organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-6,8-di­methyl-4-phenyl-2-tosyl-1,2,3,3a,4,6,7,8,9,9b-deca­hydro­pyrrolo[3,4-c]pyrano[6,5-d]pyrimidine-7,9-dione

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 25 October 2009; accepted 25 October 2009; online 28 October 2009)

The mol­ecule of the title compound, C31H31N3O5S, adopts a folded conformation, with the sulfonyl-bound phenyl ring lying over the pyrimidine ring [dihedral angle = 12.04 (6)° and centroid–centroid separation = 3.6986 (8) Å]. The pyrrolidine ring adopts a twist conformation, the dihydro­pyran ring is in a half-chair conformation and the two rings are cis-fused. The tosyl group is attached to the pyrrolidine ring in an equatorial position while the benzyl group is axially attached. The mol­ecular structure is stabilized by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions. In the crystal, pairs of mol­ecules related by inversion symmetry are linked by C—H⋯O hydrogen bonds, forming chains propagating along the c axis which are cross-linked into a three-dimensional framework by further C—H⋯O links.

Related literature

For the biological activity of pyran­opyrimidine derivatives, see: Abdel Fattah et al. (2004[Abdel Fattah, M. E., Atta, A. H., Abdel Gawad, I. I. & Mina, S. M. (2004). Orient. J. Chem. 20, 257-262.]); Bedair et al. (2000[Bedair, A. H., El-Hady, N. A., El-Latif, A., Fakery, A. H. & El-Agrody, A. M. (2000). Il Farmaco, 55, 708-714.], 2001[Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. & El-Agrody, A. M. (2001). Il Farmaco, 56, 965-973.]); Bruno et al. (2000[Bruno, O., Schenone, S., Ranise, A., Barocelli, E., Chiavarini, M., Ballabeni, V. & Bertoni, S. (2000). Arzneimittelforschung, 50, 140-147.]); Eid et al. (2004[Eid, F. A., Abd El-Wahab, A. H., Ali, G. A. & Khafagy, M. M. (2004). Acta Pharm. 54, 13-26.]); Shamroukh et al. (2007[Shamroukh, A. H., Zaki, M. E., Morsy, E. M., Abdel-Motti, F. M. & Abdel-Megeid, F. M. (2007). Arch. Pharm. (Weinheim), 340, 236-343.]). For a related structure, see: Chinnakali et al. (2007[Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4364.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C31H31N3O5S

  • Mr = 557.65

  • Monoclinic, P 21 /c

  • a = 13.2778 (2) Å

  • b = 15.8888 (2) Å

  • c = 13.0886 (2) Å

  • β = 99.019 (1)°

  • V = 2727.14 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.29 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.976

  • 39155 measured reflections

  • 7888 independent reflections

  • 6269 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.07

  • 7888 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5 0.98 2.45 3.0586 (16) 120
C2—H2⋯Cg1 0.98 2.67 3.5377 (15) 148
C22—H22⋯O4i 0.93 2.57 3.258 (2) 132
C24—H24B⋯O5ii 0.96 2.48 3.4236 (17) 169
C30—H30⋯O1iii 0.93 2.40 3.180 (2) 142
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C26–C31 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyranopyrimidine derivatives exhibit antipyretic, analgesic and antiplatelet (Bruno et al., 2000), antiviral (Shamroukh et al., 2007) and antimicrobial (Bedair et al., 2000, 2001; Eid et al., 2004; Abdel Fattah et al., 2004) activities. We report here the crystal structure of the title compound, a pyranopyrimidine derivative.

Bond lengths and angles are comparable with those observed in a related structure (Chinnakali et al., 2007). The pyrimidine ring is planar, with an r.m.s. deviation of fitted atoms of 0.032 Å, and atoms O4, O5, C23 and C24 deviating by 0.079 (1), -0.146 (1), 0.021 (2) and 0.142 (2) Å, respectively. The pyrrolidine ring adopts a twist conformation, with twist about the C2—C3 bond; the puckering parameters (Cremer & Pople, 1975) q2 = 0.345 (2) Å and φ = 87.2 (2)°, and asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] = 3.13 (14)°. The tosyl group is attached to the pyrrolidine ring in an equatorial position while the benzyl group is axially attached. The dihydropyran ring adopts a half-chair conformation, with atoms C2 and C5 deviating from the O3/C3/C6/C7 plane by -0.302 (2) Å and 0.427 (2) Å, respectively. The asymmetry parameter ΔC2[C2—C5] is 6.4 (2)°, and the puckering parameters Q, θ and φ are 0.478 (1) Å, 54.1 (2)° and 86.1 (2)°, respectively. The phenyl group is axially attached to the dihydropyran ring. The pyrrolidine ring is cis-fused to the dihydropyran ring.

The molecule is in a folded conformation, with the sulfonyl-bound phenyl ring lying over the pyrimidine ring [dihedral angle = 12.04 (6)°]. The folded conformation is stabilized by weak π-π interaction between phenyl and pyrimidine rings (centroid-to-centroid distance = 3.6986 (8) Å), C4—H4···O5 hydrogen bonds and C2—H2···π interaction involving the benzyl phenyl ring (C26—C31). The dihedral angle between the C17—C22 and C26—C31 phenyl rings is 57.50 (8)°.

Pairs of molecules related by inversion are linked into R22(10) (Bernstein et al., 1995) dimers by C24—H24B···O5 hydrogen bonds, and dimers related by inversion are linked into chains along the c axis by pairs of C22—H22···O4 hydrogen bonds which generate an R22(18) motif. The adjacent chains are cross-linked through C30—H30···O1 hydrogen bonds to form a three-dimensional framework.

Related literature top

For the biological activity of pyranopyrimidine derivatives, see: Abdel Fattah et al. (2004); Bedair et al. (2000, 2001); Bruno et al. (2000); Eid et al. (2004); Shamroukh et al. (2007). For a related structure, see: Chinnakali et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax et al. (1976). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 is the centroid of the C26–C31 ring.

Experimental top

To a solution of 1,3-dimethyl-pyrimidine-2,4,6-trione (1 mmol) in dry toluene (20 ml), the corresponding 2-(N-cinnamyl-N-tosylamino)acetaldehyde (1 mmol) and catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation to yield colourless blocks of (I).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5(methyl) Ueq(C). The H atoms of the tosyl methyl group are disordered over two orientations and two sets of idealized positions rotated from each other by 60° were used. A rotating group model was used for the normal methyl groups.

Structure description top

Pyranopyrimidine derivatives exhibit antipyretic, analgesic and antiplatelet (Bruno et al., 2000), antiviral (Shamroukh et al., 2007) and antimicrobial (Bedair et al., 2000, 2001; Eid et al., 2004; Abdel Fattah et al., 2004) activities. We report here the crystal structure of the title compound, a pyranopyrimidine derivative.

Bond lengths and angles are comparable with those observed in a related structure (Chinnakali et al., 2007). The pyrimidine ring is planar, with an r.m.s. deviation of fitted atoms of 0.032 Å, and atoms O4, O5, C23 and C24 deviating by 0.079 (1), -0.146 (1), 0.021 (2) and 0.142 (2) Å, respectively. The pyrrolidine ring adopts a twist conformation, with twist about the C2—C3 bond; the puckering parameters (Cremer & Pople, 1975) q2 = 0.345 (2) Å and φ = 87.2 (2)°, and asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] = 3.13 (14)°. The tosyl group is attached to the pyrrolidine ring in an equatorial position while the benzyl group is axially attached. The dihydropyran ring adopts a half-chair conformation, with atoms C2 and C5 deviating from the O3/C3/C6/C7 plane by -0.302 (2) Å and 0.427 (2) Å, respectively. The asymmetry parameter ΔC2[C2—C5] is 6.4 (2)°, and the puckering parameters Q, θ and φ are 0.478 (1) Å, 54.1 (2)° and 86.1 (2)°, respectively. The phenyl group is axially attached to the dihydropyran ring. The pyrrolidine ring is cis-fused to the dihydropyran ring.

The molecule is in a folded conformation, with the sulfonyl-bound phenyl ring lying over the pyrimidine ring [dihedral angle = 12.04 (6)°]. The folded conformation is stabilized by weak π-π interaction between phenyl and pyrimidine rings (centroid-to-centroid distance = 3.6986 (8) Å), C4—H4···O5 hydrogen bonds and C2—H2···π interaction involving the benzyl phenyl ring (C26—C31). The dihedral angle between the C17—C22 and C26—C31 phenyl rings is 57.50 (8)°.

Pairs of molecules related by inversion are linked into R22(10) (Bernstein et al., 1995) dimers by C24—H24B···O5 hydrogen bonds, and dimers related by inversion are linked into chains along the c axis by pairs of C22—H22···O4 hydrogen bonds which generate an R22(18) motif. The adjacent chains are cross-linked through C30—H30···O1 hydrogen bonds to form a three-dimensional framework.

For the biological activity of pyranopyrimidine derivatives, see: Abdel Fattah et al. (2004); Bedair et al. (2000, 2001); Bruno et al. (2000); Eid et al. (2004); Shamroukh et al. (2007). For a related structure, see: Chinnakali et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax et al. (1976). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 is the centroid of the C26–C31 ring.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Dashed and dotted lines indicate C—H···O and C—H···π interactions, respectively. The π-π interaction is shown by a dashed solid line.
[Figure 2] Fig. 2. Part of the crystal packing of (I), showing hydrogen-bonded (dashed lines) chains. For the sake of clarity, H atoms not involved in intermolecular hydrogen bonds have been omitted.
1-Benzyl-6,8-dimethyl-4-phenyl-2-tosyl-1,2,3,3a,4,6,7,8,9,9b- decahydropyrrolo[3,4-c]pyrano[6,5-d]pyrimidine-7,9-dione top
Crystal data top
C31H31N3O5SF(000) = 1176
Mr = 557.65Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9929 reflections
a = 13.2778 (2) Åθ = 2.6–32.3°
b = 15.8888 (2) ŵ = 0.17 mm1
c = 13.0886 (2) ÅT = 100 K
β = 99.019 (1)°Block, colourless
V = 2727.14 (7) Å30.29 × 0.24 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7888 independent reflections
Radiation source: fine-focus sealed tube6269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1718
Tmin = 0.875, Tmax = 0.976k = 2221
39155 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.8585P]
where P = (Fo2 + 2Fc2)/3
7888 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C31H31N3O5SV = 2727.14 (7) Å3
Mr = 557.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2778 (2) ŵ = 0.17 mm1
b = 15.8888 (2) ÅT = 100 K
c = 13.0886 (2) Å0.29 × 0.24 × 0.15 mm
β = 99.019 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7888 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6269 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.976Rint = 0.042
39155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
7888 reflectionsΔρmin = 0.45 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.24002 (3)0.27919 (2)0.08504 (3)0.01786 (9)
O10.29691 (8)0.20418 (7)0.11604 (8)0.0244 (2)
O20.22163 (8)0.30362 (7)0.02164 (8)0.0227 (2)
O30.22116 (7)0.42241 (7)0.41969 (7)0.0192 (2)
O40.12019 (8)0.44236 (7)0.32394 (8)0.0230 (2)
O50.07992 (7)0.55421 (6)0.10506 (7)0.0180 (2)
N10.30062 (9)0.35642 (7)0.14908 (9)0.0172 (2)
N20.05214 (9)0.43750 (7)0.37124 (9)0.0169 (2)
N30.02062 (8)0.49601 (7)0.21216 (8)0.0154 (2)
C10.33158 (11)0.34751 (9)0.26213 (10)0.0193 (3)
H1A0.39540.31710.27810.023*
H1B0.27970.31840.29310.023*
C20.34345 (10)0.43876 (9)0.30011 (10)0.0161 (3)
H20.41270.45790.29540.019*
C30.26717 (10)0.48911 (8)0.22261 (10)0.0142 (2)
H30.28890.54790.21950.017*
C40.27054 (10)0.44416 (8)0.11846 (10)0.0151 (2)
H40.20190.44380.07790.018*
C50.32387 (10)0.45051 (9)0.41091 (10)0.0179 (3)
H50.37210.41470.45580.021*
C60.14751 (10)0.44924 (8)0.34517 (10)0.0155 (2)
C70.16259 (10)0.48378 (8)0.25380 (10)0.0145 (2)
C80.12079 (11)0.26992 (9)0.12787 (11)0.0182 (3)
C90.03512 (11)0.31028 (9)0.07404 (11)0.0203 (3)
H90.04080.34360.01680.024*
C100.05862 (12)0.30012 (9)0.10679 (12)0.0233 (3)
H100.11590.32610.07010.028*
C110.06866 (12)0.25174 (9)0.19372 (12)0.0241 (3)
C120.01881 (12)0.21432 (9)0.24816 (12)0.0247 (3)
H120.01390.18360.30770.030*
C130.11282 (12)0.22190 (9)0.21553 (11)0.0220 (3)
H130.16990.19530.25170.026*
C140.17063 (13)0.23950 (12)0.22861 (15)0.0331 (4)
H14A0.21010.29020.21640.050*0.50
H14B0.16050.22660.30110.050*0.50
H14C0.20630.19400.19050.050*0.50
H14D0.17450.18360.25570.050*0.50
H14E0.22410.24720.17090.050*0.50
H14F0.17820.27980.28150.050*0.50
C150.03560 (10)0.45740 (9)0.30321 (10)0.0168 (3)
C160.07514 (10)0.51458 (8)0.18497 (10)0.0141 (2)
C170.34013 (11)0.54080 (9)0.44869 (10)0.0192 (3)
C180.42511 (12)0.58588 (10)0.42851 (12)0.0237 (3)
H180.47160.56040.39210.028*
C190.44095 (13)0.66829 (11)0.46223 (14)0.0316 (4)
H190.49760.69790.44800.038*
C200.37218 (15)0.70650 (12)0.51717 (15)0.0389 (4)
H200.38240.76190.53950.047*
C210.28856 (15)0.66214 (13)0.53870 (14)0.0388 (4)
H210.24260.68780.57570.047*
C220.27261 (13)0.57937 (11)0.50547 (12)0.0282 (3)
H220.21670.54970.52120.034*
C230.03991 (12)0.39397 (11)0.46792 (11)0.0257 (3)
H23A0.09070.41370.52310.039*
H23B0.04770.33440.45930.039*
H23C0.02670.40540.48440.039*
C240.11133 (10)0.51453 (10)0.13584 (11)0.0194 (3)
H24A0.16740.48070.15010.029*
H24B0.09740.50200.06770.029*
H24C0.12850.57300.13980.029*
C250.34547 (10)0.48309 (9)0.05318 (10)0.0173 (3)
H25A0.34900.44710.00600.021*
H25B0.31930.53730.02740.021*
C260.45176 (10)0.49478 (10)0.11237 (11)0.0195 (3)
C270.51924 (12)0.42716 (11)0.13215 (13)0.0274 (3)
H270.50210.37480.10270.033*
C280.61285 (13)0.43864 (14)0.19648 (14)0.0385 (5)
H280.65680.39310.21090.046*
C290.64105 (13)0.51625 (15)0.23891 (13)0.0411 (5)
H290.70320.52280.28210.049*
C300.57666 (13)0.58375 (14)0.21684 (13)0.0364 (4)
H300.59590.63660.24350.044*
C310.48241 (12)0.57272 (11)0.15439 (12)0.0254 (3)
H310.43900.61860.14050.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02082 (17)0.01614 (16)0.01588 (16)0.00094 (12)0.00059 (12)0.00164 (12)
O10.0276 (6)0.0181 (5)0.0265 (5)0.0056 (4)0.0010 (4)0.0017 (4)
O20.0285 (5)0.0242 (5)0.0148 (5)0.0001 (4)0.0019 (4)0.0030 (4)
O30.0159 (5)0.0257 (5)0.0149 (4)0.0012 (4)0.0014 (3)0.0062 (4)
O40.0166 (5)0.0317 (6)0.0213 (5)0.0017 (4)0.0048 (4)0.0035 (4)
O50.0201 (5)0.0194 (5)0.0143 (4)0.0030 (4)0.0025 (4)0.0036 (4)
N10.0193 (6)0.0157 (5)0.0155 (5)0.0001 (4)0.0008 (4)0.0001 (4)
N20.0173 (5)0.0196 (6)0.0137 (5)0.0011 (4)0.0018 (4)0.0049 (4)
N30.0137 (5)0.0182 (5)0.0137 (5)0.0014 (4)0.0002 (4)0.0012 (4)
C10.0216 (7)0.0191 (7)0.0156 (6)0.0030 (5)0.0024 (5)0.0004 (5)
C20.0149 (6)0.0175 (6)0.0147 (6)0.0003 (5)0.0011 (5)0.0008 (5)
C30.0136 (6)0.0158 (6)0.0126 (5)0.0003 (5)0.0001 (4)0.0014 (4)
C40.0150 (6)0.0163 (6)0.0134 (6)0.0001 (5)0.0001 (4)0.0005 (5)
C50.0152 (6)0.0237 (7)0.0138 (6)0.0000 (5)0.0008 (5)0.0017 (5)
C60.0157 (6)0.0149 (6)0.0150 (6)0.0002 (5)0.0006 (5)0.0008 (5)
C70.0151 (6)0.0146 (6)0.0132 (6)0.0000 (5)0.0002 (4)0.0005 (4)
C80.0210 (7)0.0141 (6)0.0183 (6)0.0017 (5)0.0003 (5)0.0019 (5)
C90.0252 (7)0.0159 (6)0.0185 (6)0.0005 (5)0.0004 (5)0.0008 (5)
C100.0230 (7)0.0178 (7)0.0274 (7)0.0027 (5)0.0013 (6)0.0029 (6)
C110.0260 (7)0.0169 (7)0.0297 (7)0.0018 (6)0.0056 (6)0.0053 (6)
C120.0308 (8)0.0196 (7)0.0238 (7)0.0039 (6)0.0041 (6)0.0014 (5)
C130.0242 (7)0.0176 (7)0.0225 (7)0.0013 (5)0.0010 (5)0.0031 (5)
C140.0290 (8)0.0312 (9)0.0410 (9)0.0012 (7)0.0117 (7)0.0034 (7)
C150.0178 (6)0.0176 (6)0.0147 (6)0.0010 (5)0.0021 (5)0.0004 (5)
C160.0160 (6)0.0135 (6)0.0126 (5)0.0012 (5)0.0010 (4)0.0011 (4)
C170.0200 (7)0.0240 (7)0.0120 (6)0.0001 (5)0.0022 (5)0.0008 (5)
C180.0213 (7)0.0272 (8)0.0215 (7)0.0011 (6)0.0001 (5)0.0031 (6)
C190.0292 (8)0.0299 (9)0.0335 (9)0.0066 (7)0.0023 (7)0.0040 (7)
C200.0445 (10)0.0314 (9)0.0379 (10)0.0029 (8)0.0024 (8)0.0151 (8)
C210.0434 (10)0.0434 (11)0.0306 (9)0.0022 (8)0.0091 (8)0.0166 (8)
C220.0299 (8)0.0360 (9)0.0195 (7)0.0016 (7)0.0061 (6)0.0063 (6)
C230.0256 (7)0.0331 (8)0.0189 (7)0.0027 (6)0.0050 (5)0.0124 (6)
C240.0149 (6)0.0253 (7)0.0166 (6)0.0025 (5)0.0014 (5)0.0002 (5)
C250.0166 (6)0.0207 (7)0.0145 (6)0.0000 (5)0.0020 (5)0.0012 (5)
C260.0163 (6)0.0268 (7)0.0160 (6)0.0005 (5)0.0043 (5)0.0034 (5)
C270.0222 (7)0.0347 (9)0.0277 (8)0.0071 (6)0.0108 (6)0.0083 (6)
C280.0204 (8)0.0622 (13)0.0346 (9)0.0161 (8)0.0095 (7)0.0195 (9)
C290.0188 (8)0.0798 (15)0.0239 (8)0.0074 (9)0.0011 (6)0.0083 (9)
C300.0258 (8)0.0571 (12)0.0256 (8)0.0166 (8)0.0023 (6)0.0016 (8)
C310.0227 (7)0.0303 (8)0.0228 (7)0.0057 (6)0.0020 (6)0.0032 (6)
Geometric parameters (Å, º) top
S1—O21.4328 (10)C12—H120.93
S1—O11.4351 (11)C13—H130.93
S1—N11.6261 (12)C14—H14A0.96
S1—C81.7664 (15)C14—H14B0.96
O3—C61.3380 (15)C14—H14C0.96
O3—C51.4566 (16)C14—H14D0.96
O4—C151.2198 (17)C14—H14E0.96
O5—C161.2309 (15)C14—H14F0.96
N1—C11.4791 (17)C17—C221.393 (2)
N1—C41.4878 (17)C17—C181.396 (2)
N2—C61.3748 (18)C18—C191.387 (2)
N2—C151.3873 (17)C18—H180.93
N2—C231.4733 (17)C19—C201.388 (3)
N3—C151.3822 (17)C19—H190.93
N3—C161.4043 (17)C20—C211.381 (3)
N3—C241.4690 (16)C20—H200.93
C1—C21.5327 (19)C21—C221.391 (3)
C1—H1A0.97C21—H210.93
C1—H1B0.97C22—H220.93
C2—C51.5245 (18)C23—H23A0.96
C2—C31.5403 (17)C23—H23B0.96
C2—H20.98C23—H23C0.96
C3—C71.5100 (18)C24—H24A0.96
C3—C41.5457 (18)C24—H24B0.96
C3—H30.98C24—H24C0.96
C4—C251.5391 (19)C25—C261.5111 (19)
C4—H40.98C25—H25A0.97
C5—C171.522 (2)C25—H25B0.97
C5—H50.98C26—C311.390 (2)
C6—C71.3589 (18)C26—C271.397 (2)
C7—C161.4392 (17)C27—C281.400 (2)
C8—C131.396 (2)C27—H270.93
C8—C91.3965 (19)C28—C291.380 (3)
C9—C101.388 (2)C28—H280.93
C9—H90.93C29—C301.374 (3)
C10—C111.397 (2)C29—H290.93
C10—H100.93C30—C311.394 (2)
C11—C121.397 (2)C30—H300.93
C11—C141.508 (2)C31—H310.93
C12—C131.386 (2)
O2—S1—O1120.15 (7)C11—C14—H14D109.5
O2—S1—N1107.03 (6)H14A—C14—H14D141.1
O1—S1—N1106.55 (6)H14B—C14—H14D56.3
O2—S1—C8107.91 (6)H14C—C14—H14D56.3
O1—S1—C8107.41 (7)C11—C14—H14E109.5
N1—S1—C8107.15 (6)H14A—C14—H14E56.3
C6—O3—C5115.54 (10)H14B—C14—H14E141.1
C1—N1—C4112.33 (10)H14C—C14—H14E56.3
C1—N1—S1118.75 (9)H14D—C14—H14E109.5
C4—N1—S1118.55 (8)C11—C14—H14F109.5
C6—N2—C15121.56 (11)H14A—C14—H14F56.3
C6—N2—C23120.44 (11)H14B—C14—H14F56.3
C15—N2—C23117.62 (12)H14C—C14—H14F141.1
C15—N3—C16124.76 (11)H14D—C14—H14F109.5
C15—N3—C24117.50 (11)H14E—C14—H14F109.5
C16—N3—C24117.64 (11)O4—C15—N3122.73 (12)
N1—C1—C2103.43 (11)O4—C15—N2121.50 (12)
N1—C1—H1A111.1N3—C15—N2115.76 (12)
C2—C1—H1A111.1O5—C16—N3119.48 (11)
N1—C1—H1B111.1O5—C16—C7124.18 (12)
C2—C1—H1B111.1N3—C16—C7116.33 (11)
H1A—C1—H1B109.0C22—C17—C18118.82 (14)
C5—C2—C1113.59 (12)C22—C17—C5121.18 (14)
C5—C2—C3111.73 (11)C18—C17—C5119.99 (13)
C1—C2—C3104.73 (10)C19—C18—C17120.71 (15)
C5—C2—H2108.9C19—C18—H18119.6
C1—C2—H2108.9C17—C18—H18119.6
C3—C2—H2108.9C18—C19—C20119.91 (17)
C7—C3—C2109.29 (11)C18—C19—H19120.0
C7—C3—C4111.56 (10)C20—C19—H19120.0
C2—C3—C4103.52 (10)C21—C20—C19119.86 (17)
C7—C3—H3110.7C21—C20—H20120.1
C2—C3—H3110.7C19—C20—H20120.1
C4—C3—H3110.7C20—C21—C22120.44 (17)
N1—C4—C25110.89 (11)C20—C21—H21119.8
N1—C4—C3103.83 (10)C22—C21—H21119.8
C25—C4—C3114.49 (11)C21—C22—C17120.24 (16)
N1—C4—H4109.1C21—C22—H22119.9
C25—C4—H4109.1C17—C22—H22119.9
C3—C4—H4109.1N2—C23—H23A109.5
O3—C5—C17110.50 (11)N2—C23—H23B109.5
O3—C5—C2109.81 (10)H23A—C23—H23B109.5
C17—C5—C2112.83 (11)N2—C23—H23C109.5
O3—C5—H5107.8H23A—C23—H23C109.5
C17—C5—H5107.8H23B—C23—H23C109.5
C2—C5—H5107.8N3—C24—H24A109.5
O3—C6—C7125.35 (12)N3—C24—H24B109.5
O3—C6—N2111.86 (11)H24A—C24—H24B109.5
C7—C6—N2122.79 (12)N3—C24—H24C109.5
C6—C7—C16118.20 (12)H24A—C24—H24C109.5
C6—C7—C3121.95 (11)H24B—C24—H24C109.5
C16—C7—C3119.84 (11)C26—C25—C4113.45 (11)
C13—C8—C9120.33 (14)C26—C25—H25A108.9
C13—C8—S1119.58 (11)C4—C25—H25A108.9
C9—C8—S1120.08 (11)C26—C25—H25B108.9
C10—C9—C8119.33 (14)C4—C25—H25B108.9
C10—C9—H9120.3H25A—C25—H25B107.7
C8—C9—H9120.3C31—C26—C27118.19 (14)
C9—C10—C11121.35 (14)C31—C26—C25120.30 (13)
C9—C10—H10119.3C27—C26—C25121.39 (14)
C11—C10—H10119.3C26—C27—C28119.64 (17)
C10—C11—C12118.17 (15)C26—C27—H27120.2
C10—C11—C14121.51 (15)C28—C27—H27120.2
C12—C11—C14120.33 (15)C29—C28—C27121.20 (17)
C13—C12—C11121.51 (14)C29—C28—H28119.4
C13—C12—H12119.2C27—C28—H28119.4
C11—C12—H12119.2C30—C29—C28119.50 (16)
C12—C13—C8119.26 (14)C30—C29—H29120.3
C12—C13—H13120.4C28—C29—H29120.3
C8—C13—H13120.4C29—C30—C31119.80 (18)
C11—C14—H14A109.5C29—C30—H30120.1
C11—C14—H14B109.5C31—C30—H30120.1
H14A—C14—H14B109.5C26—C31—C30121.62 (17)
C11—C14—H14C109.5C26—C31—H31119.2
H14A—C14—H14C109.5C30—C31—H31119.2
H14B—C14—H14C109.5
O2—S1—N1—C1178.78 (10)S1—C8—C9—C10177.94 (11)
O1—S1—N1—C149.05 (12)C8—C9—C10—C111.3 (2)
C8—S1—N1—C165.68 (11)C9—C10—C11—C120.8 (2)
O2—S1—N1—C438.87 (12)C9—C10—C11—C14179.07 (14)
O1—S1—N1—C4168.59 (10)C10—C11—C12—C132.3 (2)
C8—S1—N1—C476.68 (11)C14—C11—C12—C13177.51 (14)
C4—N1—C1—C212.74 (15)C11—C12—C13—C81.8 (2)
S1—N1—C1—C2157.29 (9)C9—C8—C13—C120.4 (2)
N1—C1—C2—C5151.72 (11)S1—C8—C13—C12179.44 (11)
N1—C1—C2—C329.54 (14)C16—N3—C15—O4179.99 (13)
C5—C2—C3—C739.77 (15)C24—N3—C15—O43.7 (2)
C1—C2—C3—C783.61 (13)C16—N3—C15—N20.86 (19)
C5—C2—C3—C4158.76 (11)C24—N3—C15—N2177.18 (12)
C1—C2—C3—C435.38 (13)C6—N2—C15—O4175.59 (13)
C1—N1—C4—C25114.32 (12)C23—N2—C15—O42.7 (2)
S1—N1—C4—C25101.05 (11)C6—N2—C15—N35.27 (19)
C1—N1—C4—C39.10 (14)C23—N2—C15—N3178.21 (12)
S1—N1—C4—C3135.53 (10)C15—N3—C16—O5175.14 (12)
C7—C3—C4—N190.39 (12)C24—N3—C16—O58.55 (18)
C2—C3—C4—N127.02 (13)C15—N3—C16—C75.83 (19)
C7—C3—C4—C25148.58 (11)C24—N3—C16—C7170.48 (12)
C2—C3—C4—C2594.01 (12)C6—C7—C16—O5172.74 (13)
C6—O3—C5—C1778.79 (14)C3—C7—C16—O58.3 (2)
C6—O3—C5—C246.30 (15)C6—C7—C16—N38.28 (18)
C1—C2—C5—O358.54 (14)C3—C7—C16—N3170.68 (11)
C3—C2—C5—O359.67 (14)O3—C5—C17—C2214.05 (17)
C1—C2—C5—C17177.71 (11)C2—C5—C17—C22137.41 (13)
C3—C2—C5—C1764.08 (14)O3—C5—C17—C18167.34 (12)
C5—O3—C6—C714.77 (19)C2—C5—C17—C1843.98 (17)
C5—O3—C6—N2165.52 (11)C22—C17—C18—C191.5 (2)
C15—N2—C6—O3177.06 (12)C5—C17—C18—C19179.87 (14)
C23—N2—C6—O34.32 (18)C17—C18—C19—C200.4 (2)
C15—N2—C6—C72.6 (2)C18—C19—C20—C210.4 (3)
C23—N2—C6—C7175.40 (13)C19—C20—C21—C220.1 (3)
O3—C6—C7—C16175.88 (12)C20—C21—C22—C171.0 (3)
N2—C6—C7—C164.4 (2)C18—C17—C22—C211.8 (2)
O3—C6—C7—C35.2 (2)C5—C17—C22—C21179.60 (15)
N2—C6—C7—C3174.49 (12)N1—C4—C25—C2665.58 (15)
C2—C3—C7—C68.60 (17)C3—C4—C25—C2651.48 (16)
C4—C3—C7—C6122.47 (13)C4—C25—C26—C3198.15 (16)
C2—C3—C7—C16170.33 (11)C4—C25—C26—C2777.65 (17)
C4—C3—C7—C1656.46 (16)C31—C26—C27—C282.7 (2)
O2—S1—C8—C13159.31 (11)C25—C26—C27—C28173.20 (14)
O1—S1—C8—C1328.42 (13)C26—C27—C28—C291.6 (2)
N1—S1—C8—C1385.74 (12)C27—C28—C29—C300.7 (3)
O2—S1—C8—C920.53 (13)C28—C29—C30—C311.8 (3)
O1—S1—C8—C9151.41 (11)C27—C26—C31—C301.6 (2)
N1—S1—C8—C994.43 (12)C25—C26—C31—C30174.38 (14)
C13—C8—C9—C101.9 (2)C29—C30—C31—C260.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O50.982.453.0586 (16)120
C2—H2···Cg10.982.673.5377 (15)148
C22—H22···O4i0.932.573.258 (2)132
C24—H24B···O5ii0.962.483.4236 (17)169
C30—H30···O1iii0.932.403.180 (2)142
C25—H25A···Cg1iv0.972.883.5110 (15)123
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC31H31N3O5S
Mr557.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2778 (2), 15.8888 (2), 13.0886 (2)
β (°) 99.019 (1)
V3)2727.14 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.29 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.875, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
39155, 7888, 6269
Rint0.042
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.07
No. of reflections7888
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O50.982.453.0586 (16)120
C2—H2···Cg10.982.673.5377 (15)148
C22—H22···O4i0.932.573.258 (2)132
C24—H24B···O5ii0.962.483.4236 (17)169
C30—H30···O1iii0.932.403.180 (2)142
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Footnotes

Working at: Department of Physics, R.M.K Engineering Collge, R.S.M Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAbdel Fattah, M. E., Atta, A. H., Abdel Gawad, I. I. & Mina, S. M. (2004). Orient. J. Chem. 20, 257–262.  CAS Google Scholar
First citationBedair, A. H., El-Hady, N. A., El-Latif, A., Fakery, A. H. & El-Agrody, A. M. (2000). Il Farmaco, 55, 708–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. & El-Agrody, A. M. (2001). Il Farmaco, 56, 965–973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Schenone, S., Ranise, A., Barocelli, E., Chiavarini, M., Ballabeni, V. & Bertoni, S. (2000). Arzneimittelforschung, 50, 140–147.  Web of Science PubMed CAS Google Scholar
First citationChinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationEid, F. A., Abd El-Wahab, A. H., Ali, G. A. & Khafagy, M. M. (2004). Acta Pharm. 54, 13–26.  PubMed CAS Google Scholar
First citationShamroukh, A. H., Zaki, M. E., Morsy, E. M., Abdel-Motti, F. M. & Abdel-Megeid, F. M. (2007). Arch. Pharm. (Weinheim), 340, 236–343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds