metal-organic compounds
Aqua[2-(2-pyridylmethyliminomethyl)phenolato]nickel(II) nitrate monohydrate
aDepartment of Chemistry & Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: jn_sning@126.com
In the title compound, [Ni(C13H11N2O)(H2O)]NO3·H2O, the Ni(II) ion is coordinated by one O atom and two N atoms of the Schiff base ligand and the O atom from a water molecule, forming a slightly distorted square-planar geometry. A one-dimensional double-chain structure is formed along [001] by O⋯H—O hydrogen bonds and the Ni⋯O [2.617 (3) Å] interactions.
Related literature
For background to et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005). For Ni—O and Ni—N bond distances in related structures, see: Wang et al. (2007).
in coordination chemistry, see: BoskovicExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP.
Supporting information
https://doi.org/10.1107/S1600536809037027/hg2552sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809037027/hg2552Isup2.hkl
The Schiff base was synthesized by condensation 2-(aminomethyl)pyridine and 2-hydroxy-benzaldehyde with the ratio 1:1 in methanol. The synthesis of the title complex was carried out by treating Ni(NO3)2.6H2O (1 mmol, 290 mg) and the Schiff-base ligand (1 mmol, 212 mg) in methanol under the stirring condition at room temperature. The filtered solution was left to slowly evaporate in air to obtain single-crystal suitable for X-ray diffraction with a yield of about 202 mg, 55%.
All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C). For the H atom of the water molecule, they were found from difference Fourier maps with the O—H bond length restrained to 0.82 Å and was allowed for as riding atoms with Uiso(H) = 1.2Ueq(O).
Recently, Schiff base ligands, especially the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been employed to assembly alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties in the field of coordination chemistry. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new nickel complex based on an unsymmetric tridentate Schiff base ligand. The title compound, which is comprised by [Ni(L)(H2O)]+ (L=2-(pyridin-2-ylmethyliminomethyl)phenol, nitrate anion and a free water molecule, crystallizes in triclinic cell setting and P-1
The coordination sphere of the Ni ion can be described as slightly distorted square planar, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from the O atom of the solvent water molecule. The bond distances of Ni—O and Ni—N are in the normal range compared to the reported complexes containing the N—Ni—O atoms (Wang et al., 2007). The mean deviation of the plane formed by NiN2O2 unit is 0.0799 Å, and the Ni ion is only out of the plane 0.0514 Å. The distance between Ni and O5 is only 2.617 Å, indicative of significant interaction between these two atoms. Under the help of these interactions and the O···H—O hydrogen bonds between the O atoms of the water molecules (Table 1), the nitrate ion, and the Schiff base ligand, the can be linked into one dimensional double chain supermolecular structure.For background to
in coordination chemistry, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005).For Ni—O and Ni—N bond distances in related structures, see: Wang et al. (2007).Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).Fig. 1. View of the title compound containing the hydrogen bonds with the atom-labelling scheme displacement ellipsoids are drawn at the 30% probability level. |
[Ni(C13H11N2O)(H2O)]NO3·H2O | Z = 2 |
Mr = 367.99 | F(000) = 380 |
Triclinic, P1 | Dx = 1.628 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7885 (13) Å | Cell parameters from 1525 reflections |
b = 9.0155 (15) Å | θ = 2.5–25.8° |
c = 11.3285 (19) Å | µ = 1.33 mm−1 |
α = 71.244 (2)° | T = 293 K |
β = 85.846 (3)° | Block, red-brown |
γ = 86.967 (3)° | 0.27 × 0.21 × 0.15 mm |
V = 750.9 (2) Å3 |
Bruker APEXII CCD area-detector diffractometer | 2610 independent reflections |
Radiation source: fine-focus sealed tube | 2179 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
φ and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −9→9 |
Tmin = 0.716, Tmax = 0.826 | k = −7→10 |
3706 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2147P] where P = (Fo2 + 2Fc2)/3 |
2610 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
[Ni(C13H11N2O)(H2O)]NO3·H2O | γ = 86.967 (3)° |
Mr = 367.99 | V = 750.9 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7885 (13) Å | Mo Kα radiation |
b = 9.0155 (15) Å | µ = 1.33 mm−1 |
c = 11.3285 (19) Å | T = 293 K |
α = 71.244 (2)° | 0.27 × 0.21 × 0.15 mm |
β = 85.846 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2610 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2179 reflections with I > 2σ(I) |
Tmin = 0.716, Tmax = 0.826 | Rint = 0.015 |
3706 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.36 e Å−3 |
2610 reflections | Δρmin = −0.26 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.65546 (5) | 0.59075 (4) | 0.61677 (3) | 0.03862 (14) | |
O1 | 0.6180 (3) | 0.7356 (2) | 0.45717 (19) | 0.0534 (5) | |
O2 | 0.5125 (3) | 0.7279 (2) | 0.69276 (19) | 0.0502 (5) | |
H2A | 0.4512 | 0.7909 | 0.6414 | 0.060* | |
H2B | 0.5764 | 0.7774 | 0.7215 | 0.060* | |
O3 | 1.0146 (3) | 0.9237 (3) | 0.7257 (3) | 0.0827 (8) | |
O4 | 0.7495 (3) | 0.8666 (3) | 0.7775 (2) | 0.0646 (6) | |
O5 | 0.8974 (3) | 0.7562 (3) | 0.6573 (3) | 0.0743 (7) | |
O6 | 0.2993 (3) | 0.9471 (2) | 0.5530 (2) | 0.0651 (6) | |
H6B | 0.2135 | 0.9322 | 0.6016 | 0.078* | |
H6A | 0.3320 | 1.0375 | 0.5370 | 0.078* | |
N1 | 0.7643 (3) | 0.4328 (3) | 0.5523 (2) | 0.0427 (6) | |
N2 | 0.7069 (3) | 0.4333 (3) | 0.7799 (2) | 0.0455 (6) | |
N3 | 0.8871 (4) | 0.8476 (3) | 0.7206 (2) | 0.0550 (7) | |
C1 | 0.7858 (4) | 0.2991 (3) | 0.7729 (3) | 0.0437 (7) | |
C2 | 0.8364 (4) | 0.1813 (4) | 0.8778 (3) | 0.0586 (9) | |
H2 | 0.8902 | 0.0897 | 0.8707 | 0.070* | |
C3 | 0.8059 (5) | 0.2014 (4) | 0.9927 (3) | 0.0642 (9) | |
H3 | 0.8397 | 0.1239 | 1.0646 | 0.077* | |
C4 | 0.7247 (5) | 0.3378 (4) | 1.0002 (3) | 0.0626 (9) | |
H4 | 0.7027 | 0.3534 | 1.0771 | 0.075* | |
C5 | 0.6771 (4) | 0.4494 (4) | 0.8938 (3) | 0.0583 (8) | |
H5 | 0.6215 | 0.5407 | 0.8999 | 0.070* | |
C6 | 0.8153 (4) | 0.2851 (3) | 0.6448 (3) | 0.0511 (8) | |
H6C | 0.9361 | 0.2608 | 0.6296 | 0.061* | |
H6D | 0.7483 | 0.2008 | 0.6381 | 0.061* | |
C7 | 0.7468 (4) | 0.5799 (3) | 0.3335 (3) | 0.0461 (7) | |
C8 | 0.6592 (4) | 0.7162 (3) | 0.3475 (3) | 0.0452 (7) | |
C9 | 0.6142 (4) | 0.8354 (4) | 0.2387 (3) | 0.0588 (9) | |
H9 | 0.5550 | 0.9250 | 0.2453 | 0.071* | |
C10 | 0.6560 (5) | 0.8222 (4) | 0.1225 (3) | 0.0629 (9) | |
H10 | 0.6235 | 0.9025 | 0.0519 | 0.075* | |
C11 | 0.7465 (5) | 0.6902 (4) | 0.1084 (3) | 0.0643 (9) | |
H11 | 0.7764 | 0.6833 | 0.0293 | 0.077* | |
C12 | 0.7902 (4) | 0.5718 (4) | 0.2126 (3) | 0.0575 (8) | |
H12 | 0.8500 | 0.4836 | 0.2037 | 0.069* | |
C13 | 0.7934 (4) | 0.4472 (3) | 0.4359 (3) | 0.0457 (7) | |
H13 | 0.8501 | 0.3636 | 0.4169 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0453 (2) | 0.0280 (2) | 0.0426 (2) | 0.00371 (14) | 0.00055 (15) | −0.01290 (15) |
O1 | 0.0696 (14) | 0.0374 (11) | 0.0513 (13) | 0.0101 (10) | −0.0023 (11) | −0.0135 (10) |
O2 | 0.0555 (12) | 0.0402 (11) | 0.0564 (13) | 0.0045 (9) | −0.0031 (10) | −0.0186 (10) |
O3 | 0.0580 (16) | 0.108 (2) | 0.097 (2) | −0.0215 (15) | −0.0002 (14) | −0.0517 (18) |
O4 | 0.0579 (14) | 0.0783 (17) | 0.0680 (15) | −0.0067 (12) | 0.0113 (12) | −0.0402 (14) |
O5 | 0.0684 (16) | 0.0642 (15) | 0.104 (2) | 0.0061 (12) | 0.0087 (14) | −0.0506 (16) |
O6 | 0.0666 (15) | 0.0451 (13) | 0.0814 (17) | 0.0045 (11) | 0.0029 (13) | −0.0196 (12) |
N1 | 0.0493 (14) | 0.0332 (12) | 0.0459 (14) | 0.0027 (10) | −0.0025 (11) | −0.0138 (11) |
N2 | 0.0533 (15) | 0.0344 (13) | 0.0489 (15) | −0.0009 (11) | −0.0015 (11) | −0.0140 (11) |
N3 | 0.0629 (18) | 0.0470 (16) | 0.0534 (17) | 0.0057 (13) | −0.0081 (14) | −0.0137 (13) |
C1 | 0.0502 (17) | 0.0327 (15) | 0.0477 (17) | −0.0004 (12) | −0.0062 (14) | −0.0115 (13) |
C2 | 0.077 (2) | 0.0391 (17) | 0.059 (2) | 0.0045 (16) | −0.0157 (17) | −0.0128 (16) |
C3 | 0.089 (3) | 0.0478 (19) | 0.052 (2) | −0.0025 (18) | −0.0216 (18) | −0.0066 (16) |
C4 | 0.086 (3) | 0.056 (2) | 0.0450 (19) | −0.0036 (18) | −0.0088 (17) | −0.0147 (17) |
C5 | 0.075 (2) | 0.0503 (19) | 0.051 (2) | 0.0010 (16) | 0.0011 (17) | −0.0200 (16) |
C6 | 0.065 (2) | 0.0321 (15) | 0.0563 (19) | 0.0097 (14) | −0.0091 (16) | −0.0153 (14) |
C7 | 0.0525 (18) | 0.0422 (17) | 0.0462 (17) | −0.0014 (14) | −0.0051 (14) | −0.0174 (14) |
C8 | 0.0491 (17) | 0.0373 (16) | 0.0490 (18) | −0.0039 (13) | −0.0041 (14) | −0.0126 (14) |
C9 | 0.071 (2) | 0.0417 (18) | 0.060 (2) | −0.0040 (16) | −0.0066 (17) | −0.0100 (16) |
C10 | 0.082 (2) | 0.054 (2) | 0.046 (2) | −0.0157 (18) | −0.0108 (17) | −0.0043 (16) |
C11 | 0.082 (3) | 0.067 (2) | 0.047 (2) | −0.0143 (19) | −0.0020 (17) | −0.0204 (18) |
C12 | 0.064 (2) | 0.060 (2) | 0.054 (2) | −0.0020 (16) | −0.0017 (16) | −0.0248 (17) |
C13 | 0.0476 (17) | 0.0392 (16) | 0.0542 (19) | 0.0031 (13) | −0.0008 (14) | −0.0215 (14) |
Ni1—O1 | 1.891 (2) | C3—C4 | 1.377 (5) |
Ni1—N1 | 1.931 (2) | C3—H3 | 0.9300 |
Ni1—O2 | 1.9777 (19) | C4—C5 | 1.359 (4) |
Ni1—N2 | 1.987 (2) | C4—H4 | 0.9300 |
O1—C8 | 1.324 (3) | C5—H5 | 0.9300 |
O2—H2A | 0.8290 | C6—H6C | 0.9700 |
O2—H2B | 0.8324 | C6—H6D | 0.9700 |
O3—N3 | 1.251 (3) | C7—C12 | 1.411 (4) |
O4—N3 | 1.243 (3) | C7—C8 | 1.422 (4) |
O5—N3 | 1.251 (3) | C7—C13 | 1.425 (4) |
O6—H6B | 0.8225 | C8—C9 | 1.402 (4) |
O6—H6A | 0.8261 | C9—C10 | 1.374 (5) |
N1—C13 | 1.287 (4) | C9—H9 | 0.9300 |
N1—C6 | 1.462 (4) | C10—C11 | 1.399 (5) |
N2—C5 | 1.347 (4) | C10—H10 | 0.9300 |
N2—C1 | 1.350 (4) | C11—C12 | 1.363 (5) |
C1—C2 | 1.381 (4) | C11—H11 | 0.9300 |
C1—C6 | 1.497 (4) | C12—H12 | 0.9300 |
C2—C3 | 1.374 (5) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | ||
O1—Ni1—N1 | 94.39 (9) | C3—C4—H4 | 120.3 |
O1—Ni1—O2 | 89.12 (8) | N2—C5—C4 | 122.8 (3) |
N1—Ni1—O2 | 170.48 (9) | N2—C5—H5 | 118.6 |
O1—Ni1—N2 | 176.56 (9) | C4—C5—H5 | 118.6 |
N1—Ni1—N2 | 82.56 (10) | N1—C6—C1 | 109.4 (2) |
O2—Ni1—N2 | 94.14 (9) | N1—C6—H6C | 109.8 |
C8—O1—Ni1 | 127.20 (18) | C1—C6—H6C | 109.8 |
Ni1—O2—H2A | 111.9 | N1—C6—H6D | 109.8 |
Ni1—O2—H2B | 109.2 | C1—C6—H6D | 109.8 |
H2A—O2—H2B | 109.2 | H6C—C6—H6D | 108.2 |
H6B—O6—H6A | 110.5 | C12—C7—C8 | 119.4 (3) |
C13—N1—C6 | 118.2 (2) | C12—C7—C13 | 116.9 (3) |
C13—N1—Ni1 | 125.4 (2) | C8—C7—C13 | 123.6 (3) |
C6—N1—Ni1 | 116.37 (18) | O1—C8—C9 | 118.8 (3) |
C5—N2—C1 | 117.8 (3) | O1—C8—C7 | 123.5 (3) |
C5—N2—Ni1 | 127.0 (2) | C9—C8—C7 | 117.7 (3) |
C1—N2—Ni1 | 115.2 (2) | C10—C9—C8 | 121.2 (3) |
O4—N3—O5 | 120.7 (3) | C10—C9—H9 | 119.4 |
O4—N3—O3 | 118.9 (3) | C8—C9—H9 | 119.4 |
O5—N3—O3 | 120.4 (3) | C9—C10—C11 | 121.2 (3) |
N2—C1—C2 | 122.1 (3) | C9—C10—H10 | 119.4 |
N2—C1—C6 | 116.1 (2) | C11—C10—H10 | 119.4 |
C2—C1—C6 | 121.8 (3) | C12—C11—C10 | 118.8 (3) |
C3—C2—C1 | 119.0 (3) | C12—C11—H11 | 120.6 |
C3—C2—H2 | 120.5 | C10—C11—H11 | 120.6 |
C1—C2—H2 | 120.5 | C11—C12—C7 | 121.6 (3) |
C2—C3—C4 | 119.1 (3) | C11—C12—H12 | 119.2 |
C2—C3—H3 | 120.5 | C7—C12—H12 | 119.2 |
C4—C3—H3 | 120.5 | N1—C13—C7 | 125.9 (3) |
C5—C4—C3 | 119.3 (3) | N1—C13—H13 | 117.1 |
C5—C4—H4 | 120.3 | C7—C13—H13 | 117.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O1i | 0.83 | 2.12 | 2.930 (3) | 165 |
O6—H6B···O3ii | 0.82 | 2.00 | 2.819 (3) | 172 |
O2—H2B···O5 | 0.83 | 2.57 | 3.009 (3) | 114 |
O2—H2B···N3 | 0.83 | 2.53 | 3.234 (4) | 143 |
O2—H2B···O4 | 0.83 | 1.85 | 2.677 (3) | 170 |
O2—H2A···O6 | 0.83 | 1.86 | 2.681 (3) | 168 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C13H11N2O)(H2O)]NO3·H2O |
Mr | 367.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.7885 (13), 9.0155 (15), 11.3285 (19) |
α, β, γ (°) | 71.244 (2), 85.846 (3), 86.967 (3) |
V (Å3) | 750.9 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.33 |
Crystal size (mm) | 0.27 × 0.21 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.716, 0.826 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3706, 2610, 2179 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.086, 1.04 |
No. of reflections | 2610 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.26 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O1i | 0.83 | 2.12 | 2.930 (3) | 164.7 |
O6—H6B···O3ii | 0.82 | 2.00 | 2.819 (3) | 171.6 |
O2—H2B···O5 | 0.83 | 2.57 | 3.009 (3) | 114.4 |
O2—H2B···N3 | 0.83 | 2.53 | 3.234 (4) | 142.8 |
O2—H2B···O4 | 0.83 | 1.85 | 2.677 (3) | 170.0 |
O2—H2A···O6 | 0.83 | 1.86 | 2.681 (3) | 168.4 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z. |
Acknowledgements
The author thanks Jining University for support.
References
Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Q., Li, X., Wang, X. & Zhang, Y. (2007). Acta Cryst. E63, m2537. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, Schiff base ligands, especially the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been employed to assembly alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties in the field of coordination chemistry. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new nickel complex based on an unsymmetric tridentate Schiff base ligand. The title compound, which is comprised by [Ni(L)(H2O)]+ (L=2-(pyridin-2-ylmethyliminomethyl)phenol, nitrate anion and a free water molecule, crystallizes in triclinic cell setting and P-1 space group. The coordination sphere of the Ni ion can be described as slightly distorted square planar, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from the O atom of the solvent water molecule. The bond distances of Ni—O and Ni—N are in the normal range compared to the reported complexes containing the N—Ni—O atoms (Wang et al., 2007). The mean deviation of the plane formed by NiN2O2 unit is 0.0799 Å, and the Ni ion is only out of the plane 0.0514 Å. The distance between Ni and O5 is only 2.617 Å, indicative of significant interaction between these two atoms. Under the help of these interactions and the O···H—O hydrogen bonds between the O atoms of the water molecules (Table 1), the nitrate ion, and the Schiff base ligand, the asymmetric unit can be linked into one dimensional double chain supermolecular structure.