reported the crystal structure of (II) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4- one methanol hemisolvate (Shahwar et al., 2009a) and (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin- 4-one methanol monosolvate (Shahwar et al., 2009b) which contain the rhodanine. In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported. The crystal structure of (IV) 3-Phenyl-5-(phenylmethylidene)-2-thioxo-1,3-thiazolidin-4-one (Linden et al., 1999) has also been published. Title compound (I) differs from (IV) due to attachement of hydroxy group with benzylidene.

In (I) the heterocyclic ring A (N1/C7/S1/C8/C9), two benzene rings B (C1—C6) and C (C11–C16) are planar with maximum r. m. s. deviations of 0.0145, 0.0038 and 0.0070 Å respectively, from the respective mean square planes. The dihedral angles between A/B, A/C and B/C are 79.26 (6), 9.68 (13) and 69.62 (6)°, respectively. The intramolecular H-bondings of C—H···S (Table 1, Fig. 1) form twisted S(6) ring motif (Bernstein et al., 1995). The molecules of (I) are stabilized in the form of dimers due to intermolecular H-bondings (Table 1, Fig. 2) froming R22(7) and R22(10) ring motifs. The C–H···π interactions (Table 1) also play role in stabilizing the molecules.

For related structures, see: Linden et al. (1999); Shahwar et al. (2009a, 2009b). For graph-set theory, see: Bernstein et al. (1995). CgB is the centroid of the C1–C6 ring.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form inversion dimers.
(5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one top
Crystal data top
C16H11NO2S2F(000) = 648
Mr = 313.40Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3481 reflections
a = 11.6553 (7) Åθ = 2.0–28.0°
b = 7.3424 (4) ŵ = 0.37 mm1
c = 16.8256 (10) ÅT = 296 K
β = 95.131 (2)°Prisms, orange yellow
V = 1434.13 (14) Å30.26 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3481 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 7.40 pixels mm-1θmax = 28.0°, θmin = 2.0°
ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.924, Tmax = 0.937l = 2222
15580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.326P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H11NO2S2V = 1434.13 (14) Å3
Mr = 313.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6553 (7) ŵ = 0.37 mm1
b = 7.3424 (4) ÅT = 296 K
c = 16.8256 (10) Å0.26 × 0.18 × 0.17 mm
β = 95.131 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2194 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.937Rint = 0.048
15580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
3481 reflectionsΔρmin = 0.27 e Å3
191 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16936 (5)0.50419 (7)0.48587 (3)0.0463 (2)
S20.12725 (6)0.16709 (8)0.57270 (4)0.0591 (2)
O10.45774 (15)0.5967 (2)0.60654 (9)0.0572 (6)
O20.40155 (14)1.1358 (2)0.44795 (9)0.0515 (6)
N10.30920 (15)0.3922 (2)0.60195 (9)0.0376 (6)
C10.35642 (18)0.2866 (3)0.66982 (12)0.0370 (7)
C20.3410 (2)0.3461 (3)0.74551 (12)0.0432 (7)
C30.3835 (2)0.2416 (3)0.81002 (12)0.0477 (8)
C40.4398 (2)0.0815 (3)0.79786 (14)0.0497 (8)
C50.4550 (2)0.0235 (3)0.72188 (14)0.0524 (9)
C60.4139 (2)0.1273 (3)0.65678 (13)0.0466 (8)
C70.20684 (19)0.3439 (3)0.55947 (12)0.0399 (7)
C80.29274 (19)0.6347 (3)0.51013 (11)0.0385 (7)
C90.3643 (2)0.5470 (3)0.57636 (12)0.0401 (7)
C100.32304 (19)0.7938 (3)0.47846 (12)0.0418 (7)
C110.26629 (19)0.9014 (3)0.41462 (11)0.0379 (7)
C120.31041 (19)1.0743 (3)0.39934 (12)0.0389 (7)
C130.2611 (2)1.1796 (3)0.33719 (13)0.0494 (8)
C140.1673 (2)1.1153 (3)0.28976 (13)0.0540 (9)
C150.1207 (2)0.9486 (3)0.30463 (13)0.0533 (9)
C160.1702 (2)0.8438 (3)0.36550 (13)0.0478 (8)
H20.302680.454830.753310.0518*
H2A0.430581.223360.427100.0772*
H30.373820.280030.861660.0572*
H40.468070.011660.841390.0596*
H50.492840.085720.714180.0629*
H60.425010.089950.605200.0559*
H100.391810.842630.501410.0502*
H130.291211.293900.327430.0593*
H140.135381.185440.247370.0648*
H150.055920.907150.273560.0640*
H160.138810.729990.374520.0574*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0458 (4)0.0443 (3)0.0466 (3)0.0085 (3)0.0083 (2)0.0067 (2)
S20.0556 (4)0.0454 (3)0.0756 (4)0.0154 (3)0.0014 (3)0.0099 (3)
O10.0538 (11)0.0551 (10)0.0582 (10)0.0197 (8)0.0194 (8)0.0209 (8)
O20.0534 (11)0.0476 (9)0.0518 (9)0.0149 (8)0.0042 (8)0.0148 (7)
N10.0414 (11)0.0340 (9)0.0369 (9)0.0023 (8)0.0001 (8)0.0047 (7)
C10.0387 (13)0.0322 (10)0.0397 (11)0.0023 (9)0.0020 (9)0.0042 (8)
C20.0475 (14)0.0371 (11)0.0449 (12)0.0020 (10)0.0036 (10)0.0007 (9)
C30.0533 (16)0.0514 (13)0.0380 (12)0.0027 (12)0.0027 (10)0.0026 (10)
C40.0480 (15)0.0486 (13)0.0514 (14)0.0004 (11)0.0012 (11)0.0169 (11)
C50.0556 (17)0.0388 (12)0.0631 (15)0.0100 (11)0.0071 (12)0.0076 (10)
C60.0573 (16)0.0412 (12)0.0424 (12)0.0060 (10)0.0100 (11)0.0015 (9)
C70.0418 (14)0.0364 (11)0.0418 (11)0.0014 (10)0.0053 (9)0.0003 (9)
C80.0427 (13)0.0362 (11)0.0357 (11)0.0038 (9)0.0014 (9)0.0027 (8)
C90.0463 (15)0.0355 (11)0.0378 (11)0.0051 (9)0.0004 (10)0.0036 (8)
C100.0428 (14)0.0422 (12)0.0391 (11)0.0053 (10)0.0038 (9)0.0042 (9)
C110.0391 (13)0.0406 (11)0.0337 (11)0.0012 (10)0.0025 (9)0.0042 (8)
C120.0390 (13)0.0428 (11)0.0350 (11)0.0039 (10)0.0040 (9)0.0054 (9)
C130.0561 (16)0.0453 (12)0.0478 (13)0.0090 (11)0.0097 (12)0.0138 (10)
C140.0571 (17)0.0631 (16)0.0413 (13)0.0211 (13)0.0025 (12)0.0134 (11)
C150.0471 (16)0.0672 (16)0.0438 (13)0.0075 (12)0.0066 (11)0.0018 (11)
C160.0488 (15)0.0485 (13)0.0451 (12)0.0022 (11)0.0019 (10)0.0041 (10)
Geometric parameters (Å, º) top
S1—C71.736 (2)C10—C111.445 (3)
S1—C81.746 (2)C11—C161.397 (3)
S2—C71.623 (2)C11—C121.402 (3)
O1—C91.216 (3)C12—C131.384 (3)
O2—C121.359 (3)C13—C141.378 (3)
O2—H2A0.8200C14—C151.371 (3)
N1—C71.381 (3)C15—C161.367 (3)
N1—C91.393 (3)C2—H20.9300
N1—C11.448 (3)C3—H30.9300
C1—C61.375 (3)C4—H40.9300
C1—C21.373 (3)C5—H50.9300
C2—C31.384 (3)C6—H60.9300
C3—C41.371 (3)C10—H100.9300
C4—C51.374 (3)C13—H130.9300
C5—C61.384 (3)C14—H140.9300
C8—C91.479 (3)C15—H150.9300
C8—C101.344 (3)C16—H160.9300
C7—S1—C893.20 (10)C11—C12—C13120.7 (2)
C12—O2—H2A109.00O2—C12—C11118.06 (18)
C1—N1—C9121.85 (17)C12—C13—C14120.1 (2)
C7—N1—C9116.78 (17)C13—C14—C15120.5 (2)
C1—N1—C7121.37 (16)C14—C15—C16119.5 (2)
N1—C1—C6119.07 (18)C11—C16—C15122.4 (2)
C2—C1—C6121.6 (2)C1—C2—H2121.00
N1—C1—C2119.28 (19)C3—C2—H2121.00
C1—C2—C3118.9 (2)C2—C3—H3120.00
C2—C3—C4120.1 (2)C4—C3—H3120.00
C3—C4—C5120.5 (2)C3—C4—H4120.00
C4—C5—C6120.1 (2)C5—C4—H4120.00
C1—C6—C5118.8 (2)C4—C5—H5120.00
S1—C7—S2122.00 (13)C6—C5—H5120.00
S1—C7—N1110.23 (15)C1—C6—H6121.00
S2—C7—N1127.77 (16)C5—C6—H6121.00
S1—C8—C9109.54 (15)C8—C10—H10115.00
S1—C8—C10128.64 (17)C11—C10—H10115.00
C9—C8—C10121.8 (2)C12—C13—H13120.00
O1—C9—C8127.4 (2)C14—C13—H13120.00
N1—C9—C8110.11 (18)C13—C14—H14120.00
O1—C9—N1122.45 (19)C15—C14—H14120.00
C8—C10—C11130.6 (2)C14—C15—H15120.00
C10—C11—C16124.3 (2)C16—C15—H15120.00
C12—C11—C16116.97 (19)C11—C16—H16119.00
C10—C11—C12118.71 (19)C15—C16—H16119.00
O2—C12—C13121.3 (2)
C8—S1—C7—S2179.12 (15)C3—C4—C5—C60.3 (4)
C8—S1—C7—N11.29 (16)C4—C5—C6—C11.1 (3)
C7—S1—C8—C90.95 (16)S1—C8—C9—O1177.26 (19)
C7—S1—C8—C10177.2 (2)S1—C8—C9—N12.9 (2)
C7—N1—C1—C299.9 (2)C10—C8—C9—O14.5 (4)
C7—N1—C1—C678.9 (3)C10—C8—C9—N1175.33 (19)
C9—N1—C1—C280.0 (3)S1—C8—C10—C111.9 (4)
C9—N1—C1—C6101.2 (2)C9—C8—C10—C11179.8 (2)
C1—N1—C7—S1176.46 (14)C8—C10—C11—C12172.8 (2)
C1—N1—C7—S23.1 (3)C8—C10—C11—C168.2 (4)
C9—N1—C7—S13.5 (2)C10—C11—C12—O23.0 (3)
C9—N1—C7—S2176.98 (17)C10—C11—C12—C13177.9 (2)
C1—N1—C9—O14.1 (3)C16—C11—C12—O2177.90 (19)
C1—N1—C9—C8175.75 (17)C16—C11—C12—C131.2 (3)
C7—N1—C9—O1176.0 (2)C10—C11—C16—C15178.6 (2)
C7—N1—C9—C84.2 (2)C12—C11—C16—C150.5 (3)
N1—C1—C2—C3178.1 (2)O2—C12—C13—C14178.7 (2)
C6—C1—C2—C30.7 (3)C11—C12—C13—C140.3 (3)
N1—C1—C6—C5177.6 (2)C12—C13—C14—C151.3 (3)
C2—C1—C6—C51.3 (3)C13—C14—C15—C162.0 (3)
C1—C2—C3—C40.1 (3)C14—C15—C16—C111.1 (3)
C2—C3—C4—C50.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S10.932.503.213 (2)133
O2—H2A···O1i0.821.972.767 (2)163
C10—H10···O2i0.932.493.375 (3)160
C2—H2···CgBii0.932.913.774 (2)155
C14—H14···CgBiii0.932.913.515 (2)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H11NO2S2
Mr313.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.6553 (7), 7.3424 (4), 16.8256 (10)
β (°) 95.131 (2)
V3)1434.13 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.26 × 0.18 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.924, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
15580, 3481, 2194
Rint0.048
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.01
No. of reflections3481
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S10.932.503.213 (2)133
O2—H2A···O1i0.821.972.767 (2)163
C10—H10···O2i0.932.493.375 (3)160
C2—H2···CgBii0.932.913.774 (2)155
C14—H14···CgBiii0.932.913.515 (2)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z1/2.
 

Acknowledgements

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Awad, E. M. A. H. & Heimgartner, H. (1999). Acta Cryst. C55, 1877–1881.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009a). Acta Cryst. E65, o2637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009b). Acta Cryst. E65, o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds