organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­amino­pyridinium) tartrate monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: nornisah@usm.my, hkfun@usm.my

(Received 26 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, 2C5H8N3+·C4H4O62−·H2O, the two cations are essentially planar [maximum deviations = 0.023 (1) and 0.026 (1) Å]. In one of the cations, the protonated N atom and one of the amino group H atoms are hydrogen bonded to one of the carboxyl groups of the dianion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. In the crystal structure, the tartrate anions and water mol­ecules are linked into chains along the c axis by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The cations further link the anions and water mol­ecules into a three-dimensional extended structure by a network of N—H⋯O hydrogen bonds. The crystal structure is also stabilized by weak inter­molecular ππ inter­actions [centroid–centroid distance = 3.6950 (6) Å].

Related literature

For related structures, see: Al-Dajani, Abdallah et al. (2009[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2508-o2509.]); Al-Dajani, Salhin et al. (2009[Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931-o2932.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H8N3+·C4H4O62−·H2O

  • Mr = 386.38

  • Monoclinic, P 21 /c

  • a = 14.4722 (2) Å

  • b = 15.7270 (2) Å

  • c = 7.8419 (1) Å

  • β = 96.916 (1)°

  • V = 1771.86 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.44 × 0.33 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.970

  • 55803 measured reflections

  • 8384 independent reflections

  • 5761 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.04

  • 8384 reflections

  • 332 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O4i 0.900 (16) 1.840 (16) 2.7315 (10) 170.9 (15)
O2—H1O2⋯O4i 0.871 (17) 1.957 (17) 2.8260 (11) 175.6 (15)
N1—H1N1⋯O5 0.933 (13) 1.740 (13) 2.6660 (11) 171.4 (13)
N2—H1N2⋯O2ii 0.882 (17) 2.369 (17) 3.2254 (13) 163.7 (14)
N2—H1N2⋯O6ii 0.882 (17) 2.461 (17) 3.0531 (13) 125.0 (13)
N2—H2N2⋯O6 0.884 (14) 2.048 (14) 2.9306 (13) 176.7 (12)
N3—H1N3⋯O5 0.908 (16) 2.552 (16) 3.2431 (12) 133.4 (13)
N3—H1N3⋯O4iii 0.908 (16) 2.519 (17) 3.1842 (13) 130.5 (13)
N3—H2N3⋯O6iv 0.860 (16) 2.122 (16) 2.9499 (12) 161.3 (16)
N4—H1N4⋯O3v 0.924 (17) 1.810 (17) 2.7294 (12) 172.5 (15)
N5—H1N5⋯O1Wvi 0.827 (19) 2.114 (19) 2.9265 (15) 167.7 (15)
N5—H2N5⋯O1v 0.888 (17) 2.243 (17) 3.0557 (14) 152.0 (14)
N5—H2N5⋯O3v 0.888 (17) 2.503 (16) 3.2154 (15) 137.8 (13)
N6—H1N6⋯O1Wvii 0.901 (17) 2.127 (17) 3.0131 (18) 167.5 (14)
N6—H2N6⋯O1 0.87 (2) 2.189 (19) 2.9851 (15) 152 (2)
O1W—H1W1⋯O3iii 0.85 (2) 2.37 (3) 2.9371 (13) 125 (2)
O1W—H1W1⋯O4iii 0.85 (2) 2.42 (2) 3.1642 (13) 146 (2)
O1W—H2W1⋯O5 0.89 (2) 1.93 (2) 2.8153 (13) 175 (2)
C2—H2A⋯O3iii 0.963 (11) 2.490 (11) 3.3232 (12) 144.8 (9)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title compound, (I) (Fig. 1), comprises of two 2,6-diaminopyridinium cations, a tartrate dianion and a water molecule. Two intermolecular protons transfer from the carboxylic groups of tartaric acid to atoms N1 & N4 of the 2,6-diaminopyridine moiety has resulted in the formation of ions. The protonated N1 atom and the N2 atom of the amino group are hydrogen bonded to the carboxyl group (atoms O5 & O6) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Fig. 1, Bernstein et al., 1995). The two 2,6-diaminopyridinium cations (N1–N3/C5–C9) and (N4–N6/C10–C14) are essentially planar, with maximum devations of 0.023 (1) and 0.026 (1) Å, respectively, for atoms C6 and C11. Comparing with the unprotonated structure (De cires-Mejias et al., 2004), protonation of atoms N1 & N4 have widened the C—N—C angles to 123.51 (8) and 123.92 (9)°, respectively, for angles of C5—N1—C9 and C10—N4—C14. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Al-Dajani, Abdallah et al., 2009; Al-Dajani, Salhin et al., 2009).

The crystal structure of (I) is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. Each N atom in the cations participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the tartrate anions and water molecules are linked into chains along the c axis by intermolecular O1—H1O1···O4, O2—H1O2···O4, O1W—H1W1···O3, O1W—H1W1···O4, O1W—H2W1···O5 and C2—H2A···O3 hydrogen bonds (Table 1). The 2,6-diaminopyridinium cations further linked the anions and water molecules into a three-dimensional extended structure by a network of N—H···O hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular ππ interactions [Cg1···Cg1 = 3.6950 (6) Å; Cg1 is the centroid of the N1/C5–C9 pyridine ring].

Related literature top

For related structures, see: Al-Dajani, Abdallah et al. (2009); Al-Dajani, Salhin et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Tartaric acid (0.01 mol, 1.5 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-Diaminopyridine (0.02 mol, 2.2 g) was added in small portions to the flask with stirring. The reaction mixture was left stirring for 3 h at room temperature. Brown blocks of (I) were separated, washed with methanol and dried at 353 K.

Refinement top

All the hydrogen atoms were located from difference Fourier maps and allowed to refine freely [ranges: C—H = 0.922 (18) – 0.984 (15) Å; N—H = 0.827 (18) – 0.933 (14) Å]. The highest residual electron density peak is located at 0.77 Å from atom C2 and the deepest hole is located at 1.17 Å from atom C14.

Structure description top

The asymmetric unit of the title compound, (I) (Fig. 1), comprises of two 2,6-diaminopyridinium cations, a tartrate dianion and a water molecule. Two intermolecular protons transfer from the carboxylic groups of tartaric acid to atoms N1 & N4 of the 2,6-diaminopyridine moiety has resulted in the formation of ions. The protonated N1 atom and the N2 atom of the amino group are hydrogen bonded to the carboxyl group (atoms O5 & O6) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Fig. 1, Bernstein et al., 1995). The two 2,6-diaminopyridinium cations (N1–N3/C5–C9) and (N4–N6/C10–C14) are essentially planar, with maximum devations of 0.023 (1) and 0.026 (1) Å, respectively, for atoms C6 and C11. Comparing with the unprotonated structure (De cires-Mejias et al., 2004), protonation of atoms N1 & N4 have widened the C—N—C angles to 123.51 (8) and 123.92 (9)°, respectively, for angles of C5—N1—C9 and C10—N4—C14. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Al-Dajani, Abdallah et al., 2009; Al-Dajani, Salhin et al., 2009).

The crystal structure of (I) is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. Each N atom in the cations participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the tartrate anions and water molecules are linked into chains along the c axis by intermolecular O1—H1O1···O4, O2—H1O2···O4, O1W—H1W1···O3, O1W—H1W1···O4, O1W—H2W1···O5 and C2—H2A···O3 hydrogen bonds (Table 1). The 2,6-diaminopyridinium cations further linked the anions and water molecules into a three-dimensional extended structure by a network of N—H···O hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular ππ interactions [Cg1···Cg1 = 3.6950 (6) Å; Cg1 is the centroid of the N1/C5–C9 pyridine ring].

For related structures, see: Al-Dajani, Abdallah et al. (2009); Al-Dajani, Salhin et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis, showing the three-dimensional network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Bis(2,6-diaminopyridinium) tartrate monohydrate top
Crystal data top
2C5H8N3+·C4H4O62·H2OF(000) = 816
Mr = 386.38Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9979 reflections
a = 14.4722 (2) Åθ = 2.6–33.1°
b = 15.7270 (2) ŵ = 0.12 mm1
c = 7.8419 (1) ÅT = 296 K
β = 96.916 (1)°Block, brown
V = 1771.86 (4) Å30.44 × 0.33 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
8384 independent reflections
Radiation source: fine-focus sealed tube5761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 36.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2323
Tmin = 0.950, Tmax = 0.970k = 2524
55803 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
8384 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
2C5H8N3+·C4H4O62·H2OV = 1771.86 (4) Å3
Mr = 386.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4722 (2) ŵ = 0.12 mm1
b = 15.7270 (2) ÅT = 296 K
c = 7.8419 (1) Å0.44 × 0.33 × 0.26 mm
β = 96.916 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
8384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5761 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.970Rint = 0.029
55803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137All H-atom parameters refined
S = 1.04Δρmax = 0.33 e Å3
8384 reflectionsΔρmin = 0.24 e Å3
332 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14121 (5)0.62179 (5)0.37307 (9)0.03748 (15)
O20.33130 (5)0.69021 (5)0.36761 (10)0.03834 (16)
O30.09223 (6)0.78743 (6)0.35992 (11)0.0505 (2)
O40.19983 (6)0.82535 (5)0.57216 (9)0.04158 (17)
O50.28815 (5)0.55133 (5)0.71274 (9)0.04001 (16)
O60.36515 (6)0.53101 (5)0.48798 (9)0.04409 (18)
C10.15720 (6)0.77090 (6)0.47338 (11)0.03144 (17)
C20.18625 (6)0.67770 (6)0.49999 (10)0.02824 (15)
C30.29147 (6)0.66622 (6)0.51725 (10)0.02834 (15)
C40.31696 (6)0.57521 (6)0.57453 (10)0.02985 (16)
N10.39658 (5)0.44405 (5)0.90954 (9)0.02900 (14)
N20.47289 (7)0.39813 (7)0.68421 (11)0.0423 (2)
N30.31436 (7)0.50158 (7)1.11702 (12)0.0429 (2)
C50.46341 (6)0.39419 (6)0.85246 (11)0.03136 (17)
C60.51647 (7)0.34231 (7)0.97048 (14)0.0404 (2)
C70.49815 (8)0.34277 (7)1.13904 (14)0.0427 (2)
C80.43089 (8)0.39418 (7)1.19503 (12)0.0395 (2)
C90.38033 (6)0.44752 (6)1.07627 (10)0.03057 (16)
N40.07411 (6)0.29439 (6)0.34459 (12)0.03809 (18)
N50.05279 (8)0.15005 (7)0.31936 (18)0.0562 (3)
N60.07972 (10)0.44052 (8)0.3524 (2)0.0649 (3)
C100.10707 (7)0.21441 (7)0.37940 (14)0.0394 (2)
C110.19414 (8)0.20559 (8)0.47490 (18)0.0504 (3)
C120.24392 (8)0.27782 (10)0.52373 (19)0.0564 (3)
C130.20988 (9)0.35831 (9)0.48473 (18)0.0534 (3)
C140.12190 (8)0.36637 (7)0.39441 (15)0.0426 (2)
O1W0.11303 (7)0.52769 (6)0.82780 (15)0.0559 (2)
H1O10.1548 (11)0.6424 (10)0.272 (2)0.057 (4)*
H1O20.2904 (13)0.6826 (10)0.278 (2)0.067 (5)*
H1N10.3619 (9)0.4801 (8)0.8319 (18)0.044 (3)*
H1N20.5253 (12)0.3800 (10)0.650 (2)0.062 (4)*
H2N20.4425 (9)0.4390 (9)0.6238 (18)0.045 (3)*
H1N30.2911 (11)0.5406 (11)1.038 (2)0.065 (5)*
H2N30.3161 (12)0.5144 (10)1.224 (2)0.067 (5)*
H1N40.0176 (12)0.2971 (10)0.276 (2)0.059 (4)*
H1N50.0716 (12)0.1009 (12)0.338 (2)0.068 (5)*
H2N50.0001 (12)0.1605 (10)0.253 (2)0.059 (4)*
H1N60.0204 (12)0.4416 (10)0.302 (2)0.060 (4)*
H2N60.1102 (14)0.4860 (12)0.389 (3)0.079 (5)*
H2A0.1657 (8)0.6614 (7)0.6076 (14)0.030 (3)*
H3A0.3165 (9)0.7015 (7)0.6120 (16)0.034 (3)*
H6A0.5634 (12)0.3070 (10)0.937 (2)0.063 (4)*
H7A0.5370 (10)0.3053 (9)1.2187 (18)0.050 (4)*
H8A0.4196 (10)0.3943 (9)1.3120 (19)0.051 (4)*
H11A0.2168 (12)0.1515 (11)0.498 (2)0.067 (5)*
H12A0.3045 (13)0.2700 (11)0.588 (2)0.075 (5)*
H13A0.2436 (12)0.4097 (11)0.514 (2)0.069 (5)*
H1W10.1128 (16)0.5645 (16)0.907 (3)0.102 (7)*
H2W10.1669 (15)0.5349 (13)0.785 (3)0.087 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0370 (3)0.0357 (4)0.0381 (3)0.0092 (3)0.0024 (3)0.0016 (3)
O20.0333 (3)0.0438 (4)0.0384 (3)0.0046 (3)0.0061 (3)0.0108 (3)
O30.0395 (4)0.0544 (5)0.0547 (5)0.0125 (3)0.0065 (3)0.0098 (4)
O40.0576 (4)0.0305 (3)0.0367 (3)0.0000 (3)0.0057 (3)0.0021 (3)
O50.0451 (4)0.0428 (4)0.0335 (3)0.0128 (3)0.0100 (3)0.0117 (3)
O60.0569 (4)0.0413 (4)0.0360 (3)0.0153 (3)0.0133 (3)0.0013 (3)
C10.0326 (4)0.0333 (4)0.0292 (3)0.0048 (3)0.0066 (3)0.0038 (3)
C20.0298 (4)0.0285 (4)0.0261 (3)0.0009 (3)0.0020 (3)0.0011 (3)
C30.0292 (4)0.0281 (4)0.0269 (3)0.0014 (3)0.0002 (3)0.0004 (3)
C40.0315 (4)0.0315 (4)0.0257 (3)0.0023 (3)0.0001 (3)0.0008 (3)
N10.0305 (3)0.0292 (4)0.0266 (3)0.0036 (3)0.0006 (2)0.0020 (2)
N20.0456 (5)0.0480 (5)0.0346 (4)0.0104 (4)0.0100 (3)0.0000 (4)
N30.0471 (5)0.0488 (5)0.0331 (4)0.0141 (4)0.0064 (3)0.0019 (4)
C50.0311 (4)0.0300 (4)0.0325 (4)0.0013 (3)0.0018 (3)0.0028 (3)
C60.0396 (5)0.0367 (5)0.0431 (5)0.0124 (4)0.0028 (4)0.0020 (4)
C70.0485 (5)0.0359 (5)0.0398 (5)0.0078 (4)0.0106 (4)0.0039 (4)
C80.0483 (5)0.0411 (5)0.0274 (4)0.0037 (4)0.0022 (3)0.0033 (3)
C90.0322 (4)0.0317 (4)0.0270 (3)0.0004 (3)0.0004 (3)0.0007 (3)
N40.0290 (4)0.0349 (4)0.0485 (4)0.0013 (3)0.0029 (3)0.0015 (3)
N50.0403 (5)0.0351 (5)0.0901 (9)0.0016 (4)0.0046 (5)0.0084 (5)
N60.0575 (7)0.0332 (5)0.0982 (10)0.0015 (5)0.0145 (6)0.0028 (5)
C100.0319 (4)0.0352 (5)0.0508 (5)0.0024 (4)0.0031 (4)0.0024 (4)
C110.0376 (5)0.0459 (7)0.0651 (7)0.0093 (5)0.0048 (5)0.0021 (5)
C120.0339 (5)0.0639 (8)0.0670 (8)0.0027 (5)0.0123 (5)0.0004 (6)
C130.0413 (6)0.0490 (7)0.0661 (8)0.0081 (5)0.0095 (5)0.0043 (5)
C140.0388 (5)0.0365 (5)0.0512 (6)0.0026 (4)0.0003 (4)0.0007 (4)
O1W0.0539 (5)0.0414 (5)0.0734 (6)0.0122 (4)0.0114 (4)0.0059 (4)
Geometric parameters (Å, º) top
O1—C21.4257 (11)C6—H6A0.938 (17)
O1—H1O10.901 (16)C7—C81.3773 (16)
O2—C31.4194 (10)C7—H7A0.984 (15)
O2—H1O20.868 (19)C8—C91.3937 (13)
O3—C11.2418 (12)C8—H8A0.951 (14)
O4—C11.2644 (12)N4—C141.3591 (14)
O5—C41.2643 (10)N4—C101.3613 (13)
O6—C41.2426 (11)N4—H1N40.923 (17)
C1—C21.5322 (13)N5—C101.3319 (15)
C2—C31.5231 (12)N5—H1N50.827 (18)
C2—H2A0.962 (11)N5—H2N50.888 (17)
C3—C41.5318 (12)N6—C141.3390 (16)
C3—H3A0.962 (12)N6—H1N60.901 (18)
N1—C91.3572 (11)N6—H2N60.87 (2)
N1—C51.3620 (11)C10—C111.3930 (16)
N1—H1N10.933 (14)C11—C121.3747 (19)
N2—C51.3443 (12)C11—H11A0.922 (18)
N2—H1N20.881 (17)C12—C131.379 (2)
N2—H2N20.884 (14)C12—H12A0.963 (19)
N3—C91.3453 (13)C13—C141.3862 (16)
N3—H1N30.907 (17)C13—H13A0.959 (17)
N3—H2N30.859 (18)O1W—H1W10.85 (3)
C5—C61.3931 (13)O1W—H2W10.89 (2)
C6—C71.3790 (15)
C2—O1—H1O1105.3 (10)C8—C7—C6122.24 (9)
C3—O2—H1O2108.9 (11)C8—C7—H7A121.3 (8)
O3—C1—O4124.66 (9)C6—C7—H7A116.4 (8)
O3—C1—C2118.00 (9)C7—C8—C9118.34 (9)
O4—C1—C2117.31 (8)C7—C8—H8A121.2 (9)
O1—C2—C3110.92 (7)C9—C8—H8A120.4 (9)
O1—C2—C1113.58 (7)N3—C9—N1117.68 (8)
C3—C2—C1112.37 (7)N3—C9—C8123.52 (9)
O1—C2—H2A106.5 (7)N1—C9—C8118.79 (8)
C3—C2—H2A107.6 (7)C14—N4—C10123.92 (9)
C1—C2—H2A105.4 (7)C14—N4—H1N4120.8 (10)
O2—C3—C2113.34 (7)C10—N4—H1N4115.1 (10)
O2—C3—C4112.54 (7)C10—N5—H1N5118.6 (12)
C2—C3—C4109.86 (7)C10—N5—H2N5119.8 (11)
O2—C3—H3A109.4 (7)H1N5—N5—H2N5121.5 (16)
C2—C3—H3A106.2 (7)C14—N6—H1N6120.4 (11)
C4—C3—H3A104.9 (7)C14—N6—H2N6115.8 (13)
O6—C4—O5124.53 (9)H1N6—N6—H2N6123.2 (17)
O6—C4—C3119.58 (8)N5—C10—N4116.98 (10)
O5—C4—C3115.86 (8)N5—C10—C11124.84 (11)
C9—N1—C5123.51 (8)N4—C10—C11118.18 (10)
C9—N1—H1N1117.5 (8)C12—C11—C10118.51 (11)
C5—N1—H1N1118.9 (8)C12—C11—H11A123.0 (11)
C5—N2—H1N2118.3 (11)C10—C11—H11A118.4 (11)
C5—N2—H2N2117.2 (9)C11—C12—C13122.37 (11)
H1N2—N2—H2N2117.8 (13)C11—C12—H12A116.9 (11)
C9—N3—H1N3118.8 (10)C13—C12—H12A120.7 (11)
C9—N3—H2N3116.2 (11)C12—C13—C14118.61 (11)
H1N3—N3—H2N3118.1 (15)C12—C13—H13A124.2 (10)
N2—C5—N1117.16 (8)C14—C13—H13A117.1 (10)
N2—C5—C6124.46 (9)N6—C14—N4116.97 (10)
N1—C5—C6118.38 (8)N6—C14—C13124.67 (11)
C7—C6—C5118.65 (9)N4—C14—C13118.36 (11)
C7—C6—H6A119.9 (10)H1W1—O1W—H2W1106 (2)
C5—C6—H6A121.5 (10)
O3—C1—C2—O17.58 (11)C5—C6—C7—C81.59 (17)
O4—C1—C2—O1174.21 (7)C6—C7—C8—C90.26 (17)
O3—C1—C2—C3134.52 (9)C5—N1—C9—N3177.76 (9)
O4—C1—C2—C347.27 (10)C5—N1—C9—C83.54 (14)
O1—C2—C3—O265.36 (10)C7—C8—C9—N3178.63 (10)
C1—C2—C3—O262.99 (9)C7—C8—C9—N12.75 (15)
O1—C2—C3—C461.50 (9)C14—N4—C10—N5178.83 (11)
C1—C2—C3—C4170.15 (7)C14—N4—C10—C111.42 (17)
O2—C3—C4—O62.16 (12)N5—C10—C11—C12177.88 (13)
C2—C3—C4—O6125.14 (9)N4—C10—C11—C122.39 (19)
O2—C3—C4—O5176.12 (8)C10—C11—C12—C131.4 (2)
C2—C3—C4—O556.57 (10)C11—C12—C13—C140.6 (2)
C9—N1—C5—N2178.91 (9)C10—N4—C14—N6179.17 (12)
C9—N1—C5—C61.66 (14)C10—N4—C14—C130.63 (17)
N2—C5—C6—C7178.45 (10)C12—C13—C14—N6178.15 (14)
N1—C5—C6—C70.93 (15)C12—C13—C14—N41.64 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.900 (16)1.840 (16)2.7315 (10)170.9 (15)
O2—H1O2···O4i0.871 (17)1.957 (17)2.8260 (11)175.6 (15)
N1—H1N1···O50.933 (13)1.740 (13)2.6660 (11)171.4 (13)
N2—H1N2···O2ii0.882 (17)2.369 (17)3.2254 (13)163.7 (14)
N2—H1N2···O6ii0.882 (17)2.461 (17)3.0531 (13)125.0 (13)
N2—H2N2···O60.884 (14)2.048 (14)2.9306 (13)176.7 (12)
N3—H1N3···O50.908 (16)2.552 (16)3.2431 (12)133.4 (13)
N3—H1N3···O4iii0.908 (16)2.519 (17)3.1842 (13)130.5 (13)
N3—H2N3···O6iv0.860 (16)2.122 (16)2.9499 (12)161.3 (16)
N4—H1N4···O3v0.924 (17)1.810 (17)2.7294 (12)172.5 (15)
N5—H1N5···O1Wvi0.827 (19)2.114 (19)2.9265 (15)167.7 (15)
N5—H2N5···O1v0.888 (17)2.243 (17)3.0557 (14)152.0 (14)
N5—H2N5···O3v0.888 (17)2.503 (16)3.2154 (15)137.8 (13)
N6—H1N6···O1Wvii0.901 (17)2.127 (17)3.0131 (18)167.5 (14)
N6—H2N6···O10.87 (2)2.189 (19)2.9851 (15)152 (2)
O1W—H1W1···O3iii0.85 (2)2.37 (3)2.9371 (13)125 (2)
O1W—H1W1···O4iii0.85 (2)2.42 (2)3.1642 (13)146 (2)
O1W—H2W1···O50.89 (2)1.93 (2)2.8153 (13)175 (2)
C2—H2A···O3iii0.963 (11)2.490 (11)3.3232 (12)144.8 (9)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C5H8N3+·C4H4O62·H2O
Mr386.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.4722 (2), 15.7270 (2), 7.8419 (1)
β (°) 96.916 (1)
V3)1771.86 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.44 × 0.33 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
55803, 8384, 5761
Rint0.029
(sin θ/λ)max1)0.829
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.04
No. of reflections8384
No. of parameters332
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.900 (16)1.840 (16)2.7315 (10)170.9 (15)
O2—H1O2···O4i0.871 (17)1.957 (17)2.8260 (11)175.6 (15)
N1—H1N1···O50.933 (13)1.740 (13)2.6660 (11)171.4 (13)
N2—H1N2···O2ii0.882 (17)2.369 (17)3.2254 (13)163.7 (14)
N2—H1N2···O6ii0.882 (17)2.461 (17)3.0531 (13)125.0 (13)
N2—H2N2···O60.884 (14)2.048 (14)2.9306 (13)176.7 (12)
N3—H1N3···O50.908 (16)2.552 (16)3.2431 (12)133.4 (13)
N3—H1N3···O4iii0.908 (16)2.519 (17)3.1842 (13)130.5 (13)
N3—H2N3···O6iv0.860 (16)2.122 (16)2.9499 (12)161.3 (16)
N4—H1N4···O3v0.924 (17)1.810 (17)2.7294 (12)172.5 (15)
N5—H1N5···O1Wvi0.827 (19)2.114 (19)2.9265 (15)167.7 (15)
N5—H2N5···O1v0.888 (17)2.243 (17)3.0557 (14)152.0 (14)
N5—H2N5···O3v0.888 (17)2.503 (16)3.2154 (15)137.8 (13)
N6—H1N6···O1Wvii0.901 (17)2.127 (17)3.0131 (18)167.5 (14)
N6—H2N6···O10.87 (2)2.189 (19)2.9851 (15)152 (2)
O1W—H1W1···O3iii0.85 (2)2.37 (3)2.9371 (13)125 (2)
O1W—H1W1···O4iii0.85 (2)2.42 (2)3.1642 (13)146 (2)
O1W—H2W1···O50.89 (2)1.93 (2)2.8153 (13)175 (2)
C2—H2A···O3iii0.963 (11)2.490 (11)3.3232 (12)144.8 (9)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under grant No. 1001/PFARMASI/815025. HKF and JHG thank USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. JHG also thanks USM for the award of a USM fellowship.

References

First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2508–o2509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds