metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[2-(thio­semi­carbazono­methyl)benzene­sulfonato]manganese(II)

aCollege of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bDepartment of Chemistry, Qinghai Normal University, Xining 810008, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 27 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, [Mn(C8H8N3O3S2)2(H2O)4], the MnII atom (site symmetry [\overline{1}]) adopts a slightly distorted octa­hedral MnO6 geometry. The mol­ecular conformation is supported by N—H⋯N and O—H⋯O hydrogen bonds. In the crystal, mol­ecules inter­act by O—H⋯O, O—H⋯S, N—H⋯O and N—H⋯S hydrogen bonds, thereby forming (011) sheets.

Related literature

For background to coordination networks, see: Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H8N3O3S2)2(H2O)4]

  • Mr = 643.59

  • Triclinic, [P \overline 1]

  • a = 6.8096 (6) Å

  • b = 9.5498 (8) Å

  • c = 10.7898 (9) Å

  • α = 64.386 (1)°

  • β = 88.495 (1)°

  • γ = 83.791 (1)°

  • V = 628.83 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 273 K

  • 0.19 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.898

  • 3329 measured reflections

  • 2207 independent reflections

  • 2005 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.07

  • 2207 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O4 2.1369 (17)
Mn1—O5 2.1495 (16)
Mn1—O1 2.2166 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.86 2.29 2.638 (3) 104
O4—H10⋯O3 0.85 2.02 2.761 (3) 146
N1—H1B⋯O3i 0.86 2.33 2.986 (3) 134
N2—H2⋯S2ii 0.86 2.57 3.4231 (19) 170
O4—H9⋯S2iii 0.85 2.36 3.182 (2) 162
O5—H11⋯S2iv 0.85 2.46 3.2603 (19) 156
O5—H12⋯O2v 0.85 1.87 2.712 (3) 172
Symmetry codes: (i) x, y-1, z+1; (ii) -x+2, -y, -z+1; (iii) x-1, y+1, z-1; (iv) x, y+1, z-1; (v) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to coordination networks, see: Ranford et al. (1998).

Experimental top

A solution of 1.0 mmol 2-formyl-benzenesulfonate-thiosemicarbazide was added to a solution of 0.5 mmol MnCl2.4H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Pink blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93, N—H = 0.86, O—H = 0.85Å) and refined as riding with Uiso(H)= 1.2 Ueq(C, N) or 1.5Ueq(O).

Structure description top

For background to coordination networks, see: Ranford et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1-x, 1-y, -z).
Tetraaquabis[2-(thiosemicarbazonomethyl)benzenesulfonato]manganese(II) top
Crystal data top
[Mn(C8H8N3O3S2)2(H2O)4]Z = 1
Mr = 643.59F(000) = 331
Triclinic, P1Dx = 1.700 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8096 (6) ÅCell parameters from 2123 reflections
b = 9.5498 (8) Åθ = 2.4–28.2°
c = 10.7898 (9) ŵ = 0.92 mm1
α = 64.386 (1)°T = 273 K
β = 88.495 (1)°Block, pink
γ = 83.791 (1)°0.19 × 0.14 × 0.12 mm
V = 628.83 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
2207 independent reflections
Radiation source: fine-focus sealed tube2005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.845, Tmax = 0.898k = 1111
3329 measured reflectionsl = 912
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3206P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2207 reflectionsΔρmax = 0.36 e Å3
170 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (3)
Crystal data top
[Mn(C8H8N3O3S2)2(H2O)4]γ = 83.791 (1)°
Mr = 643.59V = 628.83 (9) Å3
Triclinic, P1Z = 1
a = 6.8096 (6) ÅMo Kα radiation
b = 9.5498 (8) ŵ = 0.92 mm1
c = 10.7898 (9) ÅT = 273 K
α = 64.386 (1)°0.19 × 0.14 × 0.12 mm
β = 88.495 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2005 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.898Rint = 0.015
3329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
2207 reflectionsΔρmin = 0.34 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.00000.02389 (16)
S10.73935 (8)0.67535 (6)0.15413 (5)0.02518 (16)
S21.00275 (9)0.13908 (6)0.71686 (6)0.03340 (18)
O10.6334 (2)0.54631 (17)0.16197 (15)0.0333 (4)
O20.9517 (2)0.6407 (2)0.15616 (17)0.0417 (4)
O30.6673 (3)0.82183 (18)0.04065 (15)0.0386 (4)
O40.3965 (3)0.7431 (2)0.0981 (2)0.0652 (6)
H90.28840.79050.14040.098*
H100.44150.79850.06370.098*
O50.7698 (2)0.5559 (2)0.11007 (18)0.0433 (4)
H120.86050.49110.11650.065*
H110.81570.64330.13630.065*
N10.8828 (3)0.0620 (2)0.81969 (19)0.0400 (5)
H1A0.84520.15450.81180.048*
H1B0.89190.01600.89960.048*
N20.9104 (3)0.16402 (19)0.58726 (18)0.0271 (4)
H20.94740.15430.51430.033*
N30.8342 (2)0.30737 (19)0.57900 (17)0.0257 (4)
C10.9263 (3)0.0400 (2)0.7097 (2)0.0269 (5)
C20.8091 (3)0.4167 (2)0.4577 (2)0.0242 (4)
H2A0.84370.39750.38210.029*
C30.7252 (3)0.5734 (2)0.4382 (2)0.0216 (4)
C40.6849 (3)0.6967 (2)0.3074 (2)0.0212 (4)
C50.6053 (3)0.8429 (2)0.2938 (2)0.0284 (5)
H5A0.57800.92360.20660.034*
C60.5664 (3)0.8694 (3)0.4078 (2)0.0345 (5)
H60.51400.96790.39790.041*
C70.6056 (3)0.7491 (3)0.5373 (2)0.0329 (5)
H70.57910.76670.61470.040*
C80.6835 (3)0.6034 (3)0.5523 (2)0.0283 (5)
H80.70900.52350.64010.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0270 (3)0.0197 (2)0.0237 (3)0.00156 (17)0.00312 (17)0.00820 (19)
S10.0331 (3)0.0220 (3)0.0199 (3)0.0055 (2)0.0001 (2)0.0080 (2)
S20.0437 (3)0.0198 (3)0.0306 (3)0.0006 (2)0.0044 (2)0.0057 (2)
O10.0521 (10)0.0266 (8)0.0230 (8)0.0120 (7)0.0042 (7)0.0104 (6)
O20.0352 (9)0.0540 (11)0.0448 (10)0.0042 (8)0.0067 (7)0.0301 (9)
O30.0603 (11)0.0259 (8)0.0221 (8)0.0100 (7)0.0032 (7)0.0020 (7)
O40.0675 (13)0.0263 (9)0.0932 (16)0.0101 (9)0.0507 (12)0.0182 (10)
O50.0405 (10)0.0403 (10)0.0559 (11)0.0125 (8)0.0177 (8)0.0262 (9)
N10.0639 (14)0.0245 (10)0.0246 (10)0.0001 (9)0.0020 (9)0.0051 (8)
N20.0313 (9)0.0206 (9)0.0239 (9)0.0028 (7)0.0010 (7)0.0056 (7)
N30.0269 (9)0.0203 (9)0.0267 (10)0.0011 (7)0.0023 (7)0.0074 (8)
C10.0250 (11)0.0235 (11)0.0261 (11)0.0033 (8)0.0033 (8)0.0047 (9)
C20.0263 (10)0.0228 (10)0.0225 (10)0.0017 (8)0.0020 (8)0.0091 (9)
C30.0206 (10)0.0211 (10)0.0238 (10)0.0031 (8)0.0027 (8)0.0100 (8)
C40.0217 (10)0.0212 (10)0.0216 (10)0.0043 (8)0.0016 (8)0.0095 (8)
C50.0320 (11)0.0194 (10)0.0308 (12)0.0016 (9)0.0024 (9)0.0080 (9)
C60.0375 (13)0.0260 (12)0.0450 (14)0.0009 (10)0.0004 (10)0.0210 (11)
C70.0362 (12)0.0367 (13)0.0361 (12)0.0053 (10)0.0022 (10)0.0250 (11)
C80.0306 (11)0.0297 (11)0.0240 (11)0.0039 (9)0.0013 (9)0.0108 (9)
Geometric parameters (Å, º) top
Mn1—O4i2.1369 (17)N1—H1B0.8600
Mn1—O42.1369 (17)N2—C11.337 (3)
Mn1—O5i2.1495 (16)N2—N31.376 (2)
Mn1—O52.1495 (16)N2—H20.8600
Mn1—O12.2166 (14)N3—C21.274 (3)
Mn1—O1i2.2166 (14)C2—C31.469 (3)
S1—O21.4468 (17)C2—H2A0.9300
S1—O31.4489 (16)C3—C81.396 (3)
S1—O11.4647 (15)C3—C41.403 (3)
S1—C41.7767 (19)C4—C51.388 (3)
S2—C11.702 (2)C5—C61.374 (3)
O4—H90.8500C5—H5A0.9300
O4—H100.8499C6—C71.381 (3)
O5—H120.8499C6—H60.9300
O5—H110.8499C7—C81.376 (3)
N1—C11.313 (3)C7—H70.9300
N1—H1A0.8600C8—H80.9300
O4i—Mn1—O4180.0H1A—N1—H1B120.0
O4i—Mn1—O5i88.04 (8)C1—N2—N3119.42 (18)
O4—Mn1—O5i91.96 (8)C1—N2—H2120.3
O4i—Mn1—O591.96 (8)N3—N2—H2120.3
O4—Mn1—O588.04 (8)C2—N3—N2115.48 (18)
O5i—Mn1—O5180.0N1—C1—N2118.31 (19)
O4i—Mn1—O192.72 (7)N1—C1—S2122.79 (16)
O4—Mn1—O187.28 (7)N2—C1—S2118.89 (16)
O5i—Mn1—O192.43 (6)N3—C2—C3119.54 (19)
O5—Mn1—O187.57 (6)N3—C2—H2A120.2
O4i—Mn1—O1i87.28 (7)C3—C2—H2A120.2
O4—Mn1—O1i92.72 (7)C8—C3—C4117.81 (18)
O5i—Mn1—O1i87.57 (6)C8—C3—C2119.86 (18)
O5—Mn1—O1i92.43 (6)C4—C3—C2122.33 (18)
O1—Mn1—O1i180.0C5—C4—C3120.37 (18)
O2—S1—O3113.09 (10)C5—C4—S1117.47 (15)
O2—S1—O1112.81 (10)C3—C4—S1122.14 (15)
O3—S1—O1111.89 (9)C6—C5—C4120.6 (2)
O2—S1—C4105.67 (9)C6—C5—H5A119.7
O3—S1—C4106.74 (9)C4—C5—H5A119.7
O1—S1—C4105.98 (9)C5—C6—C7119.6 (2)
S1—O1—Mn1131.56 (9)C5—C6—H6120.2
Mn1—O4—H9131.3C7—C6—H6120.2
Mn1—O4—H10115.1C8—C7—C6120.3 (2)
H9—O4—H10108.1C8—C7—H7119.8
Mn1—O5—H12126.2C6—C7—H7119.8
Mn1—O5—H11124.0C7—C8—C3121.2 (2)
H12—O5—H11108.1C7—C8—H8119.4
C1—N1—H1A120.0C3—C8—H8119.4
C1—N1—H1B120.0
O2—S1—O1—Mn196.18 (14)C8—C3—C4—S1177.75 (15)
O3—S1—O1—Mn132.68 (16)C2—C3—C4—S12.0 (3)
C4—S1—O1—Mn1148.66 (12)O2—S1—C4—C5115.31 (17)
O4i—Mn1—O1—S1138.91 (14)O3—S1—C4—C55.33 (19)
O4—Mn1—O1—S141.09 (14)O1—S1—C4—C5124.75 (17)
O5i—Mn1—O1—S1132.94 (13)O2—S1—C4—C362.83 (18)
O5—Mn1—O1—S147.06 (13)O3—S1—C4—C3176.53 (15)
O1i—Mn1—O1—S125 (100)O1—S1—C4—C357.11 (18)
C1—N2—N3—C2174.55 (18)C3—C4—C5—C60.6 (3)
N3—N2—C1—N15.3 (3)S1—C4—C5—C6177.58 (17)
N3—N2—C1—S2174.98 (14)C4—C5—C6—C70.5 (3)
N2—N3—C2—C3178.94 (17)C5—C6—C7—C80.2 (3)
N3—C2—C3—C83.4 (3)C6—C7—C8—C30.1 (3)
N3—C2—C3—C4176.81 (18)C4—C3—C8—C70.0 (3)
C8—C3—C4—C50.3 (3)C2—C3—C8—C7179.78 (19)
C2—C3—C4—C5179.89 (19)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.292.638 (3)104
O4—H10···O30.852.022.761 (3)146
N1—H1B···O3ii0.862.332.986 (3)134
N2—H2···S2iii0.862.573.4231 (19)170
O4—H9···S2iv0.852.363.182 (2)162
O5—H11···S2v0.852.463.2603 (19)156
O5—H12···O2vi0.851.872.712 (3)172
Symmetry codes: (ii) x, y1, z+1; (iii) x+2, y, z+1; (iv) x1, y+1, z1; (v) x, y+1, z1; (vi) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H8N3O3S2)2(H2O)4]
Mr643.59
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.8096 (6), 9.5498 (8), 10.7898 (9)
α, β, γ (°)64.386 (1), 88.495 (1), 83.791 (1)
V3)628.83 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.19 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.845, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
3329, 2207, 2005
Rint0.015
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.07
No. of reflections2207
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O42.1369 (17)Mn1—O12.2166 (14)
Mn1—O52.1495 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.292.638 (3)104
O4—H10···O30.852.022.761 (3)146
N1—H1B···O3i0.862.332.986 (3)134
N2—H2···S2ii0.862.573.4231 (19)170
O4—H9···S2iii0.852.363.182 (2)162
O5—H11···S2iv0.852.463.2603 (19)156
O5—H12···O2v0.851.872.712 (3)172
Symmetry codes: (i) x, y1, z+1; (ii) x+2, y, z+1; (iii) x1, y+1, z1; (iv) x, y+1, z1; (v) x+2, y+1, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and the Science Foundation of Weifang University.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds