organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–pyroglutamic acid (1/2)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 October 2009; accepted 28 October 2009; online 31 October 2009)

In the title co-crystal, C10H8N2·2C5H7NO3, the 4,4′-bipyridine mol­ecule [dihedral angle between the pyridine rings = 36.33 (11)°] accepts O—H⋯N hydrogen bonds from the two pyroglutamic (pga) acid mol­ecules. The pga mol­ecules at each end of the trimeric aggregate self-associate via centrosymmetric eight-membered amide {⋯HNCO}2 synthons, so that the crystal structure comprises one-dimensional supra­molecular chains propagating in [13[\overline{2}]]. C—H⋯O and ππ stacking inter­actions [centroid–centroid separation = 3.590 (2) Å] consolidate the structure.

Related literature

For background to the co-crystallization of active pharmaceutical agents and discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.]); Zukerman-Schpector & Tiekink (2008[Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233-234.]). For related studies on co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]). For structure analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For hydrogen-bonding considerations, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C5H7NO3

  • Mr = 414.42

  • Triclinic, [P \overline 1]

  • a = 7.444 (3) Å

  • b = 11.511 (4) Å

  • c = 12.845 (4) Å

  • α = 66.274 (17)°

  • β = 74.203 (17)°

  • γ = 86.91 (2)°

  • V = 967.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 98 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.706, Tmax = 1.000

  • 5618 measured reflections

  • 3375 independent reflections

  • 2851 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.128

  • S = 1.16

  • 3375 reflections

  • 281 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N3 0.84 1.75 2.588 (3) 177
O4—H4o⋯N4 0.84 1.75 2.582 (3) 175
N1—H1n⋯O3i 0.88 2.03 2.911 (3) 174
N2—H2n⋯O6ii 0.88 2.03 2.903 (3) 172
C15—H15⋯O4iii 0.95 2.38 3.294 (3) 162
C18—H18⋯O1iv 0.95 2.41 3.293 (3) 155
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y-1, -z+2; (iii) x, y+1, z; (iv) x, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008); see Zukerman-Schpector & Tiekink (2008) for a discussion of terminology. As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008; Ellis et al., 2009), the co-crystallization of DL-pyroglutamic acid with 4,4'-bipyridine was investigated.

The title co-crystal, (I), comprises two molecules of pyroglutamic acid and one of 4,4'-bipyridine, Fig. 1. The independent molecules of pyroglutamic acid are virtually identical with RMS values for bond distances and angles of 0.006 Å and 0.552 °, respectively (Spek, 2009). The connections between molecules are hydrogen bonds of the type O–H···N, Table 1, in accord with the strongest donor associating with the strongest acceptor (Etter, 1990).

The trimeric aggregates associate into a supramolecular chain via eight-membered amide {···HNCO}2 synthons. The most convenient description of the chain is given in the following terms. Centrosymmetrically related pyroglutamic acid molecules are connected by the {···HNCO}2 synthons and these are bridged by the 4,4'-bipyridine molecules, Table 1 and Fig. 2. The supramolecular chains have a base vector [1 3 - 2] in which alternate 4,4'-bipyridine molecules are connected to pyroglutamic acid molecules of the same chirality.

The chains are consolidated into the 3-D crystal structure by a large number of C–H···O contacts, the shortest two are listed in Table 1, as well as π···π interactions involving both pyridyl rings [the closest Cg···Cgi = 3.590 (2) Å where Cg is the ring centroid of N2, C16—C20 for i: 2 - x, -y, 1 - z].

Related literature top

For background to the co-crystallization of active pharmaceutical agents and discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008); Zukerman-Schpector & Tiekink (2008). For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Ellis et al. (2009). For structure analysis, see: Spek (2009). For hydrogen-bonding considerations, see: Etter (1990).

Experimental top

Colourless crystals of (I) were isolated from the co-crystallization of 1 molar equivalent of DL-pyroglutamic acid (Fluka, 20 mg) and 4,4'-bipyridine (Aldrich, 12 mg) in methanol/ethanol (1/1, 8 ml); m. pt. 425–427 K.

Refinement top

The H-atoms were placed in calculated positions (O–H = 0.84 Å, N–H = 0.88 Å and C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(carrier atom).

Structure description top

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008); see Zukerman-Schpector & Tiekink (2008) for a discussion of terminology. As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008; Ellis et al., 2009), the co-crystallization of DL-pyroglutamic acid with 4,4'-bipyridine was investigated.

The title co-crystal, (I), comprises two molecules of pyroglutamic acid and one of 4,4'-bipyridine, Fig. 1. The independent molecules of pyroglutamic acid are virtually identical with RMS values for bond distances and angles of 0.006 Å and 0.552 °, respectively (Spek, 2009). The connections between molecules are hydrogen bonds of the type O–H···N, Table 1, in accord with the strongest donor associating with the strongest acceptor (Etter, 1990).

The trimeric aggregates associate into a supramolecular chain via eight-membered amide {···HNCO}2 synthons. The most convenient description of the chain is given in the following terms. Centrosymmetrically related pyroglutamic acid molecules are connected by the {···HNCO}2 synthons and these are bridged by the 4,4'-bipyridine molecules, Table 1 and Fig. 2. The supramolecular chains have a base vector [1 3 - 2] in which alternate 4,4'-bipyridine molecules are connected to pyroglutamic acid molecules of the same chirality.

The chains are consolidated into the 3-D crystal structure by a large number of C–H···O contacts, the shortest two are listed in Table 1, as well as π···π interactions involving both pyridyl rings [the closest Cg···Cgi = 3.590 (2) Å where Cg is the ring centroid of N2, C16—C20 for i: 2 - x, -y, 1 - z].

For background to the co-crystallization of active pharmaceutical agents and discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008); Zukerman-Schpector & Tiekink (2008). For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Ellis et al. (2009). For structure analysis, see: Spek (2009). For hydrogen-bonding considerations, see: Etter (1990).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The O–H···N hydrogen bonds are shown as orange dashed lines.
[Figure 2] Fig. 2. Supramolecular chain formation in (I) mediated by O—H···N (orange dashed lines) and N—H···N (blue dashed lines) hydrogen bonding.
4,4'-Bipyridine–pyroglutamic acid (1/2) top
Crystal data top
C10H8N2·2C5H7NO3Z = 2
Mr = 414.42F(000) = 436
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.444 (3) ÅCell parameters from 3819 reflections
b = 11.511 (4) Åθ = 1.8–40.3°
c = 12.845 (4) ŵ = 0.11 mm1
α = 66.274 (17)°T = 98 K
β = 74.203 (17)°Block, colourless
γ = 86.91 (2)°0.22 × 0.15 × 0.12 mm
V = 967.6 (6) Å3
Data collection top
Rigaku Saturn724
diffractometer
3375 independent reflections
Radiation source: sealed tube2851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.706, Tmax = 1.000l = 1115
5618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.3826P]
where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H8N2·2C5H7NO3γ = 86.91 (2)°
Mr = 414.42V = 967.6 (6) Å3
Triclinic, P1Z = 2
a = 7.444 (3) ÅMo Kα radiation
b = 11.511 (4) ŵ = 0.11 mm1
c = 12.845 (4) ÅT = 98 K
α = 66.274 (17)°0.22 × 0.15 × 0.12 mm
β = 74.203 (17)°
Data collection top
Rigaku Saturn724
diffractometer
3375 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2851 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 1.000Rint = 0.041
5618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.16Δρmax = 0.29 e Å3
3375 reflectionsΔρmin = 0.26 e Å3
281 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7958 (3)0.80500 (15)0.34215 (15)0.0306 (4)
H1o0.80710.72620.37060.046*
O20.7021 (3)0.76264 (15)0.20917 (14)0.0300 (4)
O30.6914 (2)1.13445 (15)0.10317 (14)0.0250 (4)
O40.6382 (2)0.34079 (15)0.69099 (15)0.0295 (4)
H4o0.67410.26350.66050.044*
O50.3864 (2)0.27410 (15)0.78866 (14)0.0278 (4)
O60.0822 (2)0.65238 (15)1.10646 (14)0.0263 (4)
N10.6307 (3)1.00631 (18)0.09308 (17)0.0239 (5)
H1N0.53620.95830.10020.027 (7)*
N20.2248 (3)0.51418 (18)0.91661 (17)0.0233 (5)
H2N0.13800.45960.90220.028 (7)*
N30.8270 (3)0.56170 (18)0.42251 (18)0.0266 (5)
N40.7503 (3)0.10455 (18)0.60996 (17)0.0247 (5)
C10.7328 (3)0.8368 (2)0.24872 (19)0.0217 (5)
C20.7041 (3)0.9777 (2)0.19365 (19)0.0215 (5)
H20.61541.00330.25360.026*
C30.7237 (3)1.1014 (2)0.0062 (2)0.0218 (5)
C40.8716 (3)1.1608 (2)0.02102 (19)0.0228 (5)
H4A0.83251.24230.02630.027*
H4B0.99211.17640.04060.027*
C50.8887 (3)1.0625 (2)0.1407 (2)0.0225 (5)
H5A0.90111.10450.19240.027*
H5B0.99841.01160.13020.027*
C60.4717 (3)0.3581 (2)0.76693 (19)0.0219 (5)
C70.3977 (3)0.4950 (2)0.82374 (19)0.0213 (5)
H70.37470.52030.76240.026*
C80.2141 (3)0.6187 (2)1.0153 (2)0.0214 (5)
C90.3900 (3)0.6883 (2)0.9955 (2)0.0236 (5)
H9A0.36570.76190.97880.028*
H9B0.43970.71871.06550.028*
C100.5264 (3)0.5884 (2)0.8884 (2)0.0248 (5)
H10A0.60610.62740.83730.030*
H10B0.60740.54520.91330.030*
C110.9039 (3)0.5073 (2)0.3470 (2)0.0268 (6)
H110.96530.56050.26740.032*
C120.8973 (3)0.3770 (2)0.3805 (2)0.0243 (5)
H120.95490.34170.32510.029*
C130.8049 (3)0.2985 (2)0.4965 (2)0.0223 (5)
C140.7272 (3)0.3554 (2)0.5749 (2)0.0253 (5)
H140.66590.30470.65520.030*
C150.7406 (3)0.4857 (2)0.5344 (2)0.0273 (6)
H150.68600.52340.58830.033*
C160.7879 (3)0.1585 (2)0.5364 (2)0.0208 (5)
C170.7629 (3)0.1045 (2)0.4611 (2)0.0254 (5)
H170.75900.15700.38290.030*
C180.7440 (3)0.0258 (2)0.5017 (2)0.0259 (6)
H180.72560.06130.45000.031*
C190.7758 (3)0.0528 (2)0.6826 (2)0.0258 (5)
H190.78100.10790.76000.031*
C200.7947 (3)0.0765 (2)0.6494 (2)0.0242 (5)
H200.81210.10930.70320.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0477 (12)0.0234 (9)0.0292 (9)0.0069 (8)0.0215 (9)0.0126 (8)
O20.0405 (11)0.0279 (9)0.0303 (9)0.0029 (8)0.0146 (9)0.0173 (8)
O30.0261 (9)0.0300 (9)0.0229 (9)0.0051 (7)0.0089 (8)0.0135 (7)
O40.0262 (10)0.0242 (8)0.0340 (10)0.0013 (7)0.0038 (8)0.0151 (8)
O50.0265 (9)0.0257 (9)0.0310 (10)0.0063 (7)0.0029 (8)0.0150 (8)
O60.0241 (9)0.0280 (9)0.0226 (9)0.0027 (7)0.0015 (8)0.0093 (7)
N10.0239 (11)0.0249 (11)0.0243 (11)0.0001 (9)0.0090 (9)0.0097 (9)
N20.0205 (11)0.0244 (10)0.0229 (10)0.0061 (9)0.0055 (9)0.0085 (9)
N30.0288 (12)0.0268 (11)0.0284 (11)0.0040 (9)0.0116 (10)0.0133 (9)
N40.0194 (11)0.0269 (10)0.0277 (11)0.0034 (9)0.0023 (9)0.0140 (9)
C10.0185 (12)0.0278 (12)0.0203 (12)0.0007 (10)0.0030 (10)0.0126 (10)
C20.0211 (12)0.0266 (12)0.0209 (12)0.0036 (10)0.0052 (10)0.0144 (10)
C30.0222 (13)0.0230 (12)0.0252 (13)0.0081 (10)0.0071 (11)0.0151 (10)
C40.0209 (12)0.0264 (12)0.0218 (12)0.0016 (10)0.0013 (10)0.0134 (10)
C50.0219 (13)0.0240 (12)0.0260 (12)0.0047 (10)0.0090 (11)0.0132 (10)
C60.0229 (13)0.0264 (12)0.0183 (12)0.0031 (10)0.0053 (10)0.0113 (10)
C70.0229 (12)0.0238 (12)0.0188 (11)0.0026 (10)0.0045 (10)0.0110 (10)
C80.0246 (13)0.0197 (11)0.0231 (12)0.0007 (10)0.0072 (11)0.0111 (10)
C90.0258 (13)0.0245 (12)0.0230 (12)0.0025 (10)0.0072 (11)0.0120 (10)
C100.0252 (13)0.0263 (12)0.0255 (12)0.0031 (10)0.0064 (11)0.0134 (11)
C110.0287 (14)0.0302 (13)0.0220 (12)0.0026 (11)0.0090 (11)0.0097 (11)
C120.0231 (13)0.0297 (12)0.0235 (12)0.0064 (10)0.0076 (11)0.0140 (11)
C130.0198 (12)0.0268 (12)0.0250 (12)0.0032 (10)0.0085 (10)0.0139 (10)
C140.0240 (13)0.0301 (13)0.0231 (12)0.0006 (10)0.0040 (11)0.0136 (11)
C150.0270 (14)0.0303 (13)0.0308 (14)0.0025 (11)0.0077 (12)0.0189 (12)
C160.0164 (12)0.0250 (12)0.0219 (12)0.0019 (9)0.0041 (10)0.0113 (10)
C170.0289 (13)0.0267 (12)0.0213 (12)0.0035 (11)0.0056 (11)0.0115 (10)
C180.0268 (14)0.0297 (13)0.0272 (13)0.0036 (11)0.0063 (11)0.0183 (11)
C190.0246 (13)0.0293 (13)0.0220 (12)0.0001 (11)0.0037 (11)0.0103 (11)
C200.0204 (12)0.0307 (13)0.0239 (12)0.0002 (10)0.0038 (11)0.0148 (11)
Geometric parameters (Å, º) top
O1—C11.314 (3)C6—C71.506 (3)
O1—H1o0.8400C7—C101.538 (3)
O2—C11.213 (3)C7—H71.0000
O3—C31.235 (3)C8—C91.514 (3)
O4—C61.319 (3)C9—C101.529 (3)
O4—H4o0.8400C9—H9A0.9900
O5—C61.213 (3)C9—H9B0.9900
O6—C81.239 (3)C10—H10A0.9900
N1—C31.335 (3)C10—H10B0.9900
N1—C21.449 (3)C11—C121.383 (3)
N1—H1N0.8800C11—H110.9500
N2—C81.338 (3)C12—C131.391 (3)
N2—C71.453 (3)C12—H120.9500
N2—H2N0.8800C13—C141.397 (3)
N3—C151.338 (3)C13—C161.482 (3)
N3—C111.345 (3)C14—C151.374 (3)
N4—C181.332 (3)C14—H140.9500
N4—C191.349 (3)C15—H150.9500
C1—C21.517 (3)C16—C201.390 (3)
C2—C51.550 (3)C16—C171.396 (3)
C2—H21.0000C17—C181.377 (3)
C3—C41.511 (3)C17—H170.9500
C4—C51.533 (3)C18—H180.9500
C4—H4A0.9900C19—C201.376 (3)
C4—H4B0.9900C19—H190.9500
C5—H5A0.9900C20—H200.9500
C5—H5B0.9900
C1—O1—H1o109.5O6—C8—C9126.3 (2)
C6—O4—H4o109.5N2—C8—C9108.0 (2)
C3—N1—C2115.02 (18)C8—C9—C10104.03 (18)
C3—N1—H1N125.7C8—C9—H9A111.0
C2—N1—H1N119.2C10—C9—H9A111.0
C8—N2—C7114.5 (2)C8—C9—H9B111.0
C8—N2—H2N127.0C10—C9—H9B111.0
C7—N2—H2N118.5H9A—C9—H9B109.0
C15—N3—C11118.1 (2)C9—C10—C7103.70 (19)
C18—N4—C19117.74 (19)C9—C10—H10A111.0
O2—C1—O1124.3 (2)C7—C10—H10A111.0
O2—C1—C2123.0 (2)C9—C10—H10B111.0
O1—C1—C2112.71 (18)C7—C10—H10B111.0
N1—C2—C1110.12 (18)H10A—C10—H10B109.0
N1—C2—C5103.77 (17)N3—C11—C12122.7 (2)
C1—C2—C5113.37 (19)N3—C11—H11118.6
N1—C2—H2109.8C12—C11—H11118.6
C1—C2—H2109.8C11—C12—C13119.0 (2)
C5—C2—H2109.8C11—C12—H12120.5
O3—C3—N1124.9 (2)C13—C12—H12120.5
O3—C3—C4126.5 (2)C12—C13—C14118.0 (2)
N1—C3—C4108.55 (19)C12—C13—C16121.4 (2)
C3—C4—C5104.45 (18)C14—C13—C16120.6 (2)
C3—C4—H4A110.9C15—C14—C13119.3 (2)
C5—C4—H4A110.9C15—C14—H14120.4
C3—C4—H4B110.9C13—C14—H14120.4
C5—C4—H4B110.9N3—C15—C14122.9 (2)
H4A—C4—H4B108.9N3—C15—H15118.5
C4—C5—C2104.29 (17)C14—C15—H15118.5
C4—C5—H5A110.9C20—C16—C17117.6 (2)
C2—C5—H5A110.9C20—C16—C13121.71 (19)
C4—C5—H5B110.9C17—C16—C13120.7 (2)
C2—C5—H5B110.9C18—C17—C16119.2 (2)
H5A—C5—H5B108.9C18—C17—H17120.4
O5—C6—O4124.4 (2)C16—C17—H17120.4
O5—C6—C7123.4 (2)N4—C18—C17123.2 (2)
O4—C6—C7112.18 (19)N4—C18—H18118.4
N2—C7—C6111.09 (19)C17—C18—H18118.4
N2—C7—C10103.22 (18)N4—C19—C20122.7 (2)
C6—C7—C10114.16 (19)N4—C19—H19118.6
N2—C7—H7109.4C20—C19—H19118.6
C6—C7—H7109.4C19—C20—C16119.5 (2)
C10—C7—H7109.4C19—C20—H20120.3
O6—C8—N2125.7 (2)C16—C20—H20120.3
C3—N1—C2—C1128.8 (2)C8—C9—C10—C724.8 (2)
C3—N1—C2—C57.2 (3)N2—C7—C10—C923.4 (2)
O2—C1—C2—N12.0 (3)C6—C7—C10—C9144.11 (19)
O1—C1—C2—N1178.66 (19)C15—N3—C11—C120.1 (3)
O2—C1—C2—C5113.8 (2)N3—C11—C12—C131.1 (3)
O1—C1—C2—C565.6 (3)C11—C12—C13—C141.8 (3)
C2—N1—C3—O3174.8 (2)C11—C12—C13—C16178.0 (2)
C2—N1—C3—C45.7 (3)C12—C13—C14—C151.6 (3)
O3—C3—C4—C5164.3 (2)C16—C13—C14—C15178.1 (2)
N1—C3—C4—C516.1 (2)C11—N3—C15—C140.0 (3)
C3—C4—C5—C219.6 (2)C13—C14—C15—N30.7 (4)
N1—C2—C5—C416.5 (2)C12—C13—C16—C20144.2 (2)
C1—C2—C5—C4135.96 (19)C14—C13—C16—C2036.0 (3)
C8—N2—C7—C6136.67 (19)C12—C13—C16—C1736.3 (3)
C8—N2—C7—C1013.9 (2)C14—C13—C16—C17143.4 (2)
O5—C6—C7—N27.0 (3)C20—C16—C17—C180.8 (3)
O4—C6—C7—N2173.39 (18)C13—C16—C17—C18178.7 (2)
O5—C6—C7—C10123.2 (2)C19—N4—C18—C170.2 (4)
O4—C6—C7—C1057.2 (3)C16—C17—C18—N40.7 (4)
C7—N2—C8—O6178.2 (2)C18—N4—C19—C200.2 (4)
C7—N2—C8—C92.1 (2)N4—C19—C20—C160.2 (4)
O6—C8—C9—C10163.0 (2)C17—C16—C20—C190.3 (3)
N2—C8—C9—C1017.4 (2)C13—C16—C20—C19179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N30.841.752.588 (3)177
O4—H4o···N40.841.752.582 (3)175
N1—H1n···O3i0.882.032.911 (3)174
N2—H2n···O6ii0.882.032.903 (3)172
C15—H15···O4iii0.952.383.294 (3)162
C18—H18···O1iv0.952.413.293 (3)155
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z+2; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C5H7NO3
Mr414.42
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)7.444 (3), 11.511 (4), 12.845 (4)
α, β, γ (°)66.274 (17), 74.203 (17), 86.91 (2)
V3)967.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.706, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5618, 3375, 2851
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.128, 1.16
No. of reflections3375
No. of parameters281
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N30.841.752.588 (3)177
O4—H4o···N40.841.752.582 (3)175
N1—H1n···O3i0.882.032.911 (3)174
N2—H2n···O6ii0.882.032.903 (3)172
C15—H15···O4iii0.952.383.294 (3)162
C18—H18···O1iv0.952.413.293 (3)155
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z+2; (iii) x, y+1, z; (iv) x, y1, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233–234.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds