organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-benzyl­idenecarbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 27 October 2009; accepted 28 October 2009; online 31 October 2009)

In the crystal of the title compound, C9H10N2O2, the mol­ecules are linked by N—H⋯O hydrogen bonds, generating S(4) chains propagating in [010].

Related literature

For background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O2

  • Mr = 178.19

  • Orthorhombic, P b c a

  • a = 12.278 (3) Å

  • b = 7.8035 (16) Å

  • c = 19.466 (4) Å

  • V = 1865.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 16349 measured reflections

  • 2132 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.147

  • S = 1.08

  • 2132 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.04 2.8986 (15) 179
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to Schiff bases, see: Cimerman et al. (1997).

Experimental top

A mixture of benzaldehyde (0.1 mol), and methyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.089 mol, yield 89%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.97 Å, and with Uiso = 1.2–1.5Ueq.

Structure description top

For background to Schiff bases, see: Cimerman et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
Methyl 3-benzylidenecarbazate top
Crystal data top
C9H10N2O2F(000) = 752
Mr = 178.19Dx = 1.269 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1984 reflections
a = 12.278 (3) Åθ = 3.5–27.5°
b = 7.8035 (16) ŵ = 0.09 mm1
c = 19.466 (4) ÅT = 293 K
V = 1865.1 (7) Å3Block, colourless
Z = 80.25 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
φ and ω scansh = 1515
16349 measured reflectionsk = 108
2132 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2132 reflectionsΔρmax = 0.23 e Å3
119 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C9H10N2O2V = 1865.1 (7) Å3
Mr = 178.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.278 (3) ŵ = 0.09 mm1
b = 7.8035 (16) ÅT = 293 K
c = 19.466 (4) Å0.25 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1693 reflections with I > 2σ(I)
16349 measured reflectionsRint = 0.048
2132 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
2132 reflectionsΔρmin = 0.18 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.87392 (7)0.13497 (11)0.52542 (4)0.0522 (3)
N20.72993 (8)0.24691 (12)0.62265 (4)0.0434 (3)
O10.85158 (9)0.38853 (12)0.47171 (5)0.0613 (3)
C30.65739 (9)0.31376 (15)0.66062 (6)0.0443 (3)
H3A0.61840.40770.64450.053*
N10.74972 (9)0.33172 (13)0.56166 (5)0.0505 (3)
H1A0.71250.42070.55040.061*
C40.63373 (10)0.24621 (14)0.72925 (5)0.0418 (3)
C20.82860 (10)0.27174 (15)0.52044 (5)0.0434 (3)
C90.70485 (10)0.13562 (16)0.76285 (6)0.0508 (3)
H9A0.76780.09860.74080.061*
C70.58904 (13)0.13493 (19)0.86228 (7)0.0599 (4)
H7A0.57470.09880.90690.072*
C50.54021 (11)0.29976 (18)0.76341 (6)0.0532 (3)
H5A0.49220.37470.74190.064*
C80.68246 (13)0.08046 (19)0.82877 (6)0.0596 (4)
H8A0.73040.00630.85080.072*
C60.51809 (12)0.24207 (18)0.82934 (7)0.0607 (4)
H6A0.45450.27650.85130.073*
C10.93760 (15)0.3429 (2)0.42527 (8)0.0764 (5)
H1B0.94840.43380.39280.115*
H1C0.91840.23970.40130.115*
H1D1.00360.32460.45070.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0572 (6)0.0453 (5)0.0541 (5)0.0041 (4)0.0082 (4)0.0034 (3)
N20.0465 (6)0.0427 (6)0.0410 (5)0.0010 (4)0.0018 (4)0.0047 (4)
O10.0771 (7)0.0523 (6)0.0546 (5)0.0022 (5)0.0182 (4)0.0139 (4)
C30.0451 (6)0.0414 (6)0.0464 (6)0.0032 (5)0.0009 (4)0.0013 (5)
N10.0609 (6)0.0439 (6)0.0467 (6)0.0103 (4)0.0078 (4)0.0111 (4)
C40.0426 (6)0.0396 (6)0.0431 (6)0.0032 (4)0.0012 (4)0.0018 (5)
C20.0485 (7)0.0411 (6)0.0406 (6)0.0053 (5)0.0008 (4)0.0020 (4)
C90.0478 (7)0.0529 (7)0.0517 (7)0.0042 (5)0.0020 (5)0.0018 (5)
C70.0777 (9)0.0568 (8)0.0452 (7)0.0139 (7)0.0074 (6)0.0002 (5)
C50.0488 (7)0.0525 (7)0.0584 (7)0.0036 (5)0.0066 (5)0.0004 (5)
C80.0678 (9)0.0585 (8)0.0526 (7)0.0012 (6)0.0053 (6)0.0085 (5)
C60.0614 (8)0.0595 (8)0.0613 (8)0.0038 (6)0.0204 (6)0.0057 (6)
C10.0882 (11)0.0756 (10)0.0652 (9)0.0041 (8)0.0305 (8)0.0085 (8)
Geometric parameters (Å, º) top
O2—C21.2075 (15)C9—H9A0.9300
N2—C31.2694 (15)C7—C61.367 (2)
N2—N11.3808 (13)C7—C81.386 (2)
O1—C21.3453 (14)C7—H7A0.9300
O1—C11.4351 (18)C5—C61.3868 (17)
C3—C41.4653 (16)C5—H5A0.9300
C3—H3A0.9300C8—H8A0.9300
N1—C21.3420 (16)C6—H6A0.9300
N1—H1A0.8600C1—H1B0.9600
C4—C91.3911 (18)C1—H1C0.9600
C4—C51.3912 (17)C1—H1D0.9600
C9—C81.3811 (18)
C3—N2—N1115.28 (10)C6—C7—H7A120.2
C2—O1—C1115.48 (11)C8—C7—H7A120.2
N2—C3—C4121.47 (11)C6—C5—C4120.43 (13)
N2—C3—H3A119.3C6—C5—H5A119.8
C4—C3—H3A119.3C4—C5—H5A119.8
C2—N1—N2118.29 (10)C9—C8—C7120.42 (13)
C2—N1—H1A120.9C9—C8—H8A119.8
N2—N1—H1A120.9C7—C8—H8A119.8
C9—C4—C5118.66 (11)C7—C6—C5120.52 (13)
C9—C4—C3121.84 (11)C7—C6—H6A119.7
C5—C4—C3119.43 (11)C5—C6—H6A119.7
O2—C2—N1126.35 (10)O1—C1—H1B109.5
O2—C2—O1123.97 (11)O1—C1—H1C109.5
N1—C2—O1109.67 (10)H1B—C1—H1C109.5
C8—C9—C4120.35 (12)O1—C1—H1D109.5
C8—C9—H9A119.8H1B—C1—H1D109.5
C4—C9—H9A119.8H1C—C1—H1D109.5
C6—C7—C8119.60 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.042.8986 (15)179
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC9H10N2O2
Mr178.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.278 (3), 7.8035 (16), 19.466 (4)
V3)1865.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16349, 2132, 1693
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.147, 1.08
No. of reflections2132
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.042.8986 (15)179
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The authors thank the Science Foundation of Weifang University (No. 2009Z24).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds