metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[2-(2-pyridylmethyl­imino­meth­yl)phenolato]nickel(II) nitrate monohydrate

aDepartment of Chemistry & Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: jn_sning@126.com

(Received 8 August 2009; accepted 13 September 2009; online 10 October 2009)

In the title compound, [Ni(C13H11N2O)(H2O)]NO3·H2O, the Ni(II) ion is coordinated by one O atom and two N atoms of the Schiff base ligand and the O atom from a water mol­ecule, forming a slightly distorted square-planar geometry. A one-dimensional double-chain structure is formed along [001] by O⋯H—O hydrogen bonds and the Ni⋯O [2.617 (3) Å] inter­actions.

Related literature

For background to Schiff bases in coordination chemistry, see: Boskovic et al. (2003[Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Oshiob et al. (2005[Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]). For Ni—O and Ni—N bond distances in related structures, see: Wang et al. (2007[Wang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H11N2O)(H2O)]NO3·H2O

  • Mr = 367.99

  • Triclinic, [P \overline 1]

  • a = 7.7885 (13) Å

  • b = 9.0155 (15) Å

  • c = 11.3285 (19) Å

  • α = 71.244 (2)°

  • β = 85.846 (3)°

  • γ = 86.967 (3)°

  • V = 750.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 293 K

  • 0.27 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.716, Tmax = 0.826

  • 3706 measured reflections

  • 2610 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.04

  • 2610 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O1i 0.83 2.12 2.930 (3) 165
O6—H6B⋯O3ii 0.82 2.00 2.819 (3) 172
O2—H2B⋯O5 0.83 2.57 3.009 (3) 114
O2—H2B⋯N3 0.83 2.53 3.234 (4) 143
O2—H2B⋯O4 0.83 1.85 2.677 (3) 170
O2—H2A⋯O6 0.83 1.86 2.681 (3) 168
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

Recently, Schiff base ligands, especially the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been employed to assembly alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties in the field of coordination chemistry. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new nickel complex based on an unsymmetric tridentate Schiff base ligand. The title compound, which is comprised by [Ni(L)(H2O)]+ (L=2-(pyridin-2-ylmethyliminomethyl)phenol, nitrate anion and a free water molecule, crystallizes in triclinic cell setting and P-1 space group. The coordination sphere of the Ni ion can be described as slightly distorted square planar, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from the O atom of the solvent water molecule. The bond distances of Ni—O and Ni—N are in the normal range compared to the reported complexes containing the N—Ni—O atoms (Wang et al., 2007). The mean deviation of the plane formed by NiN2O2 unit is 0.0799 Å, and the Ni ion is only out of the plane 0.0514 Å. The distance between Ni and O5 is only 2.617 Å, indicative of significant interaction between these two atoms. Under the help of these interactions and the O···H—O hydrogen bonds between the O atoms of the water molecules (Table 1), the nitrate ion, and the Schiff base ligand, the asymmetric unit can be linked into one dimensional double chain supermolecular structure.

Related literature top

For background to Schiff bases in coordination chemistry, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005).For Ni—O and Ni—N bond distances in related structures, see: Wang et al. (2007).

Experimental top

The Schiff base was synthesized by condensation 2-(aminomethyl)pyridine and 2-hydroxy-benzaldehyde with the ratio 1:1 in methanol. The synthesis of the title complex was carried out by treating Ni(NO3)2.6H2O (1 mmol, 290 mg) and the Schiff-base ligand (1 mmol, 212 mg) in methanol under the stirring condition at room temperature. The filtered solution was left to slowly evaporate in air to obtain single-crystal suitable for X-ray diffraction with a yield of about 202 mg, 55%.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C). For the H atom of the water molecule, they were found from difference Fourier maps with the O—H bond length restrained to 0.82 Å and was allowed for as riding atoms with Uiso(H) = 1.2Ueq(O).

Structure description top

Recently, Schiff base ligands, especially the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been employed to assembly alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties in the field of coordination chemistry. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new nickel complex based on an unsymmetric tridentate Schiff base ligand. The title compound, which is comprised by [Ni(L)(H2O)]+ (L=2-(pyridin-2-ylmethyliminomethyl)phenol, nitrate anion and a free water molecule, crystallizes in triclinic cell setting and P-1 space group. The coordination sphere of the Ni ion can be described as slightly distorted square planar, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from the O atom of the solvent water molecule. The bond distances of Ni—O and Ni—N are in the normal range compared to the reported complexes containing the N—Ni—O atoms (Wang et al., 2007). The mean deviation of the plane formed by NiN2O2 unit is 0.0799 Å, and the Ni ion is only out of the plane 0.0514 Å. The distance between Ni and O5 is only 2.617 Å, indicative of significant interaction between these two atoms. Under the help of these interactions and the O···H—O hydrogen bonds between the O atoms of the water molecules (Table 1), the nitrate ion, and the Schiff base ligand, the asymmetric unit can be linked into one dimensional double chain supermolecular structure.

For background to Schiff bases in coordination chemistry, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005).For Ni—O and Ni—N bond distances in related structures, see: Wang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. View of the title compound containing the hydrogen bonds with the atom-labelling scheme displacement ellipsoids are drawn at the 30% probability level.
Aqua[2-(2-pyridylmethyliminomethyl)phenolato]nickel(II) nitrate monohydrate top
Crystal data top
[Ni(C13H11N2O)(H2O)]NO3·H2OZ = 2
Mr = 367.99F(000) = 380
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7885 (13) ÅCell parameters from 1525 reflections
b = 9.0155 (15) Åθ = 2.5–25.8°
c = 11.3285 (19) ŵ = 1.33 mm1
α = 71.244 (2)°T = 293 K
β = 85.846 (3)°Block, red-brown
γ = 86.967 (3)°0.27 × 0.21 × 0.15 mm
V = 750.9 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2610 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.716, Tmax = 0.826k = 710
3706 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2147P]
where P = (Fo2 + 2Fc2)/3
2610 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C13H11N2O)(H2O)]NO3·H2Oγ = 86.967 (3)°
Mr = 367.99V = 750.9 (2) Å3
Triclinic, P1Z = 2
a = 7.7885 (13) ÅMo Kα radiation
b = 9.0155 (15) ŵ = 1.33 mm1
c = 11.3285 (19) ÅT = 293 K
α = 71.244 (2)°0.27 × 0.21 × 0.15 mm
β = 85.846 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2610 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2179 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.826Rint = 0.015
3706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
2610 reflectionsΔρmin = 0.26 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.65546 (5)0.59075 (4)0.61677 (3)0.03862 (14)
O10.6180 (3)0.7356 (2)0.45717 (19)0.0534 (5)
O20.5125 (3)0.7279 (2)0.69276 (19)0.0502 (5)
H2A0.45120.79090.64140.060*
H2B0.57640.77740.72150.060*
O31.0146 (3)0.9237 (3)0.7257 (3)0.0827 (8)
O40.7495 (3)0.8666 (3)0.7775 (2)0.0646 (6)
O50.8974 (3)0.7562 (3)0.6573 (3)0.0743 (7)
O60.2993 (3)0.9471 (2)0.5530 (2)0.0651 (6)
H6B0.21350.93220.60160.078*
H6A0.33201.03750.53700.078*
N10.7643 (3)0.4328 (3)0.5523 (2)0.0427 (6)
N20.7069 (3)0.4333 (3)0.7799 (2)0.0455 (6)
N30.8871 (4)0.8476 (3)0.7206 (2)0.0550 (7)
C10.7858 (4)0.2991 (3)0.7729 (3)0.0437 (7)
C20.8364 (4)0.1813 (4)0.8778 (3)0.0586 (9)
H20.89020.08970.87070.070*
C30.8059 (5)0.2014 (4)0.9927 (3)0.0642 (9)
H30.83970.12391.06460.077*
C40.7247 (5)0.3378 (4)1.0002 (3)0.0626 (9)
H40.70270.35341.07710.075*
C50.6771 (4)0.4494 (4)0.8938 (3)0.0583 (8)
H50.62150.54070.89990.070*
C60.8153 (4)0.2851 (3)0.6448 (3)0.0511 (8)
H6C0.93610.26080.62960.061*
H6D0.74830.20080.63810.061*
C70.7468 (4)0.5799 (3)0.3335 (3)0.0461 (7)
C80.6592 (4)0.7162 (3)0.3475 (3)0.0452 (7)
C90.6142 (4)0.8354 (4)0.2387 (3)0.0588 (9)
H90.55500.92500.24530.071*
C100.6560 (5)0.8222 (4)0.1225 (3)0.0629 (9)
H100.62350.90250.05190.075*
C110.7465 (5)0.6902 (4)0.1084 (3)0.0643 (9)
H110.77640.68330.02930.077*
C120.7902 (4)0.5718 (4)0.2126 (3)0.0575 (8)
H120.85000.48360.20370.069*
C130.7934 (4)0.4472 (3)0.4359 (3)0.0457 (7)
H130.85010.36360.41690.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0453 (2)0.0280 (2)0.0426 (2)0.00371 (14)0.00055 (15)0.01290 (15)
O10.0696 (14)0.0374 (11)0.0513 (13)0.0101 (10)0.0023 (11)0.0135 (10)
O20.0555 (12)0.0402 (11)0.0564 (13)0.0045 (9)0.0031 (10)0.0186 (10)
O30.0580 (16)0.108 (2)0.097 (2)0.0215 (15)0.0002 (14)0.0517 (18)
O40.0579 (14)0.0783 (17)0.0680 (15)0.0067 (12)0.0113 (12)0.0402 (14)
O50.0684 (16)0.0642 (15)0.104 (2)0.0061 (12)0.0087 (14)0.0506 (16)
O60.0666 (15)0.0451 (13)0.0814 (17)0.0045 (11)0.0029 (13)0.0196 (12)
N10.0493 (14)0.0332 (12)0.0459 (14)0.0027 (10)0.0025 (11)0.0138 (11)
N20.0533 (15)0.0344 (13)0.0489 (15)0.0009 (11)0.0015 (11)0.0140 (11)
N30.0629 (18)0.0470 (16)0.0534 (17)0.0057 (13)0.0081 (14)0.0137 (13)
C10.0502 (17)0.0327 (15)0.0477 (17)0.0004 (12)0.0062 (14)0.0115 (13)
C20.077 (2)0.0391 (17)0.059 (2)0.0045 (16)0.0157 (17)0.0128 (16)
C30.089 (3)0.0478 (19)0.052 (2)0.0025 (18)0.0216 (18)0.0066 (16)
C40.086 (3)0.056 (2)0.0450 (19)0.0036 (18)0.0088 (17)0.0147 (17)
C50.075 (2)0.0503 (19)0.051 (2)0.0010 (16)0.0011 (17)0.0200 (16)
C60.065 (2)0.0321 (15)0.0563 (19)0.0097 (14)0.0091 (16)0.0153 (14)
C70.0525 (18)0.0422 (17)0.0462 (17)0.0014 (14)0.0051 (14)0.0174 (14)
C80.0491 (17)0.0373 (16)0.0490 (18)0.0039 (13)0.0041 (14)0.0126 (14)
C90.071 (2)0.0417 (18)0.060 (2)0.0040 (16)0.0066 (17)0.0100 (16)
C100.082 (2)0.054 (2)0.046 (2)0.0157 (18)0.0108 (17)0.0043 (16)
C110.082 (3)0.067 (2)0.047 (2)0.0143 (19)0.0020 (17)0.0204 (18)
C120.064 (2)0.060 (2)0.054 (2)0.0020 (16)0.0017 (16)0.0248 (17)
C130.0476 (17)0.0392 (16)0.0542 (19)0.0031 (13)0.0008 (14)0.0215 (14)
Geometric parameters (Å, º) top
Ni1—O11.891 (2)C3—C41.377 (5)
Ni1—N11.931 (2)C3—H30.9300
Ni1—O21.9777 (19)C4—C51.359 (4)
Ni1—N21.987 (2)C4—H40.9300
O1—C81.324 (3)C5—H50.9300
O2—H2A0.8290C6—H6C0.9700
O2—H2B0.8324C6—H6D0.9700
O3—N31.251 (3)C7—C121.411 (4)
O4—N31.243 (3)C7—C81.422 (4)
O5—N31.251 (3)C7—C131.425 (4)
O6—H6B0.8225C8—C91.402 (4)
O6—H6A0.8261C9—C101.374 (5)
N1—C131.287 (4)C9—H90.9300
N1—C61.462 (4)C10—C111.399 (5)
N2—C51.347 (4)C10—H100.9300
N2—C11.350 (4)C11—C121.363 (5)
C1—C21.381 (4)C11—H110.9300
C1—C61.497 (4)C12—H120.9300
C2—C31.374 (5)C13—H130.9300
C2—H20.9300
O1—Ni1—N194.39 (9)C3—C4—H4120.3
O1—Ni1—O289.12 (8)N2—C5—C4122.8 (3)
N1—Ni1—O2170.48 (9)N2—C5—H5118.6
O1—Ni1—N2176.56 (9)C4—C5—H5118.6
N1—Ni1—N282.56 (10)N1—C6—C1109.4 (2)
O2—Ni1—N294.14 (9)N1—C6—H6C109.8
C8—O1—Ni1127.20 (18)C1—C6—H6C109.8
Ni1—O2—H2A111.9N1—C6—H6D109.8
Ni1—O2—H2B109.2C1—C6—H6D109.8
H2A—O2—H2B109.2H6C—C6—H6D108.2
H6B—O6—H6A110.5C12—C7—C8119.4 (3)
C13—N1—C6118.2 (2)C12—C7—C13116.9 (3)
C13—N1—Ni1125.4 (2)C8—C7—C13123.6 (3)
C6—N1—Ni1116.37 (18)O1—C8—C9118.8 (3)
C5—N2—C1117.8 (3)O1—C8—C7123.5 (3)
C5—N2—Ni1127.0 (2)C9—C8—C7117.7 (3)
C1—N2—Ni1115.2 (2)C10—C9—C8121.2 (3)
O4—N3—O5120.7 (3)C10—C9—H9119.4
O4—N3—O3118.9 (3)C8—C9—H9119.4
O5—N3—O3120.4 (3)C9—C10—C11121.2 (3)
N2—C1—C2122.1 (3)C9—C10—H10119.4
N2—C1—C6116.1 (2)C11—C10—H10119.4
C2—C1—C6121.8 (3)C12—C11—C10118.8 (3)
C3—C2—C1119.0 (3)C12—C11—H11120.6
C3—C2—H2120.5C10—C11—H11120.6
C1—C2—H2120.5C11—C12—C7121.6 (3)
C2—C3—C4119.1 (3)C11—C12—H12119.2
C2—C3—H3120.5C7—C12—H12119.2
C4—C3—H3120.5N1—C13—C7125.9 (3)
C5—C4—C3119.3 (3)N1—C13—H13117.1
C5—C4—H4120.3C7—C13—H13117.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.832.122.930 (3)165
O6—H6B···O3ii0.822.002.819 (3)172
O2—H2B···O50.832.573.009 (3)114
O2—H2B···N30.832.533.234 (4)143
O2—H2B···O40.831.852.677 (3)170
O2—H2A···O60.831.862.681 (3)168
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C13H11N2O)(H2O)]NO3·H2O
Mr367.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7885 (13), 9.0155 (15), 11.3285 (19)
α, β, γ (°)71.244 (2), 85.846 (3), 86.967 (3)
V3)750.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.27 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.716, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
3706, 2610, 2179
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04
No. of reflections2610
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.832.122.930 (3)164.7
O6—H6B···O3ii0.822.002.819 (3)171.6
O2—H2B···O50.832.573.009 (3)114.4
O2—H2B···N30.832.533.234 (4)142.8
O2—H2B···O40.831.852.677 (3)170.0
O2—H2A···O60.831.862.681 (3)168.4
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.
 

Acknowledgements

The author thanks Jining University for support.

References

First citationBoskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds