metal-organic compounds
{2,2′-[Pyridine-3,4-diylbis(nitrilomethylidyne)]diphenolato}zinc(II)
aDepartment of Chemistry & Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: jn_sning@126.com
The title compound, [Zn(C19H13N3O2)], has been synthesized by the reaction of Zn(ClO4)2·6H2O and the tetradentate Schiff base ligand 2,2′-[pyridine-3,4-diylbis(nitrilomethylidyne)]diphenol (L). The coordination geometry of the ZnII ion is slightly distorted square-planar, formed by two N atoms and two O atoms from the L ligand.
Related literature
For properties of transition metals complexes with Schiff base ligands, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Fei & Fang (2008); Zhang & Janiak (2001). For related structures, see: Li & Zhang (2004); Chen (2005).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP.
Supporting information
https://doi.org/10.1107/S1600536809038616/hg2565sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809038616/hg2565Isup2.hkl
The Schiff base ligand was synthesized by condensation 3,4-diaminopyridine and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol.The synthesis of the title complex was carried out by reacting Zn(ClO4)2.6H2O (1 mmol, 373 mg) and the schiff-base ligand (1 mmol, 317 mg) in methanol under the stirring condition at room temperature. The filtrated solution was left to slowly evaperate in air to obtain single-crystal suitable for X-ray diffraction with the yield about 228 mg, 60%.
All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).
Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis and optical materials (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Fei et al., 2008; Zhang & Janiak, 2001). Here, we report the structure of a new zinc complex based on a tetradentate Schiff base ligand. The molecular structure of title compound is shown in Fig. 1. As can be seen, the whole molecule of the title complex is essentially planar. The Zn ion is four-coordinate with the four positions occupied by two N atoms and two O atoms of the Schiff base ligand. The mean deviation of the plane formed by ZnN2O2 unit is 0.0121 Å. The Zn—O and Zn—N bond lengths are all consistent with those found in other Zn Schiff base complexes (Chen, 2005; Li, et al., 2004).
For properties of transition metals complexes with Schiff base ligands, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Fei & Fang (2008; Zhang & Janiak (2001). For related structures, see: Li & Zhang (2004); Chen (2005).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
[Zn(C19H13N3O2)] | F(000) = 776 |
Mr = 380.69 | Dx = 1.643 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4002 reflections |
a = 5.3563 (8) Å | θ = 2.5–26.4° |
b = 16.603 (2) Å | µ = 1.61 mm−1 |
c = 17.311 (3) Å | T = 293 K |
V = 1539.5 (4) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.21 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 2720 independent reflections |
Radiation source: fine-focus sealed tube | 2519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −6→6 |
Tmin = 0.689, Tmax = 0.760 | k = −15→19 |
7573 measured reflections | l = −19→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.084P)2 + 0.0681P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
2720 reflections | Δρmax = 0.46 e Å−3 |
227 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1105 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.090 (18) |
[Zn(C19H13N3O2)] | V = 1539.5 (4) Å3 |
Mr = 380.69 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.3563 (8) Å | µ = 1.61 mm−1 |
b = 16.603 (2) Å | T = 293 K |
c = 17.311 (3) Å | 0.25 × 0.21 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 2720 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2519 reflections with I > 2σ(I) |
Tmin = 0.689, Tmax = 0.760 | Rint = 0.032 |
7573 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.109 | Δρmax = 0.46 e Å−3 |
S = 1.00 | Δρmin = −0.25 e Å−3 |
2720 reflections | Absolute structure: Flack (1983), 1105 Friedel pairs |
227 parameters | Absolute structure parameter: 0.090 (18) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.85000 (8) | 0.22279 (3) | 0.81022 (2) | 0.04025 (17) | |
O1 | 0.5747 (5) | 0.18278 (15) | 0.76293 (15) | 0.0423 (6) | |
O2 | 0.8521 (6) | 0.12568 (16) | 0.86177 (15) | 0.0439 (6) | |
N1 | 1.4213 (8) | 0.4650 (2) | 0.8360 (2) | 0.0592 (10) | |
N2 | 1.1291 (6) | 0.26236 (16) | 0.85990 (15) | 0.0331 (6) | |
N3 | 0.8496 (6) | 0.31937 (17) | 0.75595 (15) | 0.0339 (6) | |
C1 | 1.3829 (8) | 0.3878 (2) | 0.8649 (2) | 0.0455 (9) | |
H1 | 1.4879 | 0.3673 | 0.9029 | 0.055* | |
C2 | 1.1895 (7) | 0.3421 (2) | 0.83702 (19) | 0.0349 (8) | |
C3 | 1.0329 (8) | 0.3735 (2) | 0.7803 (2) | 0.0376 (8) | |
C4 | 1.0658 (9) | 0.4516 (2) | 0.7538 (2) | 0.0474 (10) | |
H4 | 0.9551 | 0.4738 | 0.7184 | 0.057* | |
C5 | 1.2653 (10) | 0.4959 (3) | 0.7810 (3) | 0.0515 (11) | |
H5 | 1.2939 | 0.5473 | 0.7617 | 0.062* | |
C6 | 0.5160 (7) | 0.2875 (2) | 0.66888 (19) | 0.0390 (8) | |
C7 | 0.4547 (7) | 0.2126 (2) | 0.70379 (19) | 0.0374 (8) | |
C8 | 0.2526 (8) | 0.1694 (3) | 0.6747 (2) | 0.0485 (10) | |
H8 | 0.2042 | 0.1212 | 0.6976 | 0.058* | |
C9 | 0.1245 (9) | 0.1989 (3) | 0.6112 (2) | 0.0531 (11) | |
H9 | −0.0076 | 0.1689 | 0.5914 | 0.064* | |
C10 | 0.1841 (8) | 0.2700 (3) | 0.5766 (2) | 0.0529 (11) | |
H10 | 0.0936 | 0.2880 | 0.5341 | 0.064* | |
C11 | 0.3765 (9) | 0.3141 (3) | 0.6046 (2) | 0.0512 (10) | |
H11 | 0.4173 | 0.3627 | 0.5811 | 0.061* | |
C12 | 0.7065 (7) | 0.3362 (2) | 0.6972 (2) | 0.0385 (8) | |
H12 | 0.7342 | 0.3849 | 0.6721 | 0.046* | |
C13 | 1.2240 (7) | 0.1422 (2) | 0.9337 (2) | 0.0374 (8) | |
C14 | 1.0142 (8) | 0.0984 (2) | 0.9087 (2) | 0.0383 (8) | |
C15 | 0.9911 (8) | 0.0187 (2) | 0.9372 (2) | 0.0451 (9) | |
H15 | 0.8543 | −0.0119 | 0.9220 | 0.054* | |
C16 | 1.1607 (9) | −0.0145 (3) | 0.9858 (2) | 0.0492 (10) | |
H16 | 1.1398 | −0.0671 | 1.0029 | 0.059* | |
C17 | 1.3639 (9) | 0.0297 (3) | 1.0097 (2) | 0.0518 (10) | |
H17 | 1.4790 | 0.0073 | 1.0438 | 0.062* | |
C18 | 1.3951 (8) | 0.1056 (2) | 0.9835 (2) | 0.0453 (10) | |
H18 | 1.5350 | 0.1346 | 0.9992 | 0.054* | |
C19 | 1.2673 (7) | 0.2216 (3) | 0.9071 (2) | 0.0385 (8) | |
H19 | 1.4100 | 0.2471 | 0.9255 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0432 (3) | 0.0352 (2) | 0.0423 (3) | 0.00271 (19) | −0.0008 (2) | −0.00027 (18) |
O1 | 0.0449 (16) | 0.0337 (13) | 0.0484 (14) | 0.0016 (12) | −0.0065 (12) | 0.0014 (11) |
O2 | 0.0449 (15) | 0.0393 (13) | 0.0475 (14) | −0.0069 (14) | −0.0108 (14) | 0.0101 (12) |
N1 | 0.064 (3) | 0.055 (2) | 0.058 (2) | −0.0059 (19) | 0.0026 (18) | −0.0003 (18) |
N2 | 0.0392 (16) | 0.0273 (14) | 0.0327 (13) | 0.0004 (13) | 0.0021 (13) | −0.0018 (12) |
N3 | 0.0388 (17) | 0.0285 (14) | 0.0344 (14) | 0.0033 (14) | 0.0027 (15) | −0.0011 (11) |
C1 | 0.053 (2) | 0.042 (2) | 0.0421 (19) | −0.0040 (18) | 0.0015 (18) | 0.0017 (17) |
C2 | 0.038 (2) | 0.0353 (18) | 0.0318 (16) | 0.0032 (15) | 0.0064 (14) | −0.0035 (14) |
C3 | 0.044 (2) | 0.0340 (19) | 0.0344 (17) | −0.0007 (17) | 0.0039 (16) | −0.0040 (14) |
C4 | 0.063 (3) | 0.033 (2) | 0.046 (2) | 0.0008 (18) | −0.002 (2) | 0.0048 (17) |
C5 | 0.068 (3) | 0.037 (2) | 0.050 (2) | −0.0088 (19) | −0.002 (2) | 0.0078 (18) |
C6 | 0.042 (2) | 0.042 (2) | 0.0327 (16) | 0.0114 (17) | 0.0012 (15) | −0.0041 (15) |
C7 | 0.0357 (17) | 0.040 (2) | 0.0366 (18) | 0.0141 (16) | −0.0035 (15) | −0.0083 (16) |
C8 | 0.046 (2) | 0.043 (2) | 0.056 (2) | 0.0089 (18) | −0.0022 (19) | −0.008 (2) |
C9 | 0.041 (2) | 0.062 (3) | 0.056 (2) | 0.010 (2) | −0.011 (2) | −0.023 (2) |
C10 | 0.047 (2) | 0.067 (3) | 0.044 (2) | 0.014 (2) | −0.0108 (18) | −0.009 (2) |
C11 | 0.054 (3) | 0.057 (2) | 0.043 (2) | 0.011 (2) | 0.001 (2) | 0.0016 (18) |
C12 | 0.049 (2) | 0.0336 (18) | 0.0334 (17) | 0.0095 (15) | 0.0007 (16) | −0.0012 (15) |
C13 | 0.040 (2) | 0.038 (2) | 0.0343 (17) | 0.0016 (16) | 0.0017 (16) | 0.0028 (15) |
C14 | 0.045 (2) | 0.0354 (19) | 0.0344 (17) | 0.0032 (16) | 0.0055 (17) | 0.0012 (15) |
C15 | 0.055 (2) | 0.0344 (18) | 0.046 (2) | −0.0066 (18) | −0.003 (2) | 0.0022 (17) |
C16 | 0.060 (3) | 0.038 (2) | 0.049 (2) | 0.011 (2) | 0.006 (2) | 0.0115 (17) |
C17 | 0.052 (3) | 0.053 (2) | 0.051 (2) | 0.010 (2) | −0.007 (2) | 0.0112 (19) |
C18 | 0.046 (3) | 0.047 (2) | 0.043 (2) | 0.0036 (18) | −0.0051 (18) | 0.0025 (17) |
C19 | 0.0367 (18) | 0.0397 (19) | 0.0392 (17) | −0.0019 (17) | −0.0026 (14) | −0.0055 (18) |
Zn1—O1 | 1.813 (3) | C7—C8 | 1.393 (6) |
Zn1—O2 | 1.843 (2) | C8—C9 | 1.385 (6) |
Zn1—N2 | 1.846 (3) | C8—H8 | 0.9300 |
Zn1—N3 | 1.858 (3) | C9—C10 | 1.361 (7) |
O1—C7 | 1.306 (4) | C9—H9 | 0.9300 |
O2—C14 | 1.273 (5) | C10—C11 | 1.354 (7) |
N1—C5 | 1.367 (6) | C10—H10 | 0.9300 |
N1—C1 | 1.391 (6) | C11—H11 | 0.9300 |
N2—C19 | 1.294 (5) | C12—H12 | 0.9300 |
N2—C2 | 1.419 (5) | C13—C18 | 1.397 (5) |
N3—C12 | 1.304 (4) | C13—C14 | 1.406 (6) |
N3—C3 | 1.396 (5) | C13—C19 | 1.416 (6) |
C1—C2 | 1.372 (6) | C14—C15 | 1.417 (5) |
C1—H1 | 0.9300 | C15—C16 | 1.355 (6) |
C2—C3 | 1.393 (5) | C15—H15 | 0.9300 |
C3—C4 | 1.387 (5) | C16—C17 | 1.376 (6) |
C4—C5 | 1.380 (7) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | C17—C18 | 1.351 (6) |
C5—H5 | 0.9300 | C17—H17 | 0.9300 |
C6—C12 | 1.391 (6) | C18—H18 | 0.9300 |
C6—C11 | 1.412 (5) | C19—H19 | 0.9300 |
C6—C7 | 1.421 (6) | ||
O1—Zn1—O2 | 84.43 (12) | C9—C8—C7 | 119.4 (4) |
O1—Zn1—N2 | 178.96 (12) | C9—C8—H8 | 120.3 |
O2—Zn1—N2 | 94.64 (12) | C7—C8—H8 | 120.3 |
O1—Zn1—N3 | 94.99 (13) | C10—C9—C8 | 122.6 (4) |
O2—Zn1—N3 | 178.58 (12) | C10—C9—H9 | 118.7 |
N2—Zn1—N3 | 85.95 (13) | C8—C9—H9 | 118.7 |
C7—O1—Zn1 | 128.0 (3) | C11—C10—C9 | 119.3 (4) |
C14—O2—Zn1 | 128.6 (2) | C11—C10—H10 | 120.3 |
C5—N1—C1 | 120.4 (4) | C9—C10—H10 | 120.3 |
C19—N2—C2 | 122.3 (3) | C10—C11—C6 | 121.0 (4) |
C19—N2—Zn1 | 124.9 (3) | C10—C11—H11 | 119.5 |
C2—N2—Zn1 | 112.7 (2) | C6—C11—H11 | 119.5 |
C12—N3—C3 | 120.7 (3) | N3—C12—C6 | 125.6 (3) |
C12—N3—Zn1 | 125.4 (3) | N3—C12—H12 | 117.2 |
C3—N3—Zn1 | 113.7 (2) | C6—C12—H12 | 117.2 |
C2—C1—N1 | 119.7 (4) | C18—C13—C14 | 119.4 (3) |
C2—C1—H1 | 120.2 | C18—C13—C19 | 119.8 (4) |
N1—C1—H1 | 120.2 | C14—C13—C19 | 120.8 (3) |
C1—C2—C3 | 119.7 (4) | O2—C14—C13 | 123.9 (3) |
C1—C2—N2 | 126.2 (4) | O2—C14—C15 | 119.7 (4) |
C3—C2—N2 | 114.1 (3) | C13—C14—C15 | 116.4 (3) |
C4—C3—C2 | 120.4 (4) | C16—C15—C14 | 122.5 (4) |
C4—C3—N3 | 126.3 (4) | C16—C15—H15 | 118.7 |
C2—C3—N3 | 113.3 (3) | C14—C15—H15 | 118.7 |
C5—C4—C3 | 118.9 (4) | C15—C16—C17 | 120.0 (4) |
C5—C4—H4 | 120.5 | C15—C16—H16 | 120.0 |
C3—C4—H4 | 120.5 | C17—C16—H16 | 120.0 |
N1—C5—C4 | 120.8 (4) | C18—C17—C16 | 119.6 (4) |
N1—C5—H5 | 119.6 | C18—C17—H17 | 120.2 |
C4—C5—H5 | 119.6 | C16—C17—H17 | 120.2 |
C12—C6—C11 | 119.0 (4) | C17—C18—C13 | 122.1 (4) |
C12—C6—C7 | 121.9 (3) | C17—C18—H18 | 119.0 |
C11—C6—C7 | 119.2 (4) | C13—C18—H18 | 119.0 |
O1—C7—C8 | 118.1 (4) | N2—C19—C13 | 126.8 (4) |
O1—C7—C6 | 123.5 (3) | N2—C19—H19 | 116.6 |
C8—C7—C6 | 118.4 (3) | C13—C19—H19 | 116.6 |
Experimental details
Crystal data | |
Chemical formula | [Zn(C19H13N3O2)] |
Mr | 380.69 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.3563 (8), 16.603 (2), 17.311 (3) |
V (Å3) | 1539.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.61 |
Crystal size (mm) | 0.25 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.689, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7573, 2720, 2519 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.109, 1.00 |
No. of reflections | 2720 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.25 |
Absolute structure | Flack (1983), 1105 Friedel pairs |
Absolute structure parameter | 0.090 (18) |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).
Acknowledgements
This work was supported by Jining University, China.
References
Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195. CrossRef Web of Science Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y. (2005). Acta Cryst. E61, m2716–m2717. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814. CSD CrossRef Web of Science Google Scholar
Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141–3143. CAS Google Scholar
Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis and optical materials (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Fei et al., 2008; Zhang & Janiak, 2001). Here, we report the structure of a new zinc complex based on a tetradentate Schiff base ligand. The molecular structure of title compound is shown in Fig. 1. As can be seen, the whole molecule of the title complex is essentially planar. The Zn ion is four-coordinate with the four positions occupied by two N atoms and two O atoms of the Schiff base ligand. The mean deviation of the plane formed by ZnN2O2 unit is 0.0121 Å. The Zn—O and Zn—N bond lengths are all consistent with those found in other Zn Schiff base complexes (Chen, 2005; Li, et al., 2004).