metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dibut­yl[N-(5-chloro-2-oxido­benzyl­­idene)-L-isoleucinato-κ3O,N,O′]tin(IV)

aResearch Center for Eco-Environmental Sciences Yellow River Delta, Binzhou University, Binzhou 256600, People's Republic of China, and bDepartment of Chemistry & Chemical Engineering, Binzhou University, Binzhou 256600, People's Republic of China
*Correspondence e-mail: yanqiudang@163.com

(Received 7 September 2009; accepted 27 September 2009; online 3 October 2009)

The SnIV atom of the title compound, [Sn(C4H9)2(C13H14ClNO3)], adopts a distorted SnNC2O2 trigonal-bipyramidal geometry with a mean Sn—C distance of 2.105 Å and with Sn—O = 2.107 Å, and forms five- and six-membered chelate rings with the tridentate ligand. One butyl group is disordered over two positions with site occupancies of 0.65 (1):0.35 (1).

Related literature

For the structures and biological activity of diorganotin complexes with Schiff bases derived from α-amino acids, see: Baul et al. (2007[Baul, T. S. B., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Beltran et al. (2003[Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291-2306.]); Dakternieks et al. (1998[Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.]); Tian et al. (2004[Tian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483-484.], 2006[Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74-80.], 2007[Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312-318.], 2009[Tian, L., Yang, H., Zheng, X., Ni, Z., Yan, D., Tu, L. & Jiang, J. (2009). Appl. Organomet. Chem. 22, 24-31.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C13H14ClNO3)]

  • Mr = 500.62

  • Orthorhombic, P 21 21 21

  • a = 10.0545 (14) Å

  • b = 14.497 (2) Å

  • c = 15.953 (2) Å

  • V = 2325.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 295 K

  • 0.35 × 0.22 × 0.08 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.908

  • 18112 measured reflections

  • 4574 independent reflections

  • 3846 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.05

  • 4574 reflections

  • 257 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1978 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Selected bond lengths (Å)

Sn1—O1 2.083 (3)
Sn1—C14 2.100 (6)
Sn1—C18 2.110 (6)
Sn1—O2 2.130 (3)
Sn1—N1 2.169 (3)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The diorganotin complexes with Schiff bases derived from α-amino acids continue to received attention because of their structural diversity and biological activities (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Tian et al., 2004, 2006, 2007, 2009). The structures of the diorganotin complexes based on the Schiff base ligand [N-(2-hydroxyphenylmethylene)isoleucine, [N-(2-oxidophenylmethylene)isoleucinato]dibutyltin (Beltran et al., 2003) and [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (Tian et al., 2004) have been reported. As a continuation of these studies, the structure of the title compound, (I), is here described.

The coordination geometry of the tin atom in (I) is that of a distorted trigonal bipyramid with two butyl groups (C14 and C17) and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O2 atom and a phenoxide O1 atom (Fig. 1). The tin atom is 0.033 (3) Å out of the NC2 trigonal plane in the direction of the O1 atom. The bond length of Sn1—O1 (2.083 (6) Å) was shorter than that of Sn1—O2 (2.130 (3) Å). The bond angle O1—Sn1—O2 was 158.65 (13) °, which is slightly larger than that found in [N-(2-oxidophenylmethylene)isoleucinato]dibutyltin (154.5 (3)°) (Beltran et al., 2003) and [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (153.84 (12)°) (Tian et al., 2004). Distortions from the ideal geometry may be rationalized partly by the restricted bite angles of the tridentate ligand. Neither of the five or six-membered rings formed upon chelation are planar, as seen in the following torsion angles: Sn1—O2—C9—C8 9.5 (6)°, Sn1—N1—C8—C9 13.4 (4)°, Sn1—O1—C1—C6 - 14.7 (7)° and Sn1—N1—C7—C6 10.4 (7)°.

Related literature top

For the structures and biological activity of diorganotin complexes with Schiff bases derived from α-amino acids, see: Basu Baul et al. (2007); Beltran et al. (2003); Dakternieks et al. (1998); Tian et al. (2004, 2006, 2007, 2009).

Experimental top

The title compound was prepared by the reaction of dibutyltin oxide (0.498 g, 2 mmol), L-isoleucine (0.262 g, 2 mmol) and 5-chlorosalicylaldehyde (0.314 g, 2 mmol) in 60 ml of benzene were refluxed for 8 h with azeotropic removal of water via a Dean-Stark trap. The resulting clear solution was evaporated under vacuum and the yellow crystalline material obtained was recrystallized from methanol. The product (yield 68%, m.p. 378–379 K) was then dissolved in dichloromethane-hexane (1:1, V/V), and yellow crystals were grown by slow evaporation.

Refinement top

A butyl group (C14—C17) is disordered over two positions. Site occupancy factors were refinded to 0.65 (1) for atoms C14—C17 and 0.35 (1) for atoms C14'-C17'. H atoms were placed at calculated positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C).

Structure description top

The diorganotin complexes with Schiff bases derived from α-amino acids continue to received attention because of their structural diversity and biological activities (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Tian et al., 2004, 2006, 2007, 2009). The structures of the diorganotin complexes based on the Schiff base ligand [N-(2-hydroxyphenylmethylene)isoleucine, [N-(2-oxidophenylmethylene)isoleucinato]dibutyltin (Beltran et al., 2003) and [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (Tian et al., 2004) have been reported. As a continuation of these studies, the structure of the title compound, (I), is here described.

The coordination geometry of the tin atom in (I) is that of a distorted trigonal bipyramid with two butyl groups (C14 and C17) and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O2 atom and a phenoxide O1 atom (Fig. 1). The tin atom is 0.033 (3) Å out of the NC2 trigonal plane in the direction of the O1 atom. The bond length of Sn1—O1 (2.083 (6) Å) was shorter than that of Sn1—O2 (2.130 (3) Å). The bond angle O1—Sn1—O2 was 158.65 (13) °, which is slightly larger than that found in [N-(2-oxidophenylmethylene)isoleucinato]dibutyltin (154.5 (3)°) (Beltran et al., 2003) and [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (153.84 (12)°) (Tian et al., 2004). Distortions from the ideal geometry may be rationalized partly by the restricted bite angles of the tridentate ligand. Neither of the five or six-membered rings formed upon chelation are planar, as seen in the following torsion angles: Sn1—O2—C9—C8 9.5 (6)°, Sn1—N1—C8—C9 13.4 (4)°, Sn1—O1—C1—C6 - 14.7 (7)° and Sn1—N1—C7—C6 10.4 (7)°.

For the structures and biological activity of diorganotin complexes with Schiff bases derived from α-amino acids, see: Basu Baul et al. (2007); Beltran et al. (2003); Dakternieks et al. (1998); Tian et al. (2004, 2006, 2007, 2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. The minor disordered component of C14—C17 atoms of the butyl group and the H atoms have been omitted for clarity.
Dibutyl[N-(5-chloro-2-oxidobenzylidene)-L-isoleucinato- κ3O,N,O']tin(IV) top
Crystal data top
[Sn(C4H9)2(C13H14ClNO3)]F(000) = 1024
Mr = 500.62Dx = 1.430 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5601 reflections
a = 10.0545 (14) Åθ = 2.4–23.1°
b = 14.497 (2) ŵ = 1.23 mm1
c = 15.953 (2) ÅT = 295 K
V = 2325.3 (5) Å3Block, yellow
Z = 40.35 × 0.22 × 0.08 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
4574 independent reflections
Radiation source: fine-focus sealed tube3846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.672, Tmax = 0.908k = 1717
18112 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.7356P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4574 reflectionsΔρmax = 0.51 e Å3
257 parametersΔρmin = 0.54 e Å3
40 restraintsAbsolute structure: Flack (1983), 1978 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
[Sn(C4H9)2(C13H14ClNO3)]V = 2325.3 (5) Å3
Mr = 500.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0545 (14) ŵ = 1.23 mm1
b = 14.497 (2) ÅT = 295 K
c = 15.953 (2) Å0.35 × 0.22 × 0.08 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
4574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3846 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.908Rint = 0.036
18112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.51 e Å3
S = 1.05Δρmin = 0.54 e Å3
4574 reflectionsAbsolute structure: Flack (1983), 1978 Friedel pairs
257 parametersAbsolute structure parameter: 0.00 (4)
40 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.57193 (3)1.00258 (2)0.124910 (18)0.06021 (12)
Cl11.19119 (17)0.83857 (14)0.33475 (12)0.1064 (6)
N10.6662 (4)0.8684 (2)0.1157 (2)0.0487 (8)
O10.7029 (4)1.0206 (2)0.2248 (2)0.0767 (10)
O20.4697 (4)0.9344 (2)0.0257 (2)0.0687 (10)
O30.4602 (5)0.8138 (3)0.0595 (2)0.0863 (12)
C10.8139 (5)0.9793 (3)0.2452 (3)0.0593 (12)
C20.8952 (5)1.0175 (4)0.3079 (3)0.0662 (14)
H20.87131.07360.33200.079*
C31.0080 (5)0.9745 (4)0.3343 (3)0.0731 (16)
H31.05981.00090.37620.088*
C41.0458 (5)0.8911 (4)0.2988 (3)0.0634 (13)
C50.9727 (5)0.8519 (4)0.2370 (3)0.0621 (12)
H51.00000.79670.21280.075*
C60.8562 (5)0.8947 (3)0.2100 (3)0.0514 (11)
C70.7776 (5)0.8442 (3)0.1488 (3)0.0501 (11)
H70.81190.78770.13140.060*
C80.6029 (5)0.8014 (3)0.0581 (3)0.0531 (11)
H80.67170.77450.02200.064*
C90.5027 (5)0.8536 (4)0.0029 (3)0.0633 (13)
C100.5359 (5)0.7231 (3)0.1087 (3)0.0559 (11)
H100.60240.70050.14870.067*
C110.4186 (6)0.7574 (4)0.1604 (4)0.0824 (16)
H11A0.35040.78000.12360.124*
H11B0.44750.80620.19680.124*
H11C0.38380.70750.19350.124*
C120.4958 (6)0.6414 (4)0.0554 (4)0.0749 (16)
H12A0.45610.59510.09150.090*
H12B0.42790.66140.01620.090*
C130.6054 (9)0.5975 (5)0.0073 (5)0.127 (3)
H13A0.63560.63910.03560.191*
H13B0.57370.54170.01820.191*
H13C0.67770.58350.04440.191*
C140.4069 (6)1.0251 (5)0.2030 (5)0.109 (2)0.650 (10)
H14A0.37070.96680.22220.131*0.650 (10)
H14B0.43241.06140.25150.131*0.650 (10)
C150.3044 (11)1.0769 (11)0.1505 (7)0.129 (4)0.650 (10)
H15A0.35011.12360.11800.154*0.650 (10)
H15B0.26431.03390.11130.154*0.650 (10)
C160.1960 (11)1.1223 (10)0.1995 (8)0.121 (4)0.650 (10)
H16A0.22841.18040.22150.145*0.650 (10)
H16B0.17251.08340.24670.145*0.650 (10)
C170.0742 (12)1.1397 (14)0.1476 (10)0.127 (5)0.650 (10)
H17A0.00581.16570.18230.191*0.650 (10)
H17B0.04351.08260.12400.191*0.650 (10)
H17C0.09541.18200.10320.191*0.650 (10)
C14'0.4069 (6)1.0251 (5)0.2030 (5)0.109 (2)0.350 (10)
H14C0.41070.97600.24430.131*0.350 (10)
H14D0.42731.08140.23310.131*0.350 (10)
C15'0.2619 (12)1.0331 (14)0.1803 (17)0.129 (4)0.350 (10)
H15C0.20611.02190.22890.154*0.350 (10)
H15D0.23860.98930.13680.154*0.350 (10)
C16'0.2453 (19)1.1319 (14)0.1492 (18)0.121 (4)0.350 (10)
H16C0.25941.17420.19540.145*0.350 (10)
H16D0.31211.14460.10680.145*0.350 (10)
C17'0.108 (2)1.148 (2)0.112 (2)0.127 (5)0.350 (10)
H17D0.09371.21300.10520.191*0.350 (10)
H17E0.04191.12340.14940.191*0.350 (10)
H17F0.10181.11790.05890.191*0.350 (10)
C180.6505 (7)1.1061 (4)0.0462 (4)0.0822 (17)
H18A0.58281.12320.00570.099*
H18B0.66931.16010.08000.099*
C190.7719 (6)1.0809 (4)0.0003 (4)0.0811 (17)
H19A0.75371.02760.03460.097*
H19B0.84031.06370.04020.097*
C200.8236 (8)1.1589 (5)0.0545 (5)0.110 (2)
H20A0.75201.17900.09090.132*
H20B0.84651.21040.01850.132*
C210.9395 (8)1.1372 (6)0.1067 (5)0.131 (3)
H21A1.01881.14110.07350.197*
H21B0.94471.18040.15220.197*
H21C0.93071.07580.12870.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0721 (2)0.05157 (17)0.05693 (18)0.00367 (19)0.00498 (14)0.0011 (2)
Cl10.0716 (10)0.1423 (15)0.1053 (12)0.0123 (11)0.0282 (9)0.0046 (11)
N10.058 (2)0.0482 (18)0.0403 (19)0.0012 (16)0.0024 (18)0.0085 (16)
O10.090 (3)0.065 (2)0.075 (2)0.017 (2)0.019 (2)0.0294 (17)
O20.088 (3)0.060 (2)0.059 (2)0.0046 (19)0.0222 (18)0.0044 (16)
O30.128 (3)0.075 (2)0.056 (2)0.027 (2)0.030 (2)0.0001 (19)
C10.064 (3)0.062 (3)0.052 (2)0.003 (2)0.004 (2)0.011 (2)
C20.073 (3)0.069 (3)0.057 (3)0.004 (3)0.000 (2)0.026 (2)
C30.067 (3)0.104 (5)0.048 (2)0.022 (3)0.003 (2)0.008 (3)
C40.051 (3)0.084 (4)0.056 (3)0.003 (2)0.001 (2)0.001 (3)
C50.061 (3)0.071 (3)0.054 (3)0.000 (2)0.002 (2)0.009 (2)
C60.055 (3)0.058 (3)0.041 (2)0.006 (2)0.006 (2)0.009 (2)
C70.061 (3)0.045 (2)0.044 (2)0.004 (2)0.005 (2)0.0067 (18)
C80.061 (3)0.052 (2)0.047 (2)0.006 (2)0.001 (2)0.0088 (19)
C90.075 (3)0.069 (3)0.046 (3)0.024 (3)0.013 (2)0.010 (2)
C100.068 (3)0.050 (2)0.050 (3)0.008 (2)0.008 (2)0.0027 (19)
C110.094 (4)0.077 (3)0.076 (3)0.009 (3)0.013 (3)0.012 (3)
C120.090 (4)0.057 (3)0.079 (4)0.016 (3)0.002 (3)0.004 (3)
C130.142 (6)0.089 (4)0.152 (6)0.018 (5)0.027 (5)0.046 (5)
C140.088 (4)0.122 (5)0.116 (5)0.033 (4)0.019 (4)0.017 (4)
C150.096 (6)0.147 (9)0.142 (8)0.004 (6)0.031 (6)0.001 (7)
C160.120 (7)0.129 (7)0.114 (8)0.023 (6)0.012 (6)0.016 (6)
C170.116 (7)0.133 (6)0.134 (10)0.002 (6)0.017 (7)0.006 (7)
C14'0.088 (4)0.122 (5)0.116 (5)0.033 (4)0.019 (4)0.017 (4)
C15'0.096 (6)0.147 (9)0.142 (8)0.004 (6)0.031 (6)0.001 (7)
C16'0.120 (7)0.129 (7)0.114 (8)0.023 (6)0.012 (6)0.016 (6)
C17'0.116 (7)0.133 (6)0.134 (10)0.002 (6)0.017 (7)0.006 (7)
C180.111 (5)0.049 (3)0.087 (4)0.009 (3)0.004 (4)0.007 (3)
C190.089 (4)0.072 (4)0.082 (4)0.006 (3)0.002 (3)0.002 (3)
C200.122 (6)0.099 (5)0.108 (5)0.007 (5)0.022 (5)0.019 (4)
C210.133 (7)0.132 (7)0.129 (7)0.015 (5)0.038 (6)0.016 (5)
Geometric parameters (Å, º) top
Sn1—O12.083 (3)C13—H13B0.9600
Sn1—C142.100 (6)C13—H13C0.9600
Sn1—C182.110 (6)C14—C151.526 (9)
Sn1—O22.130 (3)C14—H14A0.9700
Sn1—N12.169 (3)C14—H14B0.9700
Cl1—C41.745 (5)C15—C161.493 (9)
N1—C71.287 (6)C15—H15A0.9700
N1—C81.481 (5)C15—H15B0.9700
O1—C11.308 (6)C16—C171.500 (9)
O2—C91.271 (6)C16—H16A0.9700
O3—C91.227 (6)C16—H16B0.9700
C1—C21.406 (6)C17—H17A0.9600
C1—C61.415 (6)C17—H17B0.9600
C2—C31.362 (7)C17—H17C0.9600
C2—H20.9300C15'—C16'1.525 (10)
C3—C41.388 (7)C15'—H15C0.9700
C3—H30.9300C15'—H15D0.9700
C4—C51.355 (7)C16'—C17'1.518 (10)
C5—C61.394 (7)C16'—H16C0.9700
C5—H50.9300C16'—H16D0.9700
C6—C71.454 (6)C17'—H17D0.9600
C7—H70.9300C17'—H17E0.9600
C8—C91.538 (7)C17'—H17F0.9600
C8—C101.548 (6)C18—C191.470 (9)
C8—H80.9800C18—H18A0.9700
C10—C121.513 (7)C18—H18B0.9700
C10—C111.523 (7)C19—C201.520 (9)
C10—H100.9800C19—H19A0.9700
C11—H11A0.9600C19—H19B0.9700
C11—H11B0.9600C20—C211.466 (10)
C11—H11C0.9600C20—H20A0.9700
C12—C131.486 (9)C20—H20B0.9700
C12—H12A0.9700C21—H21A0.9600
C12—H12B0.9700C21—H21B0.9600
C13—H13A0.9600C21—H21C0.9600
O1—Sn1—C1491.5 (2)C12—C13—H13C109.5
O1—Sn1—C1897.4 (2)H13A—C13—H13C109.5
C14—Sn1—C18122.6 (3)H13B—C13—H13C109.5
O1—Sn1—O2158.65 (13)C15—C14—Sn1106.6 (5)
C14—Sn1—O297.6 (2)C15—C14—H14A110.4
C18—Sn1—O293.9 (2)Sn1—C14—H14A110.4
O1—Sn1—N183.57 (13)C15—C14—H14B110.4
C14—Sn1—N1121.7 (2)Sn1—C14—H14B110.4
C18—Sn1—N1115.7 (2)H14A—C14—H14B108.6
O2—Sn1—N175.21 (13)C16—C15—C14115.0 (9)
C7—N1—C8116.7 (4)C16—C15—H15A108.5
C7—N1—Sn1126.7 (3)C14—C15—H15A108.5
C8—N1—Sn1116.3 (3)C16—C15—H15B108.5
C1—O1—Sn1132.3 (3)C14—C15—H15B108.5
C9—O2—Sn1121.0 (3)H15A—C15—H15B107.5
O1—C1—C2119.6 (4)C15—C16—C17112.4 (10)
O1—C1—C6123.7 (4)C15—C16—H16A109.1
C2—C1—C6116.7 (5)C17—C16—H16A109.1
C3—C2—C1121.6 (5)C15—C16—H16B109.1
C3—C2—H2119.2C17—C16—H16B109.1
C1—C2—H2119.2H16A—C16—H16B107.9
C2—C3—C4120.1 (5)C16—C17—H17A109.5
C2—C3—H3120.0C16—C17—H17B109.5
C4—C3—H3120.0H17A—C17—H17B109.5
C5—C4—C3121.0 (5)C16—C17—H17C109.5
C5—C4—Cl1120.7 (4)H17A—C17—H17C109.5
C3—C4—Cl1118.4 (4)H17B—C17—H17C109.5
C4—C5—C6119.6 (5)C16'—C15'—H15C110.8
C4—C5—H5120.2C16'—C15'—H15D110.8
C6—C5—H5120.2H15C—C15'—H15D108.9
C5—C6—C1121.1 (4)C17'—C16'—C15'111.7 (13)
C5—C6—C7116.1 (4)C17'—C16'—H16C109.3
C1—C6—C7122.7 (4)C15'—C16'—H16C109.3
N1—C7—C6127.7 (4)C17'—C16'—H16D109.3
N1—C7—H7116.2C15'—C16'—H16D109.3
C6—C7—H7116.2H16C—C16'—H16D107.9
N1—C8—C9108.3 (4)C16'—C17'—H17D109.5
N1—C8—C10110.1 (3)C16'—C17'—H17E109.5
C9—C8—C10112.0 (4)H17D—C17'—H17E109.5
N1—C8—H8108.8C16'—C17'—H17F109.5
C9—C8—H8108.8H17D—C17'—H17F109.5
C10—C8—H8108.8H17E—C17'—H17F109.5
O3—C9—O2125.1 (5)C19—C18—Sn1115.5 (4)
O3—C9—C8117.4 (5)C19—C18—H18A108.4
O2—C9—C8117.4 (4)Sn1—C18—H18A108.4
C12—C10—C11110.7 (4)C19—C18—H18B108.4
C12—C10—C8113.3 (4)Sn1—C18—H18B108.4
C11—C10—C8112.4 (4)H18A—C18—H18B107.5
C12—C10—H10106.6C18—C19—C20112.7 (6)
C11—C10—H10106.6C18—C19—H19A109.0
C8—C10—H10106.6C20—C19—H19A109.0
C10—C11—H11A109.5C18—C19—H19B109.0
C10—C11—H11B109.5C20—C19—H19B109.0
H11A—C11—H11B109.5H19A—C19—H19B107.8
C10—C11—H11C109.5C21—C20—C19116.0 (7)
H11A—C11—H11C109.5C21—C20—H20A108.3
H11B—C11—H11C109.5C19—C20—H20A108.3
C13—C12—C10115.4 (5)C21—C20—H20B108.3
C13—C12—H12A108.4C19—C20—H20B108.3
C10—C12—H12A108.4H20A—C20—H20B107.4
C13—C12—H12B108.4C20—C21—H21A109.5
C10—C12—H12B108.4C20—C21—H21B109.5
H12A—C12—H12B107.5H21A—C21—H21B109.5
C12—C13—H13A109.5C20—C21—H21C109.5
C12—C13—H13B109.5H21A—C21—H21C109.5
H13A—C13—H13B109.5H21B—C21—H21C109.5
O1—Sn1—N1—C716.9 (4)Sn1—N1—C7—C610.4 (7)
C14—Sn1—N1—C7104.7 (4)C5—C6—C7—N1178.8 (4)
C18—Sn1—N1—C778.3 (4)C1—C6—C7—N13.1 (7)
O2—Sn1—N1—C7165.4 (4)C7—N1—C8—C9160.3 (4)
O1—Sn1—N1—C8170.1 (3)Sn1—N1—C8—C913.4 (4)
C14—Sn1—N1—C882.3 (4)C7—N1—C8—C1077.0 (5)
C18—Sn1—N1—C894.7 (3)Sn1—N1—C8—C10109.4 (4)
O2—Sn1—N1—C87.5 (3)Sn1—O2—C9—O3170.9 (4)
C14—Sn1—O1—C1141.6 (5)Sn1—O2—C9—C89.5 (6)
C18—Sn1—O1—C195.3 (5)N1—C8—C9—O3165.7 (4)
O2—Sn1—O1—C126.2 (8)C10—C8—C9—O372.6 (6)
N1—Sn1—O1—C119.9 (5)N1—C8—C9—O214.7 (6)
O1—Sn1—O2—C97.7 (7)C10—C8—C9—O2107.0 (5)
C14—Sn1—O2—C9122.1 (4)N1—C8—C10—C12167.2 (4)
C18—Sn1—O2—C9114.3 (4)C9—C8—C10—C1272.2 (5)
N1—Sn1—O2—C91.2 (4)N1—C8—C10—C1166.3 (5)
Sn1—O1—C1—C2167.9 (4)C9—C8—C10—C1154.2 (5)
Sn1—O1—C1—C614.7 (7)C11—C10—C12—C13175.4 (6)
O1—C1—C2—C3176.5 (5)C8—C10—C12—C1357.3 (7)
C6—C1—C2—C31.0 (7)O1—Sn1—C14—C15144.2 (8)
C1—C2—C3—C40.5 (8)C18—Sn1—C14—C1544.4 (9)
C2—C3—C4—C50.8 (8)O2—Sn1—C14—C1555.1 (8)
C2—C3—C4—Cl1180.0 (4)N1—Sn1—C14—C15132.4 (8)
C3—C4—C5—C61.4 (8)Sn1—C14—C15—C16163.9 (11)
Cl1—C4—C5—C6179.3 (4)C14—C15—C16—C17157.9 (12)
C4—C5—C6—C10.9 (7)O1—Sn1—C18—C1979.1 (5)
C4—C5—C6—C7174.8 (4)C14—Sn1—C18—C19175.7 (4)
O1—C1—C6—C5177.1 (5)O2—Sn1—C18—C1982.8 (5)
C2—C1—C6—C50.3 (7)N1—Sn1—C18—C197.3 (5)
O1—C1—C6—C71.7 (7)Sn1—C18—C19—C20179.5 (5)
C2—C1—C6—C7175.7 (4)C18—C19—C20—C21176.0 (6)
C8—N1—C7—C6176.7 (4)

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C13H14ClNO3)]
Mr500.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)10.0545 (14), 14.497 (2), 15.953 (2)
V3)2325.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.35 × 0.22 × 0.08
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.672, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
18112, 4574, 3846
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.05
No. of reflections4574
No. of parameters257
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.54
Absolute structureFlack (1983), 1978 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Sn1—O12.083 (3)Sn1—O22.130 (3)
Sn1—C142.100 (6)Sn1—N12.169 (3)
Sn1—C182.110 (6)
 

Acknowledgements

The authors thank the Science Foundation of Binzhou University for supporting this work (BZXYG0901 and BZXYQNLG200820).

References

First citationBaul, T. S. B., Masharing, C., Ruisi, G., Jirasko, R., Holcapek, M., De Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Google Scholar
First citationBeltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291–2306.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483–484.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312–318.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Yang, H., Zheng, X., Ni, Z., Yan, D., Tu, L. & Jiang, J. (2009). Appl. Organomet. Chem. 22, 24–31.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds