metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[Pyridine-3,4-diylbis(nitrilo­methyl­­idyne)]diphenolato}zinc(II)

aDepartment of Chemistry & Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: jn_sning@126.com

(Received 11 September 2009; accepted 24 September 2009; online 3 October 2009)

The title compound, [Zn(C19H13N3O2)], has been synthesized by the reaction of Zn(ClO4)2·6H2O and the tetra­dentate Schiff base ligand 2,2′-[pyridine-3,4-diylbis(nitrilo­methyl­idyne)]diphenol (L). The coordination geometry of the ZnII ion is slightly distorted square-planar, formed by two N atoms and two O atoms from the L ligand.

Related literature

For properties of transition metals complexes with Schiff base ligands, see: Aurangzeb et al. (1994[Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Li et al. (2008[Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141-3143.]); Fei & Fang (2008[Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]). For related structures, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); Chen (2005[Chen, Y. (2005). Acta Cryst. E61, m2716-m2717.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C19H13N3O2)]

  • Mr = 380.69

  • Orthorhombic, P 21 21 21

  • a = 5.3563 (8) Å

  • b = 16.603 (2) Å

  • c = 17.311 (3) Å

  • V = 1539.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.689, Tmax = 0.760

  • 7573 measured reflections

  • 2720 independent reflections

  • 2519 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.00

  • 2720 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1105 Friedel pairs

  • Flack parameter: 0.090 (18)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis and optical materials (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Fei et al., 2008; Zhang & Janiak, 2001). Here, we report the structure of a new zinc complex based on a tetradentate Schiff base ligand. The molecular structure of title compound is shown in Fig. 1. As can be seen, the whole molecule of the title complex is essentially planar. The Zn ion is four-coordinate with the four positions occupied by two N atoms and two O atoms of the Schiff base ligand. The mean deviation of the plane formed by ZnN2O2 unit is 0.0121 Å. The Zn—O and Zn—N bond lengths are all consistent with those found in other Zn Schiff base complexes (Chen, 2005; Li, et al., 2004).

Related literature top

For properties of transition metals complexes with Schiff base ligands, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Fei & Fang (2008; Zhang & Janiak (2001). For related structures, see: Li & Zhang (2004); Chen (2005).

Experimental top

The Schiff base ligand was synthesized by condensation 3,4-diaminopyridine and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol.The synthesis of the title complex was carried out by reacting Zn(ClO4)2.6H2O (1 mmol, 373 mg) and the schiff-base ligand (1 mmol, 317 mg) in methanol under the stirring condition at room temperature. The filtrated solution was left to slowly evaperate in air to obtain single-crystal suitable for X-ray diffraction with the yield about 228 mg, 60%.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis and optical materials (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Fei et al., 2008; Zhang & Janiak, 2001). Here, we report the structure of a new zinc complex based on a tetradentate Schiff base ligand. The molecular structure of title compound is shown in Fig. 1. As can be seen, the whole molecule of the title complex is essentially planar. The Zn ion is four-coordinate with the four positions occupied by two N atoms and two O atoms of the Schiff base ligand. The mean deviation of the plane formed by ZnN2O2 unit is 0.0121 Å. The Zn—O and Zn—N bond lengths are all consistent with those found in other Zn Schiff base complexes (Chen, 2005; Li, et al., 2004).

For properties of transition metals complexes with Schiff base ligands, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Fei & Fang (2008; Zhang & Janiak (2001). For related structures, see: Li & Zhang (2004); Chen (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
{2,2'-[Pyridine-3,4-diylbis(nitrilomethylidyne)]diphenolato}zinc(II) top
Crystal data top
[Zn(C19H13N3O2)]F(000) = 776
Mr = 380.69Dx = 1.643 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4002 reflections
a = 5.3563 (8) Åθ = 2.5–26.4°
b = 16.603 (2) ŵ = 1.61 mm1
c = 17.311 (3) ÅT = 293 K
V = 1539.5 (4) Å3Block, colourless
Z = 40.25 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2720 independent reflections
Radiation source: fine-focus sealed tube2519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 66
Tmin = 0.689, Tmax = 0.760k = 1519
7573 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.084P)2 + 0.0681P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2720 reflectionsΔρmax = 0.46 e Å3
227 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1105 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.090 (18)
Crystal data top
[Zn(C19H13N3O2)]V = 1539.5 (4) Å3
Mr = 380.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3563 (8) ŵ = 1.61 mm1
b = 16.603 (2) ÅT = 293 K
c = 17.311 (3) Å0.25 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2720 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2519 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.760Rint = 0.032
7573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.46 e Å3
S = 1.00Δρmin = 0.25 e Å3
2720 reflectionsAbsolute structure: Flack (1983), 1105 Friedel pairs
227 parametersAbsolute structure parameter: 0.090 (18)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.85000 (8)0.22279 (3)0.81022 (2)0.04025 (17)
O10.5747 (5)0.18278 (15)0.76293 (15)0.0423 (6)
O20.8521 (6)0.12568 (16)0.86177 (15)0.0439 (6)
N11.4213 (8)0.4650 (2)0.8360 (2)0.0592 (10)
N21.1291 (6)0.26236 (16)0.85990 (15)0.0331 (6)
N30.8496 (6)0.31937 (17)0.75595 (15)0.0339 (6)
C11.3829 (8)0.3878 (2)0.8649 (2)0.0455 (9)
H11.48790.36730.90290.055*
C21.1895 (7)0.3421 (2)0.83702 (19)0.0349 (8)
C31.0329 (8)0.3735 (2)0.7803 (2)0.0376 (8)
C41.0658 (9)0.4516 (2)0.7538 (2)0.0474 (10)
H40.95510.47380.71840.057*
C51.2653 (10)0.4959 (3)0.7810 (3)0.0515 (11)
H51.29390.54730.76170.062*
C60.5160 (7)0.2875 (2)0.66888 (19)0.0390 (8)
C70.4547 (7)0.2126 (2)0.70379 (19)0.0374 (8)
C80.2526 (8)0.1694 (3)0.6747 (2)0.0485 (10)
H80.20420.12120.69760.058*
C90.1245 (9)0.1989 (3)0.6112 (2)0.0531 (11)
H90.00760.16890.59140.064*
C100.1841 (8)0.2700 (3)0.5766 (2)0.0529 (11)
H100.09360.28800.53410.064*
C110.3765 (9)0.3141 (3)0.6046 (2)0.0512 (10)
H110.41730.36270.58110.061*
C120.7065 (7)0.3362 (2)0.6972 (2)0.0385 (8)
H120.73420.38490.67210.046*
C131.2240 (7)0.1422 (2)0.9337 (2)0.0374 (8)
C141.0142 (8)0.0984 (2)0.9087 (2)0.0383 (8)
C150.9911 (8)0.0187 (2)0.9372 (2)0.0451 (9)
H150.85430.01190.92200.054*
C161.1607 (9)0.0145 (3)0.9858 (2)0.0492 (10)
H161.13980.06711.00290.059*
C171.3639 (9)0.0297 (3)1.0097 (2)0.0518 (10)
H171.47900.00731.04380.062*
C181.3951 (8)0.1056 (2)0.9835 (2)0.0453 (10)
H181.53500.13460.99920.054*
C191.2673 (7)0.2216 (3)0.9071 (2)0.0385 (8)
H191.41000.24710.92550.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0432 (3)0.0352 (2)0.0423 (3)0.00271 (19)0.0008 (2)0.00027 (18)
O10.0449 (16)0.0337 (13)0.0484 (14)0.0016 (12)0.0065 (12)0.0014 (11)
O20.0449 (15)0.0393 (13)0.0475 (14)0.0069 (14)0.0108 (14)0.0101 (12)
N10.064 (3)0.055 (2)0.058 (2)0.0059 (19)0.0026 (18)0.0003 (18)
N20.0392 (16)0.0273 (14)0.0327 (13)0.0004 (13)0.0021 (13)0.0018 (12)
N30.0388 (17)0.0285 (14)0.0344 (14)0.0033 (14)0.0027 (15)0.0011 (11)
C10.053 (2)0.042 (2)0.0421 (19)0.0040 (18)0.0015 (18)0.0017 (17)
C20.038 (2)0.0353 (18)0.0318 (16)0.0032 (15)0.0064 (14)0.0035 (14)
C30.044 (2)0.0340 (19)0.0344 (17)0.0007 (17)0.0039 (16)0.0040 (14)
C40.063 (3)0.033 (2)0.046 (2)0.0008 (18)0.002 (2)0.0048 (17)
C50.068 (3)0.037 (2)0.050 (2)0.0088 (19)0.002 (2)0.0078 (18)
C60.042 (2)0.042 (2)0.0327 (16)0.0114 (17)0.0012 (15)0.0041 (15)
C70.0357 (17)0.040 (2)0.0366 (18)0.0141 (16)0.0035 (15)0.0083 (16)
C80.046 (2)0.043 (2)0.056 (2)0.0089 (18)0.0022 (19)0.008 (2)
C90.041 (2)0.062 (3)0.056 (2)0.010 (2)0.011 (2)0.023 (2)
C100.047 (2)0.067 (3)0.044 (2)0.014 (2)0.0108 (18)0.009 (2)
C110.054 (3)0.057 (2)0.043 (2)0.011 (2)0.001 (2)0.0016 (18)
C120.049 (2)0.0336 (18)0.0334 (17)0.0095 (15)0.0007 (16)0.0012 (15)
C130.040 (2)0.038 (2)0.0343 (17)0.0016 (16)0.0017 (16)0.0028 (15)
C140.045 (2)0.0354 (19)0.0344 (17)0.0032 (16)0.0055 (17)0.0012 (15)
C150.055 (2)0.0344 (18)0.046 (2)0.0066 (18)0.003 (2)0.0022 (17)
C160.060 (3)0.038 (2)0.049 (2)0.011 (2)0.006 (2)0.0115 (17)
C170.052 (3)0.053 (2)0.051 (2)0.010 (2)0.007 (2)0.0112 (19)
C180.046 (3)0.047 (2)0.043 (2)0.0036 (18)0.0051 (18)0.0025 (17)
C190.0367 (18)0.0397 (19)0.0392 (17)0.0019 (17)0.0026 (14)0.0055 (18)
Geometric parameters (Å, º) top
Zn1—O11.813 (3)C7—C81.393 (6)
Zn1—O21.843 (2)C8—C91.385 (6)
Zn1—N21.846 (3)C8—H80.9300
Zn1—N31.858 (3)C9—C101.361 (7)
O1—C71.306 (4)C9—H90.9300
O2—C141.273 (5)C10—C111.354 (7)
N1—C51.367 (6)C10—H100.9300
N1—C11.391 (6)C11—H110.9300
N2—C191.294 (5)C12—H120.9300
N2—C21.419 (5)C13—C181.397 (5)
N3—C121.304 (4)C13—C141.406 (6)
N3—C31.396 (5)C13—C191.416 (6)
C1—C21.372 (6)C14—C151.417 (5)
C1—H10.9300C15—C161.355 (6)
C2—C31.393 (5)C15—H150.9300
C3—C41.387 (5)C16—C171.376 (6)
C4—C51.380 (7)C16—H160.9300
C4—H40.9300C17—C181.351 (6)
C5—H50.9300C17—H170.9300
C6—C121.391 (6)C18—H180.9300
C6—C111.412 (5)C19—H190.9300
C6—C71.421 (6)
O1—Zn1—O284.43 (12)C9—C8—C7119.4 (4)
O1—Zn1—N2178.96 (12)C9—C8—H8120.3
O2—Zn1—N294.64 (12)C7—C8—H8120.3
O1—Zn1—N394.99 (13)C10—C9—C8122.6 (4)
O2—Zn1—N3178.58 (12)C10—C9—H9118.7
N2—Zn1—N385.95 (13)C8—C9—H9118.7
C7—O1—Zn1128.0 (3)C11—C10—C9119.3 (4)
C14—O2—Zn1128.6 (2)C11—C10—H10120.3
C5—N1—C1120.4 (4)C9—C10—H10120.3
C19—N2—C2122.3 (3)C10—C11—C6121.0 (4)
C19—N2—Zn1124.9 (3)C10—C11—H11119.5
C2—N2—Zn1112.7 (2)C6—C11—H11119.5
C12—N3—C3120.7 (3)N3—C12—C6125.6 (3)
C12—N3—Zn1125.4 (3)N3—C12—H12117.2
C3—N3—Zn1113.7 (2)C6—C12—H12117.2
C2—C1—N1119.7 (4)C18—C13—C14119.4 (3)
C2—C1—H1120.2C18—C13—C19119.8 (4)
N1—C1—H1120.2C14—C13—C19120.8 (3)
C1—C2—C3119.7 (4)O2—C14—C13123.9 (3)
C1—C2—N2126.2 (4)O2—C14—C15119.7 (4)
C3—C2—N2114.1 (3)C13—C14—C15116.4 (3)
C4—C3—C2120.4 (4)C16—C15—C14122.5 (4)
C4—C3—N3126.3 (4)C16—C15—H15118.7
C2—C3—N3113.3 (3)C14—C15—H15118.7
C5—C4—C3118.9 (4)C15—C16—C17120.0 (4)
C5—C4—H4120.5C15—C16—H16120.0
C3—C4—H4120.5C17—C16—H16120.0
N1—C5—C4120.8 (4)C18—C17—C16119.6 (4)
N1—C5—H5119.6C18—C17—H17120.2
C4—C5—H5119.6C16—C17—H17120.2
C12—C6—C11119.0 (4)C17—C18—C13122.1 (4)
C12—C6—C7121.9 (3)C17—C18—H18119.0
C11—C6—C7119.2 (4)C13—C18—H18119.0
O1—C7—C8118.1 (4)N2—C19—C13126.8 (4)
O1—C7—C6123.5 (3)N2—C19—H19116.6
C8—C7—C6118.4 (3)C13—C19—H19116.6

Experimental details

Crystal data
Chemical formula[Zn(C19H13N3O2)]
Mr380.69
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.3563 (8), 16.603 (2), 17.311 (3)
V3)1539.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.689, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
7573, 2720, 2519
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.00
No. of reflections2720
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.25
Absolute structureFlack (1983), 1105 Friedel pairs
Absolute structure parameter0.090 (18)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

 

Acknowledgements

This work was supported by Jining University, China.

References

First citationAurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. (2005). Acta Cryst. E61, m2716–m2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationLi, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141–3143.  CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds