metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­cyclo­hexyl­phenyl­phosphine)iodido­silver(I) pyridine monosolvate

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: boowaga@uj.ac.za

(Received 22 September 2009; accepted 6 October 2009; online 10 October 2009)

The structure of the title compound, [AgI(C18H27P)2]·C5H5N, shows a trigonal-planar coordinated AgI atom within a distorted IAgP2 donor set. The pyridine solvent mol­ecule is only associated with the complex via very weak inter­molecular C—H⋯N inter­actions.

Related literature

For general background to silver(I) phosphine complexes, see: Meijboom et al. (2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). For related structures, see: Bowmaker et al. (1993[Bowmaker, G. A., Effendy, Hanna, J. H., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387-1397.], 1996[Bowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449-2457.]); Alyea et al. (1982[Alyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369-1371.]); Lin et al. (1993[Lin, W., Warren, T. H., Nuzzo, R. G. & Girolami, G. S. (1993). J. Am. Chem. Soc. 115, 11644-11645.]). For the solution behaviour of [AgXLn] complexes (L = tertiary phosphine, n = 1–4, X = coordinating or non-coordinating anion), see: Muetterties & Alegranti (1972[Muetterties, E. L. & Alegranti, C. W., (1972). J. Am. Chem. Soc. 94, 6386-6391.]).

[Scheme 1]

Experimental

Crystal data
  • [AgI(C18H27P)2]·C5H5N

  • Mr = 862.13

  • Monoclinic, P 21 /c

  • a = 18.696 (4) Å

  • b = 11.874 (2) Å

  • c = 23.641 (8) Å

  • β = 128.131 (18)°

  • V = 4128 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 298 K

  • 0.34 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.659, Tmax = 0.814

  • 27061 measured reflections

  • 10220 independent reflections

  • 6255 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 0.99

  • 10220 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

I—Ag 2.7725 (5)
Ag—P2 2.4462 (9)
Ag—P1 2.4643 (9)
P2—Ag—P1 131.59 (3)
P2—Ag—I 122.75 (2)
P1—Ag—I 105.00 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C66—H66⋯Ni 0.93 2.72 3.538 (4) 147
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Mdison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Stoichiometric reactions of silver(I) with tertiary phosphines often results in silver(I) complexes of the type [AgXLn] (L = tertiary phosphine; n = 1 - 4 ; X = coordinating or non-coordinating anion). These complexes display a diversity of structural types, and reviews on this topic have been published (Meijboom et al., 2009 and refs. therein). A 1:2 stoichiometric ratio generally results in monomeric complex [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complex [{AgXL2}2] (Bowmaker et al., 1996; Meijboom et al., 2009) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor properties of the anion (Bowmaker et al., 1996).

The title complex crystallizes as mononuclear units in the P21/n space group with one [AgBr{PCy2Ph}2] complex and one pyridine molecule in the asymetric unit as expected for the bulky and fairly basic dicyclohexylphenyl phosphine ligands (Lin et al., 1993; Alyea et al., 1982; Bowmaker et al., 1993). This type of [AgX(PR3)2] coordination was also observed for X = CN, I, Br, C1, SCN or NCO, most of which were found to be isomorphous in the monoclinic C2/c space group (Bowmaker et al., 1996).

The iodide anion is unsymmetrically coordinated to the silver with I-Ag-P angles of 105.00 (2) and 122.75 (2)°. The P-Ag-P angle is 131.59 (3)° with the I-Ag distance being 2.7725 (5) Å. These angles and distances are comparable to those of the thiocyanate analogue ([AgSCN(P{Cy3})2] I-Ag-P = 104.60 (8) and 123.69 (8)° and P-Ag-P = 131.51 (7)°) (Bowmaker et al., 1996) both of which have the disposition of the two phosphine ligands fairly different. This fits with trend that relates M-X distances and P-M-P angles as shown by Bowmaker et al. (1996) for complexes with bulky phosphines. The three-co-ordinate (P2AgX) silver environment is planar with the sum of the I-Ag-P and P-Ag-P angles being 359.3°. The pyridine solvate interacts very weakly with the silver(I) complex through C-H···N interactions.

Despite the number of structural reports of [AgXLn] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

Related literature top

For general background to silver(I) phosphine complexes, see: Meijboom et al. (2009). For related structures, see: Bowmaker et al. (1993, 1996); Alyea et al. (1982); Lin et al. (1993). For the solution behaviour of [AgXLn] complexes, see: Muetterties & Alegranti (1972).

Experimental top

Silver iodide (0.130 g, 0.43 mmol) and dicyclohexylphenylphosphine (1.009 g, 0.86 mmol) were suspended in pyridine (5 ml). The mixture was heated to give a clear solution. Colourless crystals of the title compound suitable for X-ray crystallography were obtained by slow evaporation.

Refinement top

All hydrogen atoms were positioned geometrically, with C–H = 0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Stoichiometric reactions of silver(I) with tertiary phosphines often results in silver(I) complexes of the type [AgXLn] (L = tertiary phosphine; n = 1 - 4 ; X = coordinating or non-coordinating anion). These complexes display a diversity of structural types, and reviews on this topic have been published (Meijboom et al., 2009 and refs. therein). A 1:2 stoichiometric ratio generally results in monomeric complex [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complex [{AgXL2}2] (Bowmaker et al., 1996; Meijboom et al., 2009) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor properties of the anion (Bowmaker et al., 1996).

The title complex crystallizes as mononuclear units in the P21/n space group with one [AgBr{PCy2Ph}2] complex and one pyridine molecule in the asymetric unit as expected for the bulky and fairly basic dicyclohexylphenyl phosphine ligands (Lin et al., 1993; Alyea et al., 1982; Bowmaker et al., 1993). This type of [AgX(PR3)2] coordination was also observed for X = CN, I, Br, C1, SCN or NCO, most of which were found to be isomorphous in the monoclinic C2/c space group (Bowmaker et al., 1996).

The iodide anion is unsymmetrically coordinated to the silver with I-Ag-P angles of 105.00 (2) and 122.75 (2)°. The P-Ag-P angle is 131.59 (3)° with the I-Ag distance being 2.7725 (5) Å. These angles and distances are comparable to those of the thiocyanate analogue ([AgSCN(P{Cy3})2] I-Ag-P = 104.60 (8) and 123.69 (8)° and P-Ag-P = 131.51 (7)°) (Bowmaker et al., 1996) both of which have the disposition of the two phosphine ligands fairly different. This fits with trend that relates M-X distances and P-M-P angles as shown by Bowmaker et al. (1996) for complexes with bulky phosphines. The three-co-ordinate (P2AgX) silver environment is planar with the sum of the I-Ag-P and P-Ag-P angles being 359.3°. The pyridine solvate interacts very weakly with the silver(I) complex through C-H···N interactions.

Despite the number of structural reports of [AgXLn] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

For general background to silver(I) phosphine complexes, see: Meijboom et al. (2009). For related structures, see: Bowmaker et al. (1993, 1996); Alyea et al. (1982); Lin et al. (1993). For the solution behaviour of [AgXLn] complexes, see: Muetterties & Alegranti (1972).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
Bis(dicyclohexylphenylphosphine)iodidosilver(I) pyridine monosolvate top
Crystal data top
[AgI(C18H27P)2]·C5H5NF(000) = 1768
Mr = 862.13Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27740 reflections
a = 18.696 (4) Åθ = 1.4–28.3°
b = 11.874 (2) ŵ = 1.34 mm1
c = 23.641 (8) ÅT = 298 K
β = 128.131 (18)°Cuboid, colourless
V = 4128 (2) Å30.34 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6255 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.041
ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2423
Tmin = 0.659, Tmax = 0.814k = 1515
27061 measured reflectionsl = 3127
10220 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.9189P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.005
S = 0.99Δρmax = 0.54 e Å3
10220 reflectionsΔρmin = 0.59 e Å3
415 parameters
Crystal data top
[AgI(C18H27P)2]·C5H5NV = 4128 (2) Å3
Mr = 862.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.696 (4) ŵ = 1.34 mm1
b = 11.874 (2) ÅT = 298 K
c = 23.641 (8) Å0.34 × 0.20 × 0.16 mm
β = 128.131 (18)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10220 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6255 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.814Rint = 0.041
27061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.99Δρmax = 0.54 e Å3
10220 reflectionsΔρmin = 0.59 e Å3
415 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.790785 (18)0.204293 (18)0.615050 (14)0.05957 (8)
Ag0.744504 (16)0.379062 (18)0.664695 (13)0.03984 (7)
P10.85008 (5)0.53299 (6)0.69227 (4)0.03805 (19)
P20.63620 (6)0.35663 (6)0.68953 (5)0.03993 (19)
C110.9128 (2)0.5133 (3)0.65564 (16)0.0422 (8)
H110.9410.43880.67220.051*
C120.8498 (2)0.5074 (3)0.57406 (18)0.0578 (10)
H12A0.80430.44970.55820.069*
H12B0.81870.57890.55450.069*
C130.9017 (3)0.4810 (3)0.5454 (2)0.0721 (12)
H13A0.86040.4850.49330.086*
H13B0.92510.40470.55890.086*
C140.9798 (3)0.5618 (4)0.5742 (2)0.0878 (14)
H14A1.01460.53770.55850.105*
H14B0.95580.63620.55460.105*
C151.0410 (3)0.5679 (4)0.6541 (2)0.0831 (14)
H15A1.08670.62540.66990.1*
H15B1.07220.49640.67360.1*
C160.9900 (2)0.5947 (3)0.68342 (19)0.0585 (10)
H16A1.03170.59140.73550.07*
H16B0.9660.67070.66960.07*
C210.9404 (2)0.5455 (3)0.78958 (16)0.0440 (8)
H210.98310.6040.79810.053*
C220.9919 (2)0.4344 (3)0.81973 (18)0.0557 (9)
H22A0.95010.37560.8110.067*
H22B1.01610.41390.79480.067*
C231.0696 (3)0.4419 (3)0.90018 (19)0.0693 (11)
H23A1.11480.4950.90870.083*
H23B1.09840.36880.91790.083*
C241.0341 (3)0.4802 (4)0.9408 (2)0.0859 (14)
H24A0.99530.42210.93760.103*
H24B1.0850.49120.99110.103*
C250.9813 (3)0.5880 (4)0.9101 (2)0.0898 (15)
H25A1.02180.64790.91790.108*
H25B0.95720.60810.93520.108*
C260.9030 (3)0.5781 (3)0.8298 (2)0.0656 (11)
H26A0.87110.64940.81170.079*
H26B0.86040.52130.82180.079*
C310.7997 (2)0.6729 (3)0.66097 (18)0.0446 (8)
C320.8443 (3)0.7733 (3)0.69474 (19)0.0554 (9)
H320.90360.77180.73740.066*
C330.8012 (3)0.8755 (3)0.6654 (2)0.0654 (10)
H330.82970.94180.69040.079*
C340.7164 (3)0.8799 (3)0.5992 (2)0.0753 (12)
H340.69020.94880.57740.09*
C350.6714 (3)0.7822 (3)0.5662 (2)0.0788 (13)
H350.61230.78460.52340.095*
C360.7129 (2)0.6792 (3)0.59573 (19)0.0587 (10)
H360.68210.61330.57150.07*
C410.5531 (2)0.4716 (3)0.65743 (17)0.0446 (8)
H410.51430.45430.6710.054*
C420.6003 (3)0.5839 (3)0.6913 (2)0.0652 (10)
H42A0.64340.59880.68220.078*
H42B0.63360.58010.74290.078*
C430.5308 (3)0.6802 (3)0.6603 (3)0.0932 (16)
H43A0.49210.66950.67420.112*
H43B0.56280.75110.68050.112*
C440.4724 (3)0.6859 (3)0.5792 (3)0.0831 (14)
H44A0.42790.74560.56160.1*
H44B0.51020.70340.56520.1*
C450.4247 (3)0.5765 (3)0.5463 (2)0.0729 (11)
H45A0.38990.58060.49450.088*
H45B0.38280.56230.55660.088*
C460.4936 (2)0.4795 (3)0.57595 (18)0.0608 (10)
H46A0.4610.40910.55520.073*
H46B0.53180.49060.56170.073*
C510.6979 (2)0.3516 (3)0.78730 (17)0.0451 (8)
H510.73190.42250.8060.054*
C520.7693 (3)0.2594 (3)0.8213 (2)0.0632 (10)
H52A0.73940.18680.80360.076*
H52B0.80750.26890.80690.076*
C530.8281 (3)0.2603 (4)0.9023 (2)0.0795 (13)
H53A0.86550.32760.92040.095*
H53B0.86840.19560.92110.095*
C540.7727 (3)0.2574 (4)0.9294 (2)0.0846 (14)
H54A0.74240.18510.91780.102*
H54B0.8130.26570.98130.102*
C550.7031 (3)0.3500 (4)0.8961 (2)0.0829 (14)
H55A0.73390.42220.91250.099*
H55B0.66610.34320.91180.099*
C560.6422 (3)0.3460 (3)0.8145 (2)0.0665 (11)
H56A0.60.40880.7950.08*
H56B0.6070.27690.79780.08*
C610.5671 (2)0.2287 (3)0.65462 (18)0.0480 (8)
C620.5892 (3)0.1435 (3)0.6281 (2)0.0729 (12)
H620.63850.15260.62810.087*
C630.5392 (3)0.0449 (3)0.6015 (3)0.0965 (16)
H630.55550.01160.58410.116*
C640.4664 (3)0.0301 (4)0.6007 (3)0.1010 (16)
H640.43280.03620.58280.121*
C650.4429 (3)0.1126 (3)0.6262 (3)0.0871 (14)
H650.39280.10270.62520.104*
C660.4930 (3)0.2117 (3)0.6537 (2)0.0650 (11)
H660.47670.26710.67160.078*
N0.6575 (6)0.5980 (8)0.3528 (6)0.164 (3)
C710.7217 (8)0.6745 (10)0.3969 (5)0.160 (4)
H710.72320.70450.4340.192*
C720.7839 (7)0.7092 (7)0.3891 (6)0.185 (4)
H720.82380.76780.41680.222*
C730.7862 (8)0.6571 (9)0.3407 (8)0.191 (5)
H730.83110.67580.33660.229*
C740.7275 (8)0.5813 (8)0.2994 (6)0.170 (4)
H740.72960.54540.26550.204*
C750.6646 (6)0.5551 (6)0.3055 (6)0.163 (3)
H750.62160.50180.27370.196*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.07733 (19)0.04074 (13)0.08115 (19)0.00982 (12)0.05920 (16)0.00168 (12)
Ag0.03998 (14)0.03724 (13)0.04897 (15)0.00255 (11)0.03081 (12)0.00066 (11)
P10.0378 (5)0.0363 (4)0.0457 (5)0.0051 (4)0.0286 (4)0.0027 (4)
P20.0401 (5)0.0362 (4)0.0511 (5)0.0002 (4)0.0320 (4)0.0025 (4)
C110.0417 (19)0.0467 (18)0.046 (2)0.0037 (15)0.0309 (17)0.0018 (15)
C120.061 (2)0.066 (2)0.054 (2)0.0194 (19)0.039 (2)0.0130 (18)
C130.089 (3)0.083 (3)0.065 (3)0.020 (2)0.058 (3)0.019 (2)
C140.101 (4)0.111 (4)0.092 (4)0.033 (3)0.080 (3)0.028 (3)
C150.066 (3)0.122 (4)0.086 (3)0.035 (3)0.060 (3)0.028 (3)
C160.054 (2)0.074 (2)0.059 (2)0.0286 (19)0.041 (2)0.0205 (19)
C210.048 (2)0.0457 (18)0.044 (2)0.0064 (16)0.0311 (17)0.0043 (15)
C220.056 (2)0.058 (2)0.053 (2)0.0002 (18)0.034 (2)0.0043 (17)
C230.062 (3)0.081 (3)0.050 (3)0.001 (2)0.027 (2)0.015 (2)
C240.088 (3)0.114 (4)0.049 (3)0.009 (3)0.039 (3)0.011 (2)
C250.113 (4)0.117 (4)0.056 (3)0.003 (3)0.061 (3)0.009 (3)
C260.076 (3)0.080 (3)0.060 (3)0.004 (2)0.052 (2)0.003 (2)
C310.044 (2)0.0372 (17)0.055 (2)0.0042 (15)0.0313 (18)0.0020 (15)
C320.055 (2)0.045 (2)0.063 (2)0.0071 (17)0.035 (2)0.0065 (17)
C330.074 (3)0.0356 (19)0.089 (3)0.0066 (19)0.052 (3)0.008 (2)
C340.065 (3)0.045 (2)0.112 (4)0.009 (2)0.053 (3)0.013 (2)
C350.054 (3)0.059 (3)0.090 (3)0.003 (2)0.028 (2)0.015 (2)
C360.048 (2)0.0400 (19)0.068 (3)0.0073 (17)0.026 (2)0.0014 (17)
C410.0416 (19)0.0439 (18)0.053 (2)0.0007 (15)0.0314 (17)0.0009 (15)
C420.059 (2)0.047 (2)0.069 (3)0.0040 (18)0.029 (2)0.0089 (18)
C430.085 (3)0.050 (2)0.106 (4)0.018 (2)0.039 (3)0.011 (2)
C440.075 (3)0.052 (3)0.106 (4)0.024 (2)0.047 (3)0.018 (2)
C450.060 (3)0.066 (3)0.071 (3)0.018 (2)0.030 (2)0.013 (2)
C460.059 (2)0.051 (2)0.055 (2)0.0048 (18)0.026 (2)0.0022 (17)
C510.0440 (19)0.0502 (19)0.048 (2)0.0075 (16)0.0315 (17)0.0067 (15)
C520.062 (2)0.079 (3)0.063 (3)0.030 (2)0.045 (2)0.023 (2)
C530.073 (3)0.103 (3)0.070 (3)0.037 (3)0.048 (3)0.031 (2)
C540.092 (3)0.113 (4)0.065 (3)0.032 (3)0.057 (3)0.028 (3)
C550.095 (3)0.110 (3)0.072 (3)0.044 (3)0.066 (3)0.027 (3)
C560.063 (3)0.086 (3)0.074 (3)0.022 (2)0.054 (2)0.020 (2)
C610.044 (2)0.0387 (18)0.066 (2)0.0004 (15)0.0364 (19)0.0069 (16)
C620.076 (3)0.051 (2)0.120 (4)0.012 (2)0.075 (3)0.016 (2)
C630.101 (4)0.055 (3)0.165 (5)0.021 (3)0.098 (4)0.033 (3)
C640.086 (4)0.054 (3)0.171 (5)0.024 (3)0.084 (4)0.015 (3)
C650.073 (3)0.062 (3)0.148 (4)0.013 (2)0.079 (3)0.003 (3)
C660.059 (2)0.053 (2)0.101 (3)0.0053 (19)0.058 (2)0.002 (2)
N0.128 (6)0.192 (8)0.225 (9)0.042 (5)0.135 (7)0.050 (6)
C710.127 (7)0.225 (12)0.124 (7)0.074 (7)0.076 (6)0.025 (6)
C720.135 (8)0.142 (7)0.252 (12)0.001 (6)0.107 (8)0.022 (7)
C730.222 (11)0.113 (7)0.342 (16)0.018 (7)0.227 (12)0.022 (8)
C740.231 (12)0.124 (7)0.254 (10)0.016 (7)0.199 (10)0.018 (7)
C750.138 (7)0.109 (5)0.252 (11)0.004 (5)0.125 (7)0.002 (6)
Geometric parameters (Å, º) top
I—Ag2.7725 (5)C41—C421.525 (4)
Ag—P22.4462 (9)C41—H410.98
Ag—P12.4643 (9)C42—C431.534 (5)
P1—C311.825 (3)C42—H42A0.97
P1—C211.835 (3)C42—H42B0.97
P1—C111.852 (3)C43—C441.511 (6)
P2—C611.828 (3)C43—H43A0.97
P2—C511.839 (3)C43—H43B0.97
P2—C411.843 (3)C44—C451.494 (5)
C11—C161.509 (4)C44—H44A0.97
C11—C121.519 (4)C44—H44B0.97
C11—H110.98C45—C461.536 (5)
C12—C131.518 (5)C45—H45A0.97
C12—H12A0.97C45—H45B0.97
C12—H12B0.97C46—H46A0.97
C13—C141.514 (5)C46—H46B0.97
C13—H13A0.97C51—C521.517 (4)
C13—H13B0.97C51—C561.528 (4)
C14—C151.487 (5)C51—H510.98
C14—H14A0.97C52—C531.509 (5)
C14—H14B0.97C52—H52A0.97
C15—C161.520 (5)C52—H52B0.97
C15—H15A0.97C53—C541.518 (5)
C15—H15B0.97C53—H53A0.97
C16—H16A0.97C53—H53B0.97
C16—H16B0.97C54—C551.502 (5)
C21—C221.526 (4)C54—H54A0.97
C21—C261.537 (4)C54—H54B0.97
C21—H210.98C55—C561.518 (5)
C22—C231.525 (5)C55—H55A0.97
C22—H22A0.97C55—H55B0.97
C22—H22B0.97C56—H56A0.97
C23—C241.534 (5)C56—H56B0.97
C23—H23A0.97C61—C621.380 (5)
C23—H23B0.97C61—C661.387 (4)
C24—C251.501 (6)C62—C631.383 (5)
C24—H24A0.97C62—H620.93
C24—H24B0.97C63—C641.362 (6)
C25—C261.526 (5)C63—H630.93
C25—H25A0.97C64—C651.356 (6)
C25—H25B0.97C64—H640.93
C26—H26A0.97C65—C661.391 (5)
C26—H26B0.97C65—H650.93
C31—C361.389 (5)C66—H660.93
C31—C321.390 (4)N—C751.307 (10)
C32—C331.383 (5)N—C711.345 (10)
C32—H320.93C71—C721.349 (11)
C33—C341.379 (5)C71—H710.93
C33—H330.93C72—C731.324 (11)
C34—C351.361 (5)C72—H720.93
C34—H340.93C73—C741.283 (11)
C35—C361.383 (5)C73—H730.93
C35—H350.93C74—C751.307 (10)
C36—H360.93C74—H740.93
C41—C461.520 (4)C75—H750.93
P2—Ag—P1131.59 (3)C46—C41—P2109.8 (2)
P2—Ag—I122.75 (2)C42—C41—P2111.4 (2)
P1—Ag—I105.00 (2)C46—C41—H41108.5
C31—P1—C21106.21 (15)C42—C41—H41108.5
C31—P1—C11103.99 (14)P2—C41—H41108.5
C21—P1—C11103.79 (14)C41—C42—C43110.9 (3)
C31—P1—Ag116.06 (11)C41—C42—H42A109.5
C21—P1—Ag111.01 (10)C43—C42—H42A109.5
C11—P1—Ag114.67 (10)C41—C42—H42B109.5
C61—P2—C51105.10 (15)C43—C42—H42B109.5
C61—P2—C41104.42 (15)H42A—C42—H42B108
C51—P2—C41104.89 (14)C44—C43—C42112.0 (3)
C61—P2—Ag116.17 (11)C44—C43—H43A109.2
C51—P2—Ag109.57 (11)C42—C43—H43A109.2
C41—P2—Ag115.63 (10)C44—C43—H43B109.2
C16—C11—C12111.4 (3)C42—C43—H43B109.2
C16—C11—P1115.3 (2)H43A—C43—H43B107.9
C12—C11—P1112.5 (2)C45—C44—C43110.7 (3)
C16—C11—H11105.6C45—C44—H44A109.5
C12—C11—H11105.6C43—C44—H44A109.5
P1—C11—H11105.6C45—C44—H44B109.5
C13—C12—C11111.6 (3)C43—C44—H44B109.5
C13—C12—H12A109.3H44A—C44—H44B108.1
C11—C12—H12A109.3C44—C45—C46110.6 (3)
C13—C12—H12B109.3C44—C45—H45A109.5
C11—C12—H12B109.3C46—C45—H45A109.5
H12A—C12—H12B108C44—C45—H45B109.5
C12—C13—C14111.9 (3)C46—C45—H45B109.5
C12—C13—H13A109.2H45A—C45—H45B108.1
C14—C13—H13A109.2C41—C46—C45112.1 (3)
C12—C13—H13B109.2C41—C46—H46A109.2
C14—C13—H13B109.2C45—C46—H46A109.2
H13A—C13—H13B107.9C41—C46—H46B109.2
C15—C14—C13112.0 (3)C45—C46—H46B109.2
C15—C14—H14A109.2H46A—C46—H46B107.9
C13—C14—H14A109.2C52—C51—C56110.6 (3)
C15—C14—H14B109.2C52—C51—P2110.7 (2)
C13—C14—H14B109.2C56—C51—P2118.0 (2)
H14A—C14—H14B107.9C52—C51—H51105.5
C14—C15—C16112.4 (4)C56—C51—H51105.5
C14—C15—H15A109.1P2—C51—H51105.5
C16—C15—H15A109.1C53—C52—C51112.4 (3)
C14—C15—H15B109.1C53—C52—H52A109.1
C16—C15—H15B109.1C51—C52—H52A109.1
H15A—C15—H15B107.8C53—C52—H52B109.1
C11—C16—C15111.6 (3)C51—C52—H52B109.1
C11—C16—H16A109.3H52A—C52—H52B107.9
C15—C16—H16A109.3C52—C53—C54112.5 (4)
C11—C16—H16B109.3C52—C53—H53A109.1
C15—C16—H16B109.3C54—C53—H53A109.1
H16A—C16—H16B108C52—C53—H53B109.1
C22—C21—C26109.0 (3)C54—C53—H53B109.1
C22—C21—P1110.0 (2)H53A—C53—H53B107.8
C26—C21—P1112.2 (2)C55—C54—C53110.9 (3)
C22—C21—H21108.5C55—C54—H54A109.5
C26—C21—H21108.5C53—C54—H54A109.5
P1—C21—H21108.5C55—C54—H54B109.5
C23—C22—C21111.9 (3)C53—C54—H54B109.5
C23—C22—H22A109.2H54A—C54—H54B108
C21—C22—H22A109.2C54—C55—C56111.8 (3)
C23—C22—H22B109.2C54—C55—H55A109.2
C21—C22—H22B109.2C56—C55—H55A109.2
H22A—C22—H22B107.9C54—C55—H55B109.2
C22—C23—C24110.5 (3)C56—C55—H55B109.2
C22—C23—H23A109.5H55A—C55—H55B107.9
C24—C23—H23A109.5C55—C56—C51111.2 (3)
C22—C23—H23B109.5C55—C56—H56A109.4
C24—C23—H23B109.5C51—C56—H56A109.4
H23A—C23—H23B108.1C55—C56—H56B109.4
C25—C24—C23111.1 (3)C51—C56—H56B109.4
C25—C24—H24A109.4H56A—C56—H56B108
C23—C24—H24A109.4C62—C61—C66117.5 (3)
C25—C24—H24B109.4C62—C61—P2119.2 (3)
C23—C24—H24B109.4C66—C61—P2123.2 (3)
H24A—C24—H24B108C63—C62—C61121.3 (4)
C24—C25—C26112.0 (4)C63—C62—H62119.4
C24—C25—H25A109.2C61—C62—H62119.4
C26—C25—H25A109.2C64—C63—C62120.3 (4)
C24—C25—H25B109.2C64—C63—H63119.9
C26—C25—H25B109.2C62—C63—H63119.9
H25A—C25—H25B107.9C65—C64—C63119.7 (4)
C25—C26—C21109.7 (3)C65—C64—H64120.1
C25—C26—H26A109.7C63—C64—H64120.1
C21—C26—H26A109.7C64—C65—C66120.7 (4)
C25—C26—H26B109.7C64—C65—H65119.7
C21—C26—H26B109.7C66—C65—H65119.7
H26A—C26—H26B108.2C61—C66—C65120.5 (4)
C36—C31—C32117.8 (3)C61—C66—H66119.8
C36—C31—P1117.2 (2)C65—C66—H66119.8
C32—C31—P1124.9 (3)C75—N—C71114.5 (8)
C33—C32—C31120.5 (4)N—C71—C72122.1 (9)
C33—C32—H32119.7N—C71—H71119
C31—C32—H32119.7C72—C71—H71119
C34—C33—C32120.5 (3)C73—C72—C71117.8 (10)
C34—C33—H33119.7C73—C72—H72121.1
C32—C33—H33119.7C71—C72—H72121.1
C35—C34—C33119.3 (4)C74—C73—C72121.1 (10)
C35—C34—H34120.4C74—C73—H73119.4
C33—C34—H34120.4C72—C73—H73119.4
C34—C35—C36120.6 (4)C73—C74—C75119.3 (10)
C34—C35—H35119.7C73—C74—H74120.4
C36—C35—H35119.7C75—C74—H74120.4
C35—C36—C31121.0 (3)C74—C75—N125.0 (9)
C35—C36—H36119.5C74—C75—H75117.5
C31—C36—H36119.5N—C75—H75117.5
C46—C41—C42110.2 (3)
P2—Ag—P1—C3154.39 (13)C34—C35—C36—C312.5 (7)
I—Ag—P1—C31134.97 (12)C32—C31—C36—C351.4 (6)
P2—Ag—P1—C2167.00 (12)P1—C31—C36—C35176.7 (3)
I—Ag—P1—C21103.64 (11)C61—P2—C41—C4666.3 (3)
P2—Ag—P1—C11175.78 (11)C51—P2—C41—C46176.6 (2)
I—Ag—P1—C1113.58 (12)Ag—P2—C41—C4662.6 (2)
P1—Ag—P2—C61177.17 (12)C61—P2—C41—C42171.3 (3)
I—Ag—P2—C6113.59 (13)C51—P2—C41—C4261.1 (3)
P1—Ag—P2—C5163.97 (12)Ag—P2—C41—C4259.7 (3)
I—Ag—P2—C51105.26 (11)C46—C41—C42—C4354.0 (4)
P1—Ag—P2—C4154.26 (12)P2—C41—C42—C43176.1 (3)
I—Ag—P2—C41136.51 (11)C41—C42—C43—C4455.5 (5)
C31—P1—C11—C1663.3 (3)C42—C43—C44—C4556.8 (5)
C21—P1—C11—C1647.6 (3)C43—C44—C45—C4656.5 (5)
Ag—P1—C11—C16168.9 (2)C42—C41—C46—C4555.2 (4)
C31—P1—C11—C1265.9 (3)P2—C41—C46—C45178.2 (3)
C21—P1—C11—C12176.8 (2)C44—C45—C46—C4156.8 (5)
Ag—P1—C11—C1261.9 (2)C61—P2—C51—C5270.1 (3)
C16—C11—C12—C1353.9 (4)C41—P2—C51—C52179.9 (2)
P1—C11—C12—C13175.0 (2)Ag—P2—C51—C5255.4 (3)
C11—C12—C13—C1453.5 (5)C61—P2—C51—C5658.7 (3)
C12—C13—C14—C1553.4 (5)C41—P2—C51—C5651.1 (3)
C13—C14—C15—C1653.6 (5)Ag—P2—C51—C56175.8 (2)
C12—C11—C16—C1553.8 (4)C56—C51—C52—C5353.4 (4)
P1—C11—C16—C15176.5 (3)P2—C51—C52—C53174.0 (3)
C14—C15—C16—C1154.1 (5)C51—C52—C53—C5453.2 (5)
C31—P1—C21—C22175.3 (2)C52—C53—C54—C5553.4 (6)
C11—P1—C21—C2266.0 (2)C53—C54—C55—C5655.2 (5)
Ag—P1—C21—C2257.7 (2)C54—C55—C56—C5156.6 (5)
C31—P1—C21—C2663.2 (3)C52—C51—C56—C5554.9 (4)
C11—P1—C21—C26172.5 (2)P2—C51—C56—C55176.3 (3)
Ag—P1—C21—C2663.8 (3)C51—P2—C61—C62110.0 (3)
C26—C21—C22—C2358.3 (4)C41—P2—C61—C62139.9 (3)
P1—C21—C22—C23178.2 (2)Ag—P2—C61—C6211.3 (3)
C21—C22—C23—C2456.0 (4)C51—P2—C61—C6669.5 (3)
C22—C23—C24—C2553.9 (5)C41—P2—C61—C6640.6 (3)
C23—C24—C25—C2656.1 (5)Ag—P2—C61—C66169.2 (3)
C24—C25—C26—C2158.5 (5)C66—C61—C62—C630.0 (6)
C22—C21—C26—C2558.4 (4)P2—C61—C62—C63179.6 (4)
P1—C21—C26—C25179.6 (3)C61—C62—C63—C640.3 (8)
C21—P1—C31—C36159.5 (3)C62—C63—C64—C650.1 (8)
C11—P1—C31—C3691.4 (3)C63—C64—C65—C660.6 (8)
Ag—P1—C31—C3635.5 (3)C62—C61—C66—C650.7 (6)
C21—P1—C31—C3225.6 (3)P2—C61—C66—C65179.8 (3)
C11—P1—C31—C3283.5 (3)C64—C65—C66—C610.9 (7)
Ag—P1—C31—C32149.5 (3)C75—N—C71—C724.4 (13)
C36—C31—C32—C332.8 (5)N—C71—C72—C736.7 (15)
P1—C31—C32—C33177.7 (3)C71—C72—C73—C744.5 (17)
C31—C32—C33—C345.4 (6)C72—C73—C74—C750.2 (17)
C32—C33—C34—C356.5 (6)C73—C74—C75—N2.3 (16)
C33—C34—C35—C365.0 (7)C71—N—C75—C740.1 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C66—H66···Ni0.932.723.538 (4)147
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[AgI(C18H27P)2]·C5H5N
Mr862.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.696 (4), 11.874 (2), 23.641 (8)
β (°) 128.131 (18)
V3)4128 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.34 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.659, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
27061, 10220, 6255
Rint0.041
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 0.99
No. of reflections10220
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.59

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
I—Ag2.7725 (5)Ag—P12.4643 (9)
Ag—P22.4462 (9)
P2—Ag—P1131.59 (3)P1—Ag—I105.00 (2)
P2—Ag—I122.75 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C66—H66···Ni0.932.723.538 (4)147
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial assistance from the University of Johannesburg is gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Professor D. G. Billing) is thanked for use of its diffractometer.

References

First citationAlyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369–1371.  CSD CrossRef CAS Web of Science Google Scholar
First citationBowmaker, G. A., Effendy, Hanna, J. H., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387–1397.  CSD CrossRef Web of Science Google Scholar
First citationBowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449–2457.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Mdison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLin, W., Warren, T. H., Nuzzo, R. G. & Girolami, G. S. (1993). J. Am. Chem. Soc. 115, 11644–11645.  CrossRef CAS Web of Science Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationMuetterties, E. L. & Alegranti, C. W., (1972). J. Am. Chem. Soc. 94, 6386–6391.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds