organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis[(E)-1-(2-hy­droxy­phen­yl)ethyl­­idene]carbonohydrazide di­methyl sulfoxide solvate

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos SP, Brazil, bDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 October 2009; accepted 28 October 2009; online 31 October 2009)

The title dimethyl sulfoxide (DMSO) solvate, C17H18N4O3·C2H6OS, shows the disubstituted urea derivative to adopt an almost planar geometry (r.m.s. deviation for non-H atoms = 0.132 Å); the mol­ecule has non-crystallographic twofold mol­ecular symmetry. This conformation is stabilized by two intra­molecular O—H⋯N hydrogen bonds. The components of the crystal are connected by N—H⋯O hydrogen bonds, whereby both amine H atoms are connected to a DMSO O atom, and C—H⋯O contacts involving the DMSO H and urea carbonyl atoms, forming a supra­molecular chain along the c axis. The chains associate via C—H⋯π inter­actions.

Related literature

For background and recent studies on the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005[Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421-439. Chichester: John Wiley & Sons.]); Affan et al. (2009[Affan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O3·C2H6OS

  • Mr = 404.48

  • Monoclinic, P 21 /c

  • a = 15.3260 (19) Å

  • b = 7.1248 (7) Å

  • c = 18.439 (2) Å

  • β = 102.724 (2)°

  • V = 1964.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 153 K

  • 0.32 × 0.30 × 0.15 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.661, Tmax = 1.000

  • 21771 measured reflections

  • 4493 independent reflections

  • 4369 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.08

  • 4493 reflections

  • 269 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 1.79 2.5682 (15) 153
O3—H3o⋯N4 0.84 1.78 2.5450 (15) 150
N2—H2n⋯O4i 0.88 1.94 2.7674 (15) 156
N3—H3n⋯O4i 0.88 1.97 2.7907 (15) 154
C19—H19b⋯O2ii 0.98 2.49 3.2167 (17) 131
C8—H8ACg2iii 0.98 2.83 3.5018 (16) 127
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y, -z+1. Cg2 is the centroid of the C12–C17 ring.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was prepared as a part of on-going studies into the biological activity of organotin compounds (Gielen & Tiekink, 2005; Affan et al., 2009). Crystals of (I) comprise equal quantities of a disubstituted urea molecule and a solvent dimethyl sulfoxide molecule, Fig. 1. The urea derivative, which has molecular twofold symmetry (non-crystallographic), is essentially planar as seen in the r.m.s. value of 0.132 Å for all non-H atoms. The arrangement is stabilized by two internal O–H···N hydrogen bonds, Table 1.

In the crystal structure, the two amine-H atoms form hydrogen bonds to the DMSO-O atom to generate a supramolecular dimer, Table 1. The dimers thus formed are connected into a supramolecular chain along the c axis via C–H···O contacts involving the carbonyl-O4 atoms and DMSO-H atoms, Table 1 and Fig. 2. The chains are connected by C–H···π contacts to consolidate the crystal structure, Table 1 and Fig. 3.

Related literature top

For background and recent studies on the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005); Affan et al. (2009). Cg2 is the centroid of the C12–C17 ring.

Experimental top

Carbohydrazide (0.90 g, 10 mmol) and 2-hydroxyacetophenone (2.72 g, 20 mmol) in dry methanol (40 ml) were heated at reflux for 4 h and cooled to ambient temperature. During cooling process, white microcrystals formed and were filtered off. The microcrystals, (I), were washed several times with small amounts of cold methanol and cold hexane. Crude (I) was recrystallized from methanol and dried in vacuo over silica gel. Yield: 1.99 g, 55%; m. pt. 467–468 K. Analysis. Calculated for C17H18N4O3: C, 62.56; H, 5.56; N, 17.17%. Found: C, 62.28; H, 5.61; N, 17.02%. UV-visible (DMSO) λmax: 282, 317, 382 nm. FT—IR (KBr disc) ν: 3453 (m, OH), 3346 (m, NH), 1701 (s, CONH), 1615 (s, C=N), 1000 (w, N—N) cm-1. 1H NMR (DMSO-d6) δ: 10.08 (s, 1H, OH), 8.30 (s, br, 1H, CONH), 7.78–7.76 (d, 1H, phenyl C3—H), 7.56–7.55 (d, 1H, phenyl C6—H), 7.27–7.24 (t, 1H, phenyl C4—H), 6.90–6.86 (t, 1H, phenyl C5—H), 2.31 (s, 3H, N=C—CH3) p.p.m. 13C NMR (CDCl3) δ: 168.19 (1 C, HN—C=O), 158.04 (2 C, C=N), 155.59, 151.98, 130.71, 128.06, 118.77, 117.09 (12 C, benzene ring), 13.16 (2 C, CH3) p.p.m. Crystals for the diffraction study were obtained from a dimethyl sulfoxide solution of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with O–H and N–H restraints of 0.840±0.001 Å and 0.880±0.001 Å, respectively, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Structure description top

The title compound, (I), was prepared as a part of on-going studies into the biological activity of organotin compounds (Gielen & Tiekink, 2005; Affan et al., 2009). Crystals of (I) comprise equal quantities of a disubstituted urea molecule and a solvent dimethyl sulfoxide molecule, Fig. 1. The urea derivative, which has molecular twofold symmetry (non-crystallographic), is essentially planar as seen in the r.m.s. value of 0.132 Å for all non-H atoms. The arrangement is stabilized by two internal O–H···N hydrogen bonds, Table 1.

In the crystal structure, the two amine-H atoms form hydrogen bonds to the DMSO-O atom to generate a supramolecular dimer, Table 1. The dimers thus formed are connected into a supramolecular chain along the c axis via C–H···O contacts involving the carbonyl-O4 atoms and DMSO-H atoms, Table 1 and Fig. 2. The chains are connected by C–H···π contacts to consolidate the crystal structure, Table 1 and Fig. 3.

For background and recent studies on the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005); Affan et al. (2009). Cg2 is the centroid of the C12–C17 ring.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structures of the molecules comprising the asymmetric unit in (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the c axis in (I) mediated by N–H···O (orange dashed lines) hydrogen bonds and C–H···O (green dashed lines) contacts.
[Figure 3] Fig. 3. View in projection down the a axis of the crystal packing in (I), highlighting the C–H···π interactions (purple dashed lines). The N–H···O (orange dashed lines) hydrogen bonds and C–H···O (green dashed lines) contacts are also shown.
1,5-Bis[(E)-1-(2-hydroxyphenyl)ethylidene]carbonohydrazide dimethyl sulfoxide solvate top
Crystal data top
C17H18N4O3·C2H6OSF(000) = 856
Mr = 404.48Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6256 reflections
a = 15.3260 (19) Åθ = 2.7–30.3°
b = 7.1248 (7) ŵ = 0.20 mm1
c = 18.439 (2) ÅT = 153 K
β = 102.724 (2)°Prism, colourless
V = 1964.0 (4) Å30.32 × 0.30 × 0.15 mm
Z = 4
Data collection top
Rigaku Saturn724
diffractometer
4493 independent reflections
Radiation source: sealed tube4369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1918
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.661, Tmax = 1.000l = 2323
21771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.8148P]
where P = (Fo2 + 2Fc2)/3
4493 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H18N4O3·C2H6OSV = 1964.0 (4) Å3
Mr = 404.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3260 (19) ŵ = 0.20 mm1
b = 7.1248 (7) ÅT = 153 K
c = 18.439 (2) Å0.32 × 0.30 × 0.15 mm
β = 102.724 (2)°
Data collection top
Rigaku Saturn724
diffractometer
4493 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4369 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 1.000Rint = 0.030
21771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
4493 reflectionsΔρmin = 0.32 e Å3
269 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31503 (7)0.00388 (17)0.72741 (5)0.0315 (2)
H1O0.27760.03520.69010.047*
O20.08573 (6)0.17694 (15)0.63438 (5)0.0258 (2)
O30.14836 (6)0.29124 (14)0.62863 (5)0.0248 (2)
H3O0.10460.275660.60870.037*
N10.24627 (7)0.12659 (16)0.59756 (6)0.0207 (2)
N20.17027 (7)0.17151 (17)0.54592 (6)0.0221 (2)
H2N0.16830.18670.49820.026*
N30.02270 (7)0.24035 (16)0.51181 (6)0.0221 (2)
H3N0.03390.24750.46710.027*
N40.05924 (7)0.26766 (15)0.52770 (6)0.0204 (2)
C10.39368 (9)0.00078 (19)0.70500 (8)0.0233 (3)
C20.47033 (10)0.0498 (2)0.75744 (8)0.0289 (3)
H20.46550.08550.80600.035*
C30.55316 (10)0.0486 (2)0.73960 (9)0.0306 (3)
H30.60500.08260.77590.037*
C40.56065 (9)0.0023 (2)0.66867 (9)0.0304 (3)
H40.61760.00360.65620.037*
C50.48487 (9)0.0513 (2)0.61617 (8)0.0259 (3)
H50.49070.08480.56760.031*
C60.39962 (8)0.05313 (17)0.63249 (7)0.0200 (2)
C70.31992 (8)0.10518 (17)0.57510 (7)0.0195 (2)
C80.32461 (9)0.1268 (2)0.49519 (7)0.0256 (3)
H8A0.28590.03320.46510.038*
H8B0.38640.10820.49030.038*
H8C0.30460.25300.47800.038*
C90.09245 (8)0.19450 (18)0.56997 (7)0.0202 (3)
C100.12715 (8)0.30637 (18)0.47447 (7)0.0199 (3)
C110.12059 (9)0.3222 (2)0.39461 (7)0.0278 (3)
H11A0.06590.39030.39170.042*
H11B0.17270.39040.36650.042*
H11C0.11890.19640.37350.042*
C120.21323 (8)0.33360 (17)0.49676 (7)0.0193 (2)
C130.21935 (9)0.32848 (18)0.57248 (7)0.0213 (3)
C140.30117 (9)0.36037 (19)0.59185 (8)0.0253 (3)
H140.30420.36180.64280.030*
C150.37788 (9)0.3899 (2)0.53742 (9)0.0282 (3)
H150.43330.41090.55120.034*
C160.37441 (9)0.3891 (2)0.46264 (8)0.0277 (3)
H160.42740.40610.42530.033*
C170.29285 (9)0.36309 (19)0.44331 (8)0.0240 (3)
H170.29070.36530.39220.029*
S10.88984 (2)0.73077 (5)0.686182 (17)0.02070 (11)
O40.88705 (7)0.75110 (16)0.60411 (5)0.0286 (2)
C180.79058 (9)0.8403 (2)0.70127 (8)0.0286 (3)
H18A0.78590.96730.68040.043*
H18B0.79300.84700.75480.043*
H18C0.73830.76660.67690.043*
C190.96707 (9)0.9044 (2)0.73080 (7)0.0258 (3)
H19A1.02730.87220.72500.039*
H19B0.96640.90930.78380.039*
H19C0.94991.02710.70810.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (5)0.0477 (6)0.0232 (5)0.0023 (5)0.0068 (4)0.0100 (4)
O20.0235 (5)0.0351 (5)0.0197 (4)0.0028 (4)0.0067 (4)0.0018 (4)
O30.0235 (5)0.0322 (5)0.0190 (5)0.0008 (4)0.0053 (4)0.0004 (4)
N10.0187 (5)0.0233 (5)0.0197 (5)0.0011 (4)0.0030 (4)0.0000 (4)
N20.0183 (5)0.0312 (6)0.0165 (5)0.0013 (4)0.0033 (4)0.0017 (4)
N30.0179 (5)0.0305 (6)0.0190 (5)0.0015 (4)0.0062 (4)0.0013 (4)
N40.0177 (5)0.0226 (5)0.0219 (5)0.0000 (4)0.0065 (4)0.0004 (4)
C10.0229 (6)0.0222 (6)0.0247 (6)0.0002 (5)0.0051 (5)0.0021 (5)
C20.0289 (7)0.0282 (7)0.0276 (7)0.0007 (6)0.0017 (5)0.0078 (6)
C30.0241 (7)0.0268 (7)0.0367 (8)0.0028 (6)0.0026 (6)0.0054 (6)
C40.0204 (6)0.0315 (7)0.0392 (8)0.0020 (6)0.0062 (6)0.0000 (6)
C50.0224 (6)0.0287 (7)0.0272 (7)0.0001 (5)0.0065 (5)0.0016 (5)
C60.0193 (6)0.0188 (6)0.0216 (6)0.0002 (5)0.0039 (5)0.0014 (5)
C70.0210 (6)0.0190 (6)0.0191 (6)0.0007 (5)0.0058 (5)0.0016 (4)
C80.0241 (6)0.0342 (7)0.0194 (6)0.0016 (5)0.0064 (5)0.0000 (5)
C90.0205 (6)0.0200 (6)0.0204 (6)0.0010 (5)0.0049 (5)0.0004 (5)
C100.0212 (6)0.0183 (6)0.0204 (6)0.0014 (5)0.0054 (5)0.0007 (5)
C110.0242 (6)0.0390 (8)0.0210 (6)0.0024 (6)0.0067 (5)0.0027 (6)
C120.0190 (6)0.0174 (5)0.0217 (6)0.0012 (5)0.0051 (5)0.0010 (5)
C130.0225 (6)0.0182 (6)0.0238 (6)0.0022 (5)0.0062 (5)0.0011 (5)
C140.0277 (7)0.0238 (6)0.0276 (6)0.0011 (5)0.0129 (5)0.0018 (5)
C150.0213 (6)0.0269 (7)0.0395 (8)0.0004 (5)0.0130 (6)0.0019 (6)
C160.0198 (6)0.0289 (7)0.0328 (7)0.0016 (5)0.0024 (5)0.0000 (6)
C170.0232 (6)0.0242 (6)0.0242 (6)0.0003 (5)0.0042 (5)0.0012 (5)
S10.01945 (17)0.02472 (18)0.01720 (17)0.00048 (11)0.00244 (12)0.00063 (11)
O40.0223 (5)0.0470 (6)0.0162 (5)0.0010 (4)0.0034 (4)0.0024 (4)
C180.0214 (6)0.0409 (8)0.0241 (6)0.0025 (6)0.0060 (5)0.0001 (6)
C190.0239 (6)0.0318 (7)0.0206 (6)0.0056 (5)0.0027 (5)0.0006 (5)
Geometric parameters (Å, º) top
O1—C11.3580 (16)C8—H8B0.9800
O1—H1O0.8401C8—H8C0.9800
O2—C91.2210 (16)C10—C121.4785 (17)
O3—C131.3528 (16)C10—C111.5021 (17)
O3—H3O0.8400C11—H11A0.9800
N1—C71.2942 (16)C11—H11B0.9800
N1—N21.3700 (15)C11—H11C0.9800
N2—C91.3707 (16)C12—C171.4053 (18)
N2—H2N0.8799C12—C131.4202 (17)
N3—N41.3648 (15)C13—C141.3961 (18)
N3—C91.3764 (17)C14—C151.383 (2)
N3—H3N0.8799C14—H140.9500
N4—C101.2933 (17)C15—C161.392 (2)
C1—C21.3944 (19)C15—H150.9500
C1—C61.4103 (18)C16—C171.3856 (19)
C2—C31.380 (2)C16—H160.9500
C2—H20.9500C17—H170.9500
C3—C41.386 (2)S1—O41.5115 (10)
C3—H30.9500S1—C191.7830 (14)
C4—C51.383 (2)S1—C181.7852 (14)
C4—H40.9500C18—H18A0.9800
C5—C61.4039 (18)C18—H18B0.9800
C5—H50.9500C18—H18C0.9800
C6—C71.4765 (17)C19—H19A0.9800
C7—C81.4987 (17)C19—H19B0.9800
C8—H8A0.9800C19—H19C0.9800
C1—O1—H1O103.5N4—C10—C11122.93 (11)
C13—O3—H3O106.0C12—C10—C11121.27 (11)
C7—N1—N2118.23 (11)C10—C11—H11A109.5
N1—N2—C9118.05 (10)C10—C11—H11B109.5
N1—N2—H2N124.1H11A—C11—H11B109.5
C9—N2—H2N117.9C10—C11—H11C109.5
N4—N3—C9117.39 (11)H11A—C11—H11C109.5
N4—N3—H3N124.8H11B—C11—H11C109.5
C9—N3—H3N117.7C17—C12—C13117.26 (11)
C10—N4—N3119.49 (11)C17—C12—C10120.98 (11)
O1—C1—C2116.83 (12)C13—C12—C10121.75 (11)
O1—C1—C6122.81 (11)O3—C13—C14116.90 (12)
C2—C1—C6120.35 (12)O3—C13—C12122.77 (11)
C3—C2—C1120.79 (13)C14—C13—C12120.33 (12)
C3—C2—H2119.6C15—C14—C13120.45 (13)
C1—C2—H2119.6C15—C14—H14119.8
C2—C3—C4119.89 (13)C13—C14—H14119.8
C2—C3—H3120.1C14—C15—C16120.42 (12)
C4—C3—H3120.1C14—C15—H15119.8
C5—C4—C3119.68 (13)C16—C15—H15119.8
C5—C4—H4120.2C17—C16—C15119.28 (13)
C3—C4—H4120.2C17—C16—H16120.4
C4—C5—C6122.01 (13)C15—C16—H16120.4
C4—C5—H5119.0C16—C17—C12122.19 (12)
C6—C5—H5119.0C16—C17—H17118.9
C5—C6—C1117.27 (12)C12—C17—H17118.9
C5—C6—C7120.72 (12)O4—S1—C19105.37 (6)
C1—C6—C7122.01 (11)O4—S1—C18106.08 (6)
N1—C7—C6116.26 (11)C19—S1—C1897.28 (7)
N1—C7—C8122.45 (11)S1—C18—H18A109.5
C6—C7—C8121.28 (11)S1—C18—H18B109.5
C7—C8—H8A109.5H18A—C18—H18B109.5
C7—C8—H8B109.5S1—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
C7—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8C109.5S1—C19—H19A109.5
H8B—C8—H8C109.5S1—C19—H19B109.5
O2—C9—N2124.62 (12)H19A—C19—H19B109.5
O2—C9—N3124.39 (12)S1—C19—H19C109.5
N2—C9—N3110.99 (11)H19A—C19—H19C109.5
N4—C10—C12115.80 (11)H19B—C19—H19C109.5
C7—N1—N2—C9179.85 (12)N1—N2—C9—N3179.57 (11)
C9—N3—N4—C10178.29 (11)N4—N3—C9—O20.0 (2)
O1—C1—C2—C3179.82 (13)N4—N3—C9—N2179.96 (11)
C6—C1—C2—C30.3 (2)N3—N4—C10—C12179.97 (11)
C1—C2—C3—C40.4 (2)N3—N4—C10—C110.31 (19)
C2—C3—C4—C50.1 (2)N4—C10—C12—C17175.46 (12)
C3—C4—C5—C60.6 (2)C11—C10—C12—C174.20 (19)
C4—C5—C6—C10.6 (2)N4—C10—C12—C133.63 (18)
C4—C5—C6—C7179.69 (13)C11—C10—C12—C13176.71 (12)
O1—C1—C6—C5179.69 (13)C17—C12—C13—O3176.40 (12)
C2—C1—C6—C50.1 (2)C10—C12—C13—O32.72 (19)
O1—C1—C6—C70.6 (2)C17—C12—C13—C142.83 (18)
C2—C1—C6—C7179.18 (12)C10—C12—C13—C14178.05 (12)
N2—N1—C7—C6178.82 (11)O3—C13—C14—C15176.70 (12)
N2—N1—C7—C80.32 (19)C12—C13—C14—C152.6 (2)
C5—C6—C7—N1171.33 (12)C13—C14—C15—C160.3 (2)
C1—C6—C7—N19.66 (18)C14—C15—C16—C171.7 (2)
C5—C6—C7—C810.15 (19)C15—C16—C17—C121.3 (2)
C1—C6—C7—C8168.86 (12)C13—C12—C17—C160.9 (2)
N1—N2—C9—O20.4 (2)C10—C12—C17—C16179.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.841.792.5682 (15)153
O3—H3o···N40.841.782.5450 (15)150
N2—H2n···O4i0.881.942.7674 (15)156
N3—H3n···O4i0.881.972.7907 (15)154
C19—H19b···O2ii0.982.493.2167 (17)131
C8—H8A···Cg2iii0.982.833.5018 (16)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N4O3·C2H6OS
Mr404.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)15.3260 (19), 7.1248 (7), 18.439 (2)
β (°) 102.724 (2)
V3)1964.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.30 × 0.15
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.661, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21771, 4493, 4369
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.08
No. of reflections4493
No. of parameters269
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.841.792.5682 (15)153
O3—H3o···N40.841.782.5450 (15)150
N2—H2n···O4i0.881.942.7674 (15)156
N3—H3n···O4i0.881.972.7907 (15)154
C19—H19b···O2ii0.982.493.2167 (17)131
C8—H8A···Cg2iii0.982.833.5018 (16)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: maaffan@frst.unimas.my.

Acknowledgements

The authors thank CNPq and FAPESP for support. The authors would also like to express their gratitude to the Ministry of Higher Education (MOHE) for a research grant [FRGS/01(05)610/2006(43)] and Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work.

References

First citationAffan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds