organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(3-pyridylmethyl­ene)carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 27 October 2009; accepted 28 October 2009; online 31 October 2009)

In the crystal of the title compound, C8H9N3O2, mol­ecules are linked by N—H⋯N hydrogen bonds, forming S(7) chains propagating in [010].

Related literature

For background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3O2

  • Mr = 179.18

  • Orthorhombic, P b c a

  • a = 10.585 (2) Å

  • b = 10.019 (2) Å

  • c = 16.311 (3) Å

  • V = 1729.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 15411 measured reflections

  • 1984 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.08

  • 1984 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.12 2.9751 (14) 171
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to Schiff bases, see: Cimerman et al. (1997).

Experimental top

A mixture of nicotinaldehyde (0.1 mol), and methyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.082 mol, yield 82%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms.

Structure description top

For background to Schiff bases, see: Cimerman et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
Methyl 3-(3-pyridylmethylene)carbazate top
Crystal data top
C8H9N3O2Dx = 1.376 Mg m3
Mr = 179.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1985 reflections
a = 10.585 (2) Åθ = 3.4–27.5°
b = 10.019 (2) ŵ = 0.10 mm1
c = 16.311 (3) ÅT = 293 K
V = 1729.8 (6) Å3Block, colourless
Z = 80.26 × 0.21 × 0.19 mm
F(000) = 752
Data collection top
Bruker SMART CCD
diffractometer
1794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 1313
15411 measured reflectionsk = 1312
1984 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.1822P]
where P = (Fo2 + 2Fc2)/3
1984 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H9N3O2V = 1729.8 (6) Å3
Mr = 179.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.585 (2) ŵ = 0.10 mm1
b = 10.019 (2) ÅT = 293 K
c = 16.311 (3) Å0.26 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
1794 reflections with I > 2σ(I)
15411 measured reflectionsRint = 0.028
1984 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
1984 reflectionsΔρmin = 0.32 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.18815 (8)0.11348 (8)0.57072 (5)0.0433 (2)
C30.35300 (9)0.17778 (10)0.74434 (7)0.0343 (3)
H3A0.42860.13750.72910.041*
N40.48145 (8)0.43908 (10)0.88319 (6)0.0390 (3)
C50.35393 (9)0.28611 (10)0.80449 (6)0.0311 (2)
N10.26042 (8)0.03820 (9)0.65555 (6)0.0372 (2)
H1A0.33360.01240.63910.045*
C40.24493 (9)0.34567 (12)0.83549 (7)0.0377 (3)
H4B0.16560.31560.81940.045*
N20.24948 (8)0.13809 (9)0.71265 (5)0.0345 (2)
C20.15392 (9)0.01936 (10)0.62537 (6)0.0339 (3)
O10.04701 (7)0.00686 (10)0.64392 (6)0.0541 (3)
C60.46946 (9)0.33613 (11)0.83129 (6)0.0358 (3)
H6A0.54280.29570.81200.043*
C80.37535 (11)0.49405 (11)0.91219 (7)0.0393 (3)
H8A0.38190.56510.94860.047*
C70.25615 (10)0.44962 (12)0.89025 (7)0.0414 (3)
H7A0.18450.48960.91230.050*
C10.08717 (14)0.19038 (13)0.53648 (8)0.0523 (3)
H1B0.12090.25460.49870.078*
H1C0.04300.23590.57960.078*
H1D0.02980.13220.50820.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0420 (5)0.0450 (5)0.0429 (5)0.0031 (3)0.0027 (3)0.0115 (3)
C30.0289 (5)0.0385 (5)0.0355 (5)0.0040 (4)0.0007 (4)0.0006 (4)
N40.0315 (5)0.0440 (5)0.0415 (5)0.0086 (4)0.0001 (4)0.0016 (4)
C50.0289 (5)0.0341 (5)0.0302 (5)0.0005 (4)0.0009 (3)0.0034 (4)
N10.0277 (4)0.0426 (5)0.0413 (5)0.0042 (3)0.0005 (3)0.0102 (4)
C40.0257 (5)0.0467 (6)0.0407 (6)0.0008 (4)0.0037 (4)0.0042 (4)
N20.0325 (4)0.0364 (5)0.0346 (4)0.0039 (3)0.0018 (3)0.0033 (3)
C20.0324 (5)0.0363 (5)0.0330 (5)0.0018 (4)0.0015 (4)0.0005 (4)
O10.0284 (4)0.0685 (6)0.0656 (6)0.0020 (4)0.0018 (4)0.0220 (5)
C60.0263 (5)0.0430 (6)0.0380 (5)0.0009 (4)0.0026 (4)0.0003 (4)
C80.0400 (6)0.0373 (5)0.0407 (5)0.0030 (4)0.0004 (4)0.0038 (4)
C70.0312 (5)0.0465 (6)0.0463 (6)0.0069 (4)0.0005 (4)0.0064 (5)
C10.0603 (8)0.0478 (6)0.0489 (7)0.0117 (6)0.0049 (6)0.0102 (5)
Geometric parameters (Å, º) top
O2—C21.3472 (13)N1—H1A0.8600
O2—C11.4312 (15)C4—C71.3771 (16)
C3—N21.2752 (13)C4—H4B0.9300
C3—C51.4631 (14)C2—O11.2005 (13)
C3—H3A0.9300C6—H6A0.9300
N4—C81.3373 (14)C8—C71.3850 (15)
N4—C61.3403 (14)C8—H8A0.9300
C5—C61.3920 (13)C7—H7A0.9300
C5—C41.3940 (13)C1—H1B0.9600
N1—C21.3586 (13)C1—H1C0.9600
N1—N21.3719 (12)C1—H1D0.9600
C2—O2—C1115.73 (9)O2—C2—N1108.28 (9)
N2—C3—C5120.59 (9)N4—C6—C5123.96 (9)
N2—C3—H3A119.7N4—C6—H6A118.0
C5—C3—H3A119.7C5—C6—H6A118.0
C8—N4—C6117.44 (9)N4—C8—C7122.77 (10)
C6—C5—C4117.33 (9)N4—C8—H8A118.6
C6—C5—C3118.92 (8)C7—C8—H8A118.6
C4—C5—C3123.73 (8)C4—C7—C8119.29 (10)
C2—N1—N2119.05 (8)C4—C7—H7A120.4
C2—N1—H1A120.5C8—C7—H7A120.4
N2—N1—H1A120.5O2—C1—H1B109.5
C7—C4—C5119.18 (9)O2—C1—H1C109.5
C7—C4—H4B120.4H1B—C1—H1C109.5
C5—C4—H4B120.4O2—C1—H1D109.5
C3—N2—N1115.47 (8)H1B—C1—H1D109.5
O1—C2—O2124.99 (10)H1C—C1—H1D109.5
O1—C2—N1126.73 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.122.9751 (14)171
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H9N3O2
Mr179.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.585 (2), 10.019 (2), 16.311 (3)
V3)1729.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15411, 1984, 1794
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.08
No. of reflections1984
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.122.9751 (14)171
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors would like to thank the Science Foundation of Weifang University (No. 2009Z24).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds