organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-[(3,6-Dioxa­octane-1,8-diyl)bis­(sul­fanediylmethylene)]-6,7-bis­(methylsulfanyl)-1,4,5,8-tetra­thia­fulvalene

aKey Laboratory of Organism Functional Factors of Changbai Moutain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 17 September 2009; accepted 13 October 2009; online 17 October 2009)

In the title mol­ecule, C16H22S8O2, two S atoms, two O atoms and ten C atoms form a 14-membered ring with a boat conformation. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into dimers which are further connected into a chain along the a axis by C—H⋯S hydrogen bonds.

Related literature

Over the past three decades, chemical groups such as crown ethers have been extensively modified on the tetra­thia­fulvalene (TTF) skeleton, see: Jeppesen & Becher (2003[Jeppesen, J. O. & Becher, J. (2003). Eur. J. Org. Chem. pp. 3245-3266.]). For details of the synthesis, see: Chen et al. (2005[Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.]). For a related structure, see: Hou et al. (2009[Hou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22O2S8

  • Mr = 502.82

  • Triclinic, [P \overline 1]

  • a = 9.1748 (18) Å

  • b = 10.177 (2) Å

  • c = 14.273 (3) Å

  • α = 98.49 (3)°

  • β = 105.58 (3)°

  • γ = 113.33 (3)°

  • V = 1129.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 291 K

  • 0.14 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.896, Tmax = 0.910

  • 8752 measured reflections

  • 3948 independent reflections

  • 3345 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.128

  • S = 1.17

  • 3948 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯S5i 0.97 2.94 3.762 (5) 143
C1—H1C⋯O2ii 0.96 2.49 3.379 (6) 154
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+2, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC & Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the past three decades, chemical groups such as crown ethers have been extensively modified on the tetrathiafulvalene (TTF) skeleton (Jeppesen et al., 2003). A series of different type and different ring size TTF crown ether derivatives (containing nitrogen, sulfur and thia-aza atoms), aiming at molecular sensors, switches and wires in which TTF was used as an organic redox-active unit in host–guest system and crown ether was used as the choice of ligand system suitable as an "antenna". In order to get a novel and promising ion sensor, we have designed and synthesized the TTF - crown ether title compound, (I).

In the structure (I) (Fig. 1) all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal lattice, two molecules form a dimer by C—H···O hydrogen bonds, involving one O atom of the crown ether as acceptors, and the methylene C—H groups as donors (Table 1). The intermolecular C—H···S hydrogen bonds link the dimers into one-dimensional chain along the a axis.

Related literature top

Over the past three decades, chemical groups such as crown ethers have been extensively modified on the tetrathiafulvalene (TTF) skeleton, see: Jeppesen et al. (2003). For details of the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009).

Experimental top

The title compound, (I), was prepared according to literature (Chen et al., 2005) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90°C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96-0.97Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

Over the past three decades, chemical groups such as crown ethers have been extensively modified on the tetrathiafulvalene (TTF) skeleton (Jeppesen et al., 2003). A series of different type and different ring size TTF crown ether derivatives (containing nitrogen, sulfur and thia-aza atoms), aiming at molecular sensors, switches and wires in which TTF was used as an organic redox-active unit in host–guest system and crown ether was used as the choice of ligand system suitable as an "antenna". In order to get a novel and promising ion sensor, we have designed and synthesized the TTF - crown ether title compound, (I).

In the structure (I) (Fig. 1) all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal lattice, two molecules form a dimer by C—H···O hydrogen bonds, involving one O atom of the crown ether as acceptors, and the methylene C—H groups as donors (Table 1). The intermolecular C—H···S hydrogen bonds link the dimers into one-dimensional chain along the a axis.

Over the past three decades, chemical groups such as crown ethers have been extensively modified on the tetrathiafulvalene (TTF) skeleton, see: Jeppesen et al. (2003). For details of the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.
2,3-[(3,6-Dioxaoctane-1,8-diyl)bis(sulfanediylmethylene)]-6,7- bis(methylsulfanyl)-1,4,5,8-tetrathiafulvalene top
Crystal data top
C16H22O2S8Z = 2
Mr = 502.82F(000) = 524
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1748 (18) ÅCell parameters from 9031 reflections
b = 10.177 (2) Åθ = 3.1–27.5°
c = 14.273 (3) ŵ = 0.80 mm1
α = 98.49 (3)°T = 291 K
β = 105.58 (3)°Block, yellow
γ = 113.33 (3)°0.14 × 0.12 × 0.12 mm
V = 1129.1 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3948 independent reflections
Radiation source: fine-focus sealed tube3345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.896, Tmax = 0.910k = 1212
8752 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.3957P]
where P = (Fo2 + 2Fc2)/3
3948 reflections(Δ/σ)max = 0.011
237 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C16H22O2S8γ = 113.33 (3)°
Mr = 502.82V = 1129.1 (4) Å3
Triclinic, P1Z = 2
a = 9.1748 (18) ÅMo Kα radiation
b = 10.177 (2) ŵ = 0.80 mm1
c = 14.273 (3) ÅT = 291 K
α = 98.49 (3)°0.14 × 0.12 × 0.12 mm
β = 105.58 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3948 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3345 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.910Rint = 0.014
8752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.17Δρmax = 0.89 e Å3
3948 reflectionsΔρmin = 0.47 e Å3
237 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3188 (5)1.3283 (5)1.4807 (3)0.0753 (11)
H1A1.37461.27091.46390.113*
H1B1.39381.40781.54210.113*
H1C1.28971.36961.42640.113*
C21.0102 (4)1.0784 (3)1.3801 (2)0.0407 (6)
C30.9324 (3)0.8957 (3)1.2084 (2)0.0391 (6)
C40.9441 (3)0.8476 (3)1.1199 (2)0.0385 (6)
C51.0573 (4)0.8202 (3)0.9740 (2)0.0390 (6)
C61.1888 (4)0.8549 (3)0.9252 (2)0.0468 (7)
H6A1.23290.95910.92620.056*
H6B1.13470.79500.85480.056*
C71.2681 (5)0.6217 (4)0.9544 (3)0.0651 (9)
H7A1.33270.59271.00560.078*
H7B1.15420.58550.95620.078*
C81.2573 (7)0.5487 (5)0.8545 (4)0.0880 (13)
H8A1.36740.59340.84750.106*
H8B1.22270.44330.84670.106*
C91.0860 (8)0.4660 (7)0.6849 (4)0.1128 (19)
H9A1.17870.49450.65950.135*
H9B1.05650.36620.69200.135*
C100.9459 (9)0.4676 (9)0.6175 (4)0.131 (3)
H10A0.89740.38280.55800.157*
H10B0.98700.55700.59580.157*
C110.7180 (7)0.3431 (5)0.6827 (4)0.0914 (14)
H11A0.77410.28010.69020.110*
H11B0.60440.28360.63210.110*
C120.7074 (4)0.4011 (4)0.7818 (3)0.0623 (9)
H12A0.82140.45600.83250.075*
H12B0.64410.31730.80330.075*
C130.7897 (4)0.7058 (4)0.8160 (2)0.0529 (7)
H13A0.86430.70220.77980.063*
H13B0.75030.77710.79750.063*
C140.8897 (4)0.7596 (3)0.9285 (2)0.0396 (6)
C150.8397 (4)1.0198 (3)1.3351 (2)0.0443 (6)
C160.5893 (6)1.1099 (6)1.2868 (4)0.0912 (14)
H16A0.66541.19111.26980.137*
H16B0.51231.13801.30800.137*
H16C0.52581.02381.22830.137*
O11.1364 (5)0.5674 (4)0.7799 (2)0.0980 (10)
O20.8095 (6)0.4633 (5)0.6516 (3)0.1180 (14)
S11.12983 (11)1.21034 (9)1.49854 (6)0.0562 (2)
S21.10990 (9)0.99321 (8)1.32208 (5)0.0452 (2)
S31.13813 (9)0.87356 (9)1.10784 (5)0.0456 (2)
S41.36459 (10)0.82043 (9)0.98642 (7)0.0545 (2)
S50.60655 (10)0.52141 (11)0.77587 (7)0.0664 (3)
S60.76769 (9)0.74362 (8)1.00707 (5)0.0456 (2)
S70.74108 (9)0.86596 (9)1.22600 (6)0.0486 (2)
S80.71029 (12)1.06618 (12)1.38866 (7)0.0675 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (2)0.072 (3)0.051 (2)0.0072 (19)0.0037 (16)0.0007 (18)
C20.0527 (16)0.0355 (14)0.0323 (14)0.0190 (12)0.0161 (12)0.0072 (11)
C30.0420 (14)0.0340 (14)0.0362 (14)0.0157 (12)0.0118 (11)0.0049 (11)
C40.0411 (14)0.0338 (14)0.0360 (14)0.0174 (11)0.0103 (11)0.0037 (11)
C50.0522 (16)0.0361 (14)0.0335 (14)0.0279 (13)0.0129 (12)0.0057 (11)
C60.0524 (16)0.0505 (17)0.0488 (17)0.0315 (14)0.0221 (13)0.0149 (14)
C70.082 (2)0.054 (2)0.076 (2)0.0400 (19)0.037 (2)0.0251 (18)
C80.121 (4)0.068 (3)0.091 (3)0.057 (3)0.046 (3)0.013 (2)
C90.122 (4)0.122 (4)0.080 (3)0.051 (4)0.046 (3)0.016 (3)
C100.187 (6)0.230 (8)0.069 (3)0.164 (6)0.076 (4)0.046 (4)
C110.117 (4)0.077 (3)0.089 (3)0.063 (3)0.030 (3)0.008 (2)
C120.0570 (19)0.054 (2)0.062 (2)0.0141 (16)0.0183 (16)0.0165 (17)
C130.0618 (18)0.0575 (19)0.0353 (16)0.0327 (16)0.0074 (13)0.0055 (14)
C140.0506 (15)0.0340 (14)0.0346 (14)0.0240 (12)0.0116 (12)0.0046 (11)
C150.0539 (16)0.0419 (16)0.0398 (15)0.0208 (13)0.0233 (13)0.0099 (12)
C160.073 (3)0.117 (4)0.094 (3)0.062 (3)0.026 (2)0.014 (3)
O10.123 (3)0.077 (2)0.0679 (19)0.0270 (19)0.0434 (18)0.0154 (15)
O20.174 (4)0.173 (4)0.125 (3)0.139 (3)0.107 (3)0.092 (3)
S10.0735 (5)0.0488 (5)0.0330 (4)0.0198 (4)0.0176 (4)0.0014 (3)
S20.0465 (4)0.0487 (4)0.0353 (4)0.0234 (3)0.0099 (3)0.0029 (3)
S30.0433 (4)0.0557 (5)0.0351 (4)0.0277 (3)0.0082 (3)0.0015 (3)
S40.0418 (4)0.0531 (5)0.0658 (5)0.0231 (4)0.0160 (4)0.0109 (4)
S50.0432 (4)0.0805 (6)0.0507 (5)0.0237 (4)0.0052 (3)0.0148 (4)
S60.0404 (4)0.0461 (4)0.0384 (4)0.0164 (3)0.0089 (3)0.0005 (3)
S70.0433 (4)0.0459 (4)0.0454 (4)0.0121 (3)0.0176 (3)0.0029 (3)
S80.0690 (5)0.0832 (7)0.0609 (6)0.0388 (5)0.0379 (4)0.0115 (5)
Geometric parameters (Å, º) top
C1—S11.786 (4)C9—C101.391 (8)
C1—H1A0.9600C9—O11.410 (5)
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
C2—C151.351 (4)C10—O21.448 (6)
C2—S11.741 (3)C10—H10A0.9700
C2—S21.760 (3)C10—H10B0.9700
C3—C41.335 (4)C11—O21.394 (6)
C3—S71.753 (3)C11—C121.493 (6)
C3—S21.759 (3)C11—H11A0.9700
C4—S61.753 (3)C11—H11B0.9700
C4—S31.753 (3)C12—S51.802 (4)
C5—C141.327 (4)C12—H12A0.9700
C5—C61.500 (4)C12—H12B0.9700
C5—S31.763 (3)C13—C141.506 (4)
C6—S41.809 (3)C13—S51.828 (4)
C6—H6A0.9700C13—H13A0.9700
C6—H6B0.9700C13—H13B0.9700
C7—C81.465 (6)C14—S61.767 (3)
C7—S41.782 (4)C15—S81.744 (3)
C7—H7A0.9700C15—S71.760 (3)
C7—H7B0.9700C16—S81.806 (5)
C8—O11.411 (6)C16—H16A0.9600
C8—H8A0.9700C16—H16B0.9600
C8—H8B0.9700C16—H16C0.9600
S1—C1—H1A109.5O2—C10—H10A107.7
S1—C1—H1B109.5C9—C10—H10B107.7
H1A—C1—H1B109.5O2—C10—H10B107.7
S1—C1—H1C109.5H10A—C10—H10B107.1
H1A—C1—H1C109.5O2—C11—C12109.1 (4)
H1B—C1—H1C109.5O2—C11—H11A109.9
C15—C2—S1124.6 (2)C12—C11—H11A109.9
C15—C2—S2116.2 (2)O2—C11—H11B109.9
S1—C2—S2118.48 (17)C12—C11—H11B109.9
C4—C3—S7124.5 (2)H11A—C11—H11B108.3
C4—C3—S2123.0 (2)C11—C12—S5113.1 (3)
S7—C3—S2112.44 (15)C11—C12—H12A109.0
C3—C4—S6123.6 (2)S5—C12—H12A108.9
C3—C4—S3122.6 (2)C11—C12—H12B108.9
S6—C4—S3113.75 (15)S5—C12—H12B109.0
C14—C5—C6127.7 (3)H12A—C12—H12B107.8
C14—C5—S3116.9 (2)C14—C13—S5113.2 (2)
C6—C5—S3115.3 (2)C14—C13—H13A108.9
C5—C6—S4113.8 (2)S5—C13—H13A108.9
C5—C6—H6A108.8C14—C13—H13B108.9
S4—C6—H6A108.8S5—C13—H13B108.9
C5—C6—H6B108.8H13A—C13—H13B107.7
S4—C6—H6B108.8C5—C14—C13127.3 (3)
H6A—C6—H6B107.7C5—C14—S6117.3 (2)
C8—C7—S4114.3 (3)C13—C14—S6115.4 (2)
C8—C7—H7A108.7C2—C15—S8124.2 (2)
S4—C7—H7A108.7C2—C15—S7116.8 (2)
C8—C7—H7B108.7S8—C15—S7118.15 (17)
S4—C7—H7B108.7S8—C16—H16A109.5
H7A—C7—H7B107.6S8—C16—H16B109.5
O1—C8—C7108.0 (3)H16A—C16—H16B109.5
O1—C8—H8A110.1S8—C16—H16C109.5
C7—C8—H8A110.1H16A—C16—H16C109.5
O1—C8—H8B110.1H16B—C16—H16C109.5
C7—C8—H8B110.1C9—O1—C8110.0 (4)
H8A—C8—H8B108.4C11—O2—C10121.3 (4)
C10—C9—O1108.7 (5)C2—S1—C1102.60 (16)
C10—C9—H9A109.9C3—S2—C294.09 (13)
O1—C9—H9A109.9C4—S3—C594.92 (13)
C10—C9—H9B109.9C7—S4—C6102.45 (18)
O1—C9—H9B109.9C12—S5—C13101.68 (16)
H9A—C9—H9B108.3C4—S6—C1494.74 (13)
C9—C10—O2118.5 (4)C3—S7—C1593.90 (14)
C9—C10—H10A107.7C15—S8—C16101.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···S5i0.972.943.762 (5)143
C1—H1C···O2ii0.962.493.379 (6)154
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H22O2S8
Mr502.82
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.1748 (18), 10.177 (2), 14.273 (3)
α, β, γ (°)98.49 (3), 105.58 (3), 113.33 (3)
V3)1129.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.14 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.896, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
8752, 3948, 3345
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.17
No. of reflections3948
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.47

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···S5i0.972.943.762 (5)143.0
C1—H1C···O2ii0.962.493.379 (6)153.9
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

References

First citationChen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeppesen, J. O. & Becher, J. (2003). Eur. J. Org. Chem. pp. 3245–3266.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds