metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[zinc(II)-bis­­[μ-1,3-bis­­(imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]] dinitrate methanol solvate]

aDepartment of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
*Correspondence e-mail: lianger@sun.ac.za

(Received 1 October 2009; accepted 2 October 2009; online 10 October 2009)

In the title coordination compound, {[Zn(C14H14N4)2](NO3)2·CH3OH}n, the cationic complex forms a looped chain containing 24-membered M2L2 rings. The ligand adopts two distinct conformations that are alternated in subsequent loops. The ZnII ion displays a slightly distorted tetra­hedral geometry being coordinated by four N atoms from four 1,3-bis­(imidazol-1-ylmeth­yl)benzene ligands. The nitrate ions and methanol solvent mol­ecules are located between adjacent double-stranded chains and participate in an extensive net of O—H⋯O and C—H⋯O hydrogen bonds. The resulting three-dimensional assembly is further stabilized by ππ inter­actions between benzene rings [centroid–centroid distances = 3.878 (2) and 3.853 (2) Å].

Related literature

For earlier studies on metal complexes of ditopic imidazole-based ligands, see: Dobrzańska et al. (2006[Dobrzańska, L., Lloyd, G. O., Esterhuysen, C. & Barbour, L. J. (2006). Angew. Chem. Int. Ed. 45, 5856-5859.], 2007[Dobrzańska, L., Lloyd, G. O. & Barbour, L. J. (2007). New J. Chem. 31, 669-676.]). For similar one-dimensional double-stranded motifs formed with the title ligand, see: Li & Du (2006[Li, T. & Du, S.-W. (2006). Acta Cryst. E62, m1933-m1935.]), Dobrzańska et al. (2008[Dobrzańska, L., Kleinhans, D. & Barbour, L. J. (2008). New J. Chem. 32, 813-819.]). For Zn—N distances in related tetra­hedral zinc(II) complexes, see: Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem. Int. Ed. 36, 2336-2338.]); Chawla et al. (2006[Chawla, S. K., Arora, M., Nättinen, K. & Rissanen, K. (2006). Mendeleev Commun. 16, 88-90.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H14N4)2](NO3)2·CH4O

  • Mr = 698.02

  • Triclinic, [P \overline 1]

  • a = 9.880 (2) Å

  • b = 12.711 (3) Å

  • c = 13.127 (3) Å

  • α = 68.798 (4)°

  • β = 83.167 (4)°

  • γ = 87.476 (4)°

  • V = 1526.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 100 K

  • 0.21 × 0.10 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.918

  • 17638 measured reflections

  • 7036 independent reflections

  • 4891 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.121

  • S = 1.08

  • 7036 reflections

  • 426 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 1.985 (3)
Zn1—N19 1.986 (3)
Zn1—N35i 1.989 (3)
Zn1—N17ii 2.009 (3)
N1—Zn1—N19 109.85 (11)
N1—Zn1—N35i 114.88 (11)
N19—Zn1—N35i 106.22 (10)
N1—Zn1—N17ii 107.39 (10)
N19—Zn1—N17ii 110.59 (11)
N35i—Zn1—N17ii 107.91 (11)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O46—H46⋯O38iii 0.84 1.96 2.755 (4) 157
C2—H2⋯O38 0.95 2.40 3.240 (4) 148
C2—H2⋯O40 0.95 2.54 3.420 (4) 154
C4—H4⋯O44 0.95 2.28 3.216 (5) 171
C6—H6B⋯O43 0.99 2.33 3.164 (4) 141
C8—H8⋯O46iv 0.95 2.54 3.432 (5) 157
C13—H13B⋯O38v 0.99 2.57 3.350 (5) 136
C20—H20⋯O42ii 0.95 2.30 3.085 (4) 139
C20—H20⋯O44ii 0.95 2.30 3.207 (5) 160
C22—H22⋯O40i 0.95 2.47 3.385 (4) 162
C24—H24B⋯O39i 0.99 2.51 3.379 (5) 147
C28—H28⋯O42vi 0.95 2.59 3.368 (4) 139
C31—H31A⋯O46vi 0.99 2.42 3.324 (4) 151
C31—H31B⋯O43vi 0.99 2.49 3.396 (4) 151
C33—H33⋯O43vi 0.95 2.57 3.313 (5) 135
C36—H36⋯O40i 0.95 2.27 3.135 (4) 151
C10—H10⋯Cg1v 0.95 2.79 3.539 (4) 136
C15—H15⋯Cg2v 0.95 2.85 3.762 (4) 162
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x, -y+1, -z; (vi) x-1, y, z+1. Cg1 and Cg2 are the centroids of the N1–C5 and C25–C30 rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the course of ongoing studies on metal complexes of ditopic imidazole based ligands (Dobrzańska et al., 2007; Dobrzańska et al., 2006) the title coordination compound (I) was isolated. It consists of infinite cationic double-stranded chains running parallel to [-1 - 1 1], nitrate counterions and methanol molecules. An interesting feature of I is the presence of two different conformers of the 1,3-bis(imidazol-1-ylmethyl)benzene ligand in the asymmetric unit simultaneously with N3—C6—C13—N14 and N21—C24—C31—N32 torsion angles of 70.4 (2) and 12.2 (3)°, respectively. These ligands are bridging ZnII centres by imidazole N-atoms to form cationic looped chains, whereby each loop consists of only one type of conformers (Fig. 1), leading to alternating Zn···Zn distances with values of 9.930 (2) and 9.952 (2) Å. Similar one-dimensional double-stranded motifs were observed in the case of Cu(II) complexes with the same ligand and counterions such as Cl-, Br-, NO3- (see compounds 2, 3, 6, 7 in Dobrzańska et al., 2008) and for a Cd(II) complex with Cl- counterions (Li & Du, 2006). However, in none of these cases two distinct conformers of the ligand were present in a single chain. Furthermore it is worth noting that the corresponding N—C—C—N torsion angles for these reported compounds never exceeded 30°. Each zinc(II) ion in the chain shows a slightly deformed tetrahedral geometry with N—Zn—N bond angles in the range of 106.22 (10) - 114.88 (11)° (Table 1). Zn—N bond lengths are in good agreement with those reported for related tetrahedral zinc(II) complexes (Hoskins et al., 1997; Chawla et al., 2006). The position of the imidazole units in the M2L2 rings prevents accommodating any guest molecules inside of the ring spaces formed. Thus nitrate counterions and methanol molecules occupy the spaces between adjacent chains. Both have all of their oxygen atoms participating in an extensive net of hydrogen bonds (Table 2) leading to the formation of a three-dimensional assembly, further stabilized by C—H···π (Table 2) and π-π stacking interactions between benzene rings from adjacent chains [symmetry code: -x, 1 - y, -z, centroid-centroid distance = 3.878 (2) Å with ca 1.05 Å slippage for ring C7—C12 and symmetry code: -x, 1 - y, 1 - z, centroid-centroid distance = 3.853 (2) Å with ca 2.13 Å slippage for ring C25—C30] (Fig. 2).

Related literature top

For earlier studies on metal complexes of ditopic imidazole-based ligands, see: Dobrzańska et al. (2006, 2007). For similar one-dimensional double-stranded motifs formed with the title ligand, see: Li & Du (2006), Dobrzańska et al. (2008). For Zn—N distances in related tetrahedral zinc(II) complexes, see: Hoskins et al. (1997); Chawla et al. (2006). Cg1 and Cg2 are the centroids of the N1–C5 and C25–C30 rings, respectively.

Experimental top

A methanolic solution of Zn(NO3)2.4H2O was added to a methanolic solution of 1,3-bis(imidazol-1-ylmethyl)benzene in a 1:2 molar ratio. Colorless crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) and O—H = 0.84 Å, and refined as riding on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C,O) for all other H.

Structure description top

During the course of ongoing studies on metal complexes of ditopic imidazole based ligands (Dobrzańska et al., 2007; Dobrzańska et al., 2006) the title coordination compound (I) was isolated. It consists of infinite cationic double-stranded chains running parallel to [-1 - 1 1], nitrate counterions and methanol molecules. An interesting feature of I is the presence of two different conformers of the 1,3-bis(imidazol-1-ylmethyl)benzene ligand in the asymmetric unit simultaneously with N3—C6—C13—N14 and N21—C24—C31—N32 torsion angles of 70.4 (2) and 12.2 (3)°, respectively. These ligands are bridging ZnII centres by imidazole N-atoms to form cationic looped chains, whereby each loop consists of only one type of conformers (Fig. 1), leading to alternating Zn···Zn distances with values of 9.930 (2) and 9.952 (2) Å. Similar one-dimensional double-stranded motifs were observed in the case of Cu(II) complexes with the same ligand and counterions such as Cl-, Br-, NO3- (see compounds 2, 3, 6, 7 in Dobrzańska et al., 2008) and for a Cd(II) complex with Cl- counterions (Li & Du, 2006). However, in none of these cases two distinct conformers of the ligand were present in a single chain. Furthermore it is worth noting that the corresponding N—C—C—N torsion angles for these reported compounds never exceeded 30°. Each zinc(II) ion in the chain shows a slightly deformed tetrahedral geometry with N—Zn—N bond angles in the range of 106.22 (10) - 114.88 (11)° (Table 1). Zn—N bond lengths are in good agreement with those reported for related tetrahedral zinc(II) complexes (Hoskins et al., 1997; Chawla et al., 2006). The position of the imidazole units in the M2L2 rings prevents accommodating any guest molecules inside of the ring spaces formed. Thus nitrate counterions and methanol molecules occupy the spaces between adjacent chains. Both have all of their oxygen atoms participating in an extensive net of hydrogen bonds (Table 2) leading to the formation of a three-dimensional assembly, further stabilized by C—H···π (Table 2) and π-π stacking interactions between benzene rings from adjacent chains [symmetry code: -x, 1 - y, -z, centroid-centroid distance = 3.878 (2) Å with ca 1.05 Å slippage for ring C7—C12 and symmetry code: -x, 1 - y, 1 - z, centroid-centroid distance = 3.853 (2) Å with ca 2.13 Å slippage for ring C25—C30] (Fig. 2).

For earlier studies on metal complexes of ditopic imidazole-based ligands, see: Dobrzańska et al. (2006, 2007). For similar one-dimensional double-stranded motifs formed with the title ligand, see: Li & Du (2006), Dobrzańska et al. (2008). For Zn—N distances in related tetrahedral zinc(II) complexes, see: Hoskins et al. (1997); Chawla et al. (2006). Cg1 and Cg2 are the centroids of the N1–C5 and C25–C30 rings, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Fragment of an infinite cationic chain, with the atom-numbering scheme. The alternating loops, represented in red and blue, are formed by different conformations of the ligand [symmetry codes:(i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down [010] showing an extensive net of hydrogen bonds (red dashed lines). Blue dashed lines show π-π stacking interactions.
catena-Poly[[zinc(II)-bis[µ-1,3-bis(imidazol-1-ylmethyl)benzene- κ2N3:N3']] dinitrate methanol solvate] top
Crystal data top
[Zn(C14H14N4)2](NO3)2·CH4OZ = 2
Mr = 698.02F(000) = 724
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.880 (2) ÅCell parameters from 2070 reflections
b = 12.711 (3) Åθ = 2.7–22.5°
c = 13.127 (3) ŵ = 0.87 mm1
α = 68.798 (4)°T = 100 K
β = 83.167 (4)°Needle, colorless
γ = 87.476 (4)°0.21 × 0.10 × 0.10 mm
V = 1526.0 (6) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
7036 independent reflections
Radiation source: fine-focus sealed tube4891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1213
Tmin = 0.838, Tmax = 0.918k = 1616
17638 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
7036 reflections(Δ/σ)max < 0.001
426 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn(C14H14N4)2](NO3)2·CH4Oγ = 87.476 (4)°
Mr = 698.02V = 1526.0 (6) Å3
Triclinic, P1Z = 2
a = 9.880 (2) ÅMo Kα radiation
b = 12.711 (3) ŵ = 0.87 mm1
c = 13.127 (3) ÅT = 100 K
α = 68.798 (4)°0.21 × 0.10 × 0.10 mm
β = 83.167 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
7036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4891 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.918Rint = 0.063
17638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 0.65 e Å3
7036 reflectionsΔρmin = 0.71 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.43395 (4)0.12561 (3)0.25919 (3)0.01622 (12)
N10.3848 (3)0.2295 (2)0.1144 (2)0.0172 (6)
C20.2852 (3)0.2180 (3)0.0597 (3)0.0180 (7)
H20.22090.15820.08620.022*
N30.2878 (3)0.3026 (2)0.0382 (2)0.0176 (6)
C40.3955 (3)0.3723 (3)0.0473 (3)0.0200 (8)
H40.42320.43850.10810.024*
C50.4534 (3)0.3278 (3)0.0471 (3)0.0203 (8)
H50.52920.35870.06490.024*
C60.1934 (3)0.3149 (3)0.1206 (3)0.0192 (7)
H6A0.14950.24110.10380.023*
H6B0.24670.33490.19380.023*
C70.0831 (3)0.4031 (3)0.1262 (2)0.0175 (7)
C80.0524 (3)0.3711 (3)0.1108 (3)0.0201 (8)
H80.07500.29390.09120.024*
C90.1554 (3)0.4517 (3)0.1239 (3)0.0225 (8)
H90.24800.42910.11340.027*
C100.1240 (3)0.5641 (3)0.1520 (3)0.0206 (8)
H100.19490.61860.16160.025*
C110.0113 (3)0.5976 (3)0.1663 (3)0.0181 (7)
C120.1146 (3)0.5170 (3)0.1536 (3)0.0167 (7)
H120.20720.53950.16350.020*
C130.0391 (3)0.7214 (3)0.1923 (3)0.0219 (8)
H13A0.02970.76680.23910.026*
H13B0.02680.73630.12270.026*
N140.1753 (3)0.7599 (2)0.2481 (2)0.0188 (6)
C150.2255 (3)0.7660 (3)0.3530 (3)0.0205 (8)
H150.17920.74560.40260.025*
C160.3531 (3)0.8065 (3)0.3707 (3)0.0204 (8)
H160.41300.81970.43630.025*
N170.3835 (3)0.8258 (2)0.2793 (2)0.0169 (6)
C180.2732 (3)0.7968 (3)0.2072 (3)0.0169 (7)
H180.26490.80170.13620.020*
N190.2938 (3)0.1338 (2)0.3779 (2)0.0176 (6)
C200.2854 (3)0.2185 (3)0.4147 (3)0.0198 (8)
H200.33690.28620.38220.024*
N210.1943 (3)0.1956 (2)0.5041 (2)0.0167 (6)
C220.1401 (3)0.0908 (3)0.5265 (3)0.0202 (8)
H220.07350.05220.58520.024*
C230.2015 (3)0.0539 (3)0.4475 (3)0.0196 (7)
H230.18370.01610.44110.024*
C240.1613 (3)0.2702 (3)0.5671 (3)0.0190 (7)
H24A0.22860.33240.54230.023*
H24B0.16790.22700.64600.023*
C250.0206 (3)0.3190 (3)0.5531 (3)0.0162 (7)
C260.0099 (3)0.3968 (3)0.4524 (3)0.0178 (7)
H260.05780.41800.39090.021*
C270.1391 (3)0.4432 (3)0.4423 (3)0.0203 (8)
H270.15920.49660.37350.024*
C280.2397 (3)0.4131 (3)0.5309 (3)0.0184 (7)
H280.32830.44520.52290.022*
C290.2097 (3)0.3357 (3)0.6314 (3)0.0164 (7)
C300.0793 (3)0.2889 (3)0.6421 (3)0.0172 (7)
H300.05890.23590.71100.021*
C310.3188 (3)0.2959 (3)0.7283 (3)0.0196 (8)
H31A0.27570.26900.79760.024*
H31B0.37990.35960.72860.024*
N320.3991 (3)0.2038 (2)0.7218 (2)0.0164 (6)
C330.5207 (3)0.2139 (3)0.6789 (3)0.0208 (8)
H330.57340.28060.65230.025*
C340.5507 (3)0.1099 (3)0.6821 (3)0.0209 (8)
H340.63040.09070.65870.025*
N350.4477 (3)0.0362 (2)0.7246 (2)0.0161 (6)
C360.3579 (3)0.0972 (3)0.7466 (3)0.0192 (7)
H360.27490.06860.77630.023*
N370.0133 (3)0.0163 (2)0.1673 (2)0.0224 (7)
O380.0067 (3)0.0871 (2)0.07062 (19)0.0298 (6)
O390.1117 (3)0.0482 (2)0.1936 (2)0.0395 (7)
O400.0674 (2)0.01307 (19)0.23517 (19)0.0248 (6)
N410.4830 (3)0.5500 (2)0.3360 (2)0.0205 (6)
O420.5282 (2)0.6026 (2)0.43384 (19)0.0270 (6)
O430.4038 (2)0.46743 (19)0.31273 (19)0.0266 (6)
O440.5162 (3)0.5791 (2)0.26093 (19)0.0345 (7)
C450.6595 (4)0.0513 (3)0.0162 (3)0.0327 (9)
H45A0.65590.02610.09640.049*
H45B0.66760.01440.00650.049*
H45C0.57600.09290.00740.049*
O460.7728 (3)0.1219 (2)0.0325 (2)0.0484 (8)
H460.84130.09300.00030.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0157 (2)0.0134 (2)0.0171 (2)0.00014 (15)0.00078 (15)0.00285 (16)
N10.0146 (15)0.0137 (15)0.0216 (15)0.0018 (11)0.0005 (12)0.0046 (12)
C20.0216 (18)0.0119 (17)0.0161 (17)0.0010 (14)0.0006 (14)0.0003 (14)
N30.0173 (15)0.0160 (15)0.0179 (15)0.0024 (12)0.0008 (12)0.0041 (12)
C40.0194 (18)0.0161 (18)0.0201 (18)0.0039 (14)0.0003 (15)0.0013 (15)
C50.0158 (18)0.0198 (19)0.0246 (19)0.0047 (14)0.0024 (15)0.0064 (15)
C60.0249 (19)0.0137 (17)0.0191 (18)0.0034 (14)0.0049 (15)0.0051 (14)
C70.0206 (18)0.0186 (18)0.0109 (16)0.0003 (14)0.0019 (14)0.0024 (14)
C80.0243 (19)0.0181 (18)0.0185 (18)0.0061 (15)0.0018 (15)0.0067 (15)
C90.0169 (18)0.028 (2)0.0231 (19)0.0066 (15)0.0003 (15)0.0096 (16)
C100.0206 (19)0.0217 (19)0.0189 (18)0.0037 (15)0.0021 (15)0.0069 (15)
C110.0202 (18)0.0156 (17)0.0175 (18)0.0029 (14)0.0015 (14)0.0054 (14)
C120.0123 (16)0.0185 (18)0.0169 (17)0.0058 (14)0.0019 (13)0.0040 (14)
C130.0152 (18)0.0197 (19)0.027 (2)0.0040 (14)0.0032 (15)0.0053 (16)
N140.0172 (15)0.0155 (15)0.0228 (16)0.0005 (12)0.0008 (12)0.0061 (12)
C150.026 (2)0.0167 (18)0.0176 (18)0.0014 (15)0.0008 (15)0.0063 (15)
C160.0238 (19)0.0176 (18)0.0187 (18)0.0044 (15)0.0006 (15)0.0050 (15)
N170.0167 (15)0.0140 (14)0.0187 (15)0.0013 (12)0.0017 (12)0.0044 (12)
C180.0169 (18)0.0159 (17)0.0171 (18)0.0009 (14)0.0015 (14)0.0050 (14)
N190.0164 (15)0.0132 (14)0.0206 (15)0.0011 (12)0.0018 (12)0.0031 (12)
C200.0206 (19)0.0159 (18)0.0179 (18)0.0004 (14)0.0011 (14)0.0011 (15)
N210.0141 (14)0.0157 (15)0.0197 (15)0.0008 (11)0.0010 (12)0.0060 (12)
C220.0179 (18)0.0193 (18)0.0187 (18)0.0077 (14)0.0012 (14)0.0014 (15)
C230.0218 (19)0.0141 (17)0.0211 (18)0.0037 (14)0.0029 (15)0.0034 (14)
C240.0191 (18)0.0177 (18)0.0191 (18)0.0015 (14)0.0023 (14)0.0049 (15)
C250.0194 (18)0.0141 (17)0.0184 (18)0.0009 (14)0.0020 (14)0.0096 (14)
C260.0192 (18)0.0198 (18)0.0152 (17)0.0046 (14)0.0018 (14)0.0080 (14)
C270.030 (2)0.0141 (17)0.0196 (18)0.0021 (15)0.0082 (16)0.0068 (15)
C280.0182 (18)0.0129 (17)0.0263 (19)0.0018 (14)0.0081 (15)0.0079 (15)
C290.0188 (18)0.0114 (16)0.0205 (18)0.0047 (14)0.0007 (14)0.0074 (14)
C300.0204 (18)0.0150 (17)0.0166 (17)0.0024 (14)0.0046 (14)0.0055 (14)
C310.0206 (18)0.0153 (18)0.0244 (19)0.0003 (14)0.0029 (15)0.0087 (15)
N320.0135 (14)0.0112 (14)0.0207 (15)0.0005 (11)0.0000 (11)0.0018 (12)
C330.0156 (18)0.0154 (18)0.029 (2)0.0008 (14)0.0051 (15)0.0037 (15)
C340.0136 (17)0.0181 (18)0.028 (2)0.0016 (14)0.0071 (15)0.0035 (15)
N350.0136 (14)0.0140 (14)0.0174 (15)0.0001 (11)0.0007 (11)0.0022 (12)
C360.0176 (18)0.0168 (18)0.0218 (18)0.0023 (14)0.0037 (14)0.0049 (15)
N370.0184 (16)0.0176 (16)0.0290 (18)0.0002 (13)0.0004 (13)0.0067 (14)
O380.0385 (16)0.0260 (14)0.0173 (13)0.0122 (12)0.0016 (11)0.0024 (11)
O390.0284 (15)0.0386 (17)0.0384 (17)0.0185 (13)0.0050 (12)0.0042 (13)
O400.0211 (13)0.0266 (14)0.0258 (14)0.0013 (11)0.0074 (11)0.0069 (11)
N410.0179 (16)0.0152 (15)0.0276 (17)0.0027 (12)0.0045 (13)0.0065 (13)
O420.0277 (14)0.0302 (15)0.0194 (13)0.0086 (11)0.0036 (11)0.0052 (11)
O430.0231 (14)0.0199 (13)0.0327 (15)0.0074 (11)0.0049 (11)0.0033 (11)
O440.0516 (18)0.0274 (15)0.0214 (14)0.0173 (13)0.0071 (13)0.0023 (12)
C450.028 (2)0.043 (3)0.030 (2)0.0095 (19)0.0003 (17)0.0171 (19)
O460.0335 (17)0.0474 (19)0.0427 (18)0.0130 (15)0.0140 (14)0.0139 (14)
Geometric parameters (Å, º) top
Zn1—N11.985 (3)N21—C221.375 (4)
Zn1—N191.986 (3)N21—C241.471 (4)
Zn1—N35i1.989 (3)C22—C231.357 (5)
Zn1—N17ii2.009 (3)C22—H220.9500
N1—C21.327 (4)C23—H230.9500
N1—C51.391 (4)C24—C251.501 (4)
C2—N31.342 (4)C24—H24A0.9900
C2—H20.9500C24—H24B0.9900
N3—C41.381 (4)C25—C301.386 (4)
N3—C61.473 (4)C25—C261.393 (4)
C4—C51.348 (4)C26—C271.382 (4)
C4—H40.9500C26—H260.9500
C5—H50.9500C27—C281.388 (4)
C6—C71.517 (4)C27—H270.9500
C6—H6A0.9900C28—C291.387 (4)
C6—H6B0.9900C28—H280.9500
C7—C81.386 (4)C29—C301.396 (4)
C7—C121.400 (4)C29—C311.513 (4)
C8—C91.391 (5)C30—H300.9500
C8—H80.9500C31—N321.476 (4)
C9—C101.380 (4)C31—H31A0.9900
C9—H90.9500C31—H31B0.9900
C10—C111.392 (4)N32—C361.331 (4)
C10—H100.9500N32—C331.368 (4)
C11—C121.394 (4)C33—C341.352 (4)
C11—C131.516 (4)C33—H330.9500
C12—H120.9500C34—N351.378 (4)
C13—N141.467 (4)C34—H340.9500
C13—H13A0.9900N35—C361.325 (4)
C13—H13B0.9900N35—Zn1i1.989 (3)
N14—C181.338 (4)C36—H360.9500
N14—C151.383 (4)N37—O391.234 (3)
C15—C161.345 (4)N37—O401.253 (3)
C15—H150.9500N37—O381.260 (3)
C16—N171.377 (4)N41—O421.251 (3)
C16—H160.9500N41—O441.252 (3)
N17—C181.325 (4)N41—O431.261 (3)
N17—Zn1ii2.009 (3)C45—O461.404 (4)
C18—H180.9500C45—H45A0.9800
N19—C201.327 (4)C45—H45B0.9800
N19—C231.382 (4)C45—H45C0.9800
C20—N211.340 (4)O46—H460.8400
C20—H200.9500
N1—Zn1—N19109.85 (11)N19—C20—H20124.6
N1—Zn1—N35i114.88 (11)N21—C20—H20124.6
N19—Zn1—N35i106.22 (10)C20—N21—C22108.1 (3)
N1—Zn1—N17ii107.39 (10)C20—N21—C24125.2 (3)
N19—Zn1—N17ii110.59 (11)C22—N21—C24126.7 (3)
N35i—Zn1—N17ii107.91 (11)C23—C22—N21105.8 (3)
C2—N1—C5105.9 (3)C23—C22—H22127.1
C2—N1—Zn1127.9 (2)N21—C22—H22127.1
C5—N1—Zn1126.2 (2)C22—C23—N19109.6 (3)
N1—C2—N3110.8 (3)C22—C23—H23125.2
N1—C2—H2124.6N19—C23—H23125.2
N3—C2—H2124.6N21—C24—C25111.6 (3)
C2—N3—C4107.7 (3)N21—C24—H24A109.3
C2—N3—C6125.1 (3)C25—C24—H24A109.3
C4—N3—C6127.2 (3)N21—C24—H24B109.3
C5—C4—N3106.4 (3)C25—C24—H24B109.3
C5—C4—H4126.8H24A—C24—H24B108.0
N3—C4—H4126.8C30—C25—C26119.4 (3)
C4—C5—N1109.3 (3)C30—C25—C24119.7 (3)
C4—C5—H5125.4C26—C25—C24120.8 (3)
N1—C5—H5125.4C27—C26—C25119.8 (3)
N3—C6—C7114.4 (3)C27—C26—H26120.1
N3—C6—H6A108.7C25—C26—H26120.1
C7—C6—H6A108.7C26—C27—C28121.1 (3)
N3—C6—H6B108.7C26—C27—H27119.5
C7—C6—H6B108.7C28—C27—H27119.5
H6A—C6—H6B107.6C29—C28—C27119.3 (3)
C8—C7—C12119.2 (3)C29—C28—H28120.3
C8—C7—C6119.0 (3)C27—C28—H28120.3
C12—C7—C6121.6 (3)C28—C29—C30119.8 (3)
C7—C8—C9120.2 (3)C28—C29—C31120.9 (3)
C7—C8—H8119.9C30—C29—C31119.2 (3)
C9—C8—H8119.9C25—C30—C29120.6 (3)
C10—C9—C8120.5 (3)C25—C30—H30119.7
C10—C9—H9119.7C29—C30—H30119.7
C8—C9—H9119.7N32—C31—C29110.5 (3)
C9—C10—C11120.1 (3)N32—C31—H31A109.6
C9—C10—H10120.0C29—C31—H31A109.6
C11—C10—H10120.0N32—C31—H31B109.6
C10—C11—C12119.5 (3)C29—C31—H31B109.6
C10—C11—C13117.6 (3)H31A—C31—H31B108.1
C12—C11—C13122.9 (3)C36—N32—C33107.8 (3)
C11—C12—C7120.5 (3)C36—N32—C31125.1 (3)
C11—C12—H12119.8C33—N32—C31126.7 (3)
C7—C12—H12119.8C34—C33—N32106.2 (3)
N14—C13—C11114.8 (3)C34—C33—H33126.9
N14—C13—H13A108.6N32—C33—H33126.9
C11—C13—H13A108.6C33—C34—N35109.4 (3)
N14—C13—H13B108.6C33—C34—H34125.3
C11—C13—H13B108.6N35—C34—H34125.3
H13A—C13—H13B107.6C36—N35—C34105.5 (3)
C18—N14—C15107.4 (3)C36—N35—Zn1i127.8 (2)
C18—N14—C13126.2 (3)C34—N35—Zn1i126.6 (2)
C15—N14—C13126.3 (3)N35—C36—N32111.1 (3)
C16—C15—N14106.2 (3)N35—C36—H36124.4
C16—C15—H15126.9N32—C36—H36124.4
N14—C15—H15126.9O39—N37—O40121.2 (3)
C15—C16—N17109.6 (3)O39—N37—O38119.7 (3)
C15—C16—H16125.2O40—N37—O38119.2 (3)
N17—C16—H16125.2O42—N41—O44120.1 (3)
C18—N17—C16106.0 (3)O42—N41—O43120.1 (3)
C18—N17—Zn1ii128.5 (2)O44—N41—O43119.8 (3)
C16—N17—Zn1ii125.3 (2)O46—C45—H45A109.5
N17—C18—N14110.8 (3)O46—C45—H45B109.5
N17—C18—H18124.6H45A—C45—H45B109.5
N14—C18—H18124.6O46—C45—H45C109.5
C20—N19—C23105.7 (3)H45A—C45—H45C109.5
C20—N19—Zn1123.2 (2)H45B—C45—H45C109.5
C23—N19—Zn1130.5 (2)C45—O46—H46109.5
N19—C20—N21110.7 (3)
N19—Zn1—N1—C271.8 (3)N1—Zn1—N19—C2076.4 (3)
N35i—Zn1—N1—C247.8 (3)N35i—Zn1—N19—C20158.8 (2)
N17ii—Zn1—N1—C2167.8 (3)N17ii—Zn1—N19—C2041.9 (3)
N19—Zn1—N1—C5111.3 (3)N1—Zn1—N19—C23113.2 (3)
N35i—Zn1—N1—C5129.0 (3)N35i—Zn1—N19—C2311.6 (3)
N17ii—Zn1—N1—C59.0 (3)N17ii—Zn1—N19—C23128.4 (3)
C5—N1—C2—N30.5 (4)C23—N19—C20—N210.7 (4)
Zn1—N1—C2—N3176.8 (2)Zn1—N19—C20—N21171.7 (2)
N1—C2—N3—C40.2 (4)N19—C20—N21—C220.2 (4)
N1—C2—N3—C6178.8 (3)N19—C20—N21—C24178.8 (3)
C2—N3—C4—C50.9 (4)C20—N21—C22—C230.4 (4)
C6—N3—C4—C5179.4 (3)C24—N21—C22—C23179.4 (3)
N3—C4—C5—N11.2 (4)N21—C22—C23—N190.8 (4)
C2—N1—C5—C41.1 (4)C20—N19—C23—C221.0 (4)
Zn1—N1—C5—C4176.3 (2)Zn1—N19—C23—C22170.7 (2)
C2—N3—C6—C7103.5 (4)C20—N21—C24—C25110.3 (3)
C4—N3—C6—C778.2 (4)C22—N21—C24—C2570.9 (4)
N3—C6—C7—C8122.9 (3)N21—C24—C25—C30113.7 (3)
N3—C6—C7—C1261.3 (4)N21—C24—C25—C2668.3 (4)
C12—C7—C8—C90.9 (5)C30—C25—C26—C270.0 (5)
C6—C7—C8—C9175.0 (3)C24—C25—C26—C27178.0 (3)
C7—C8—C9—C100.2 (5)C25—C26—C27—C280.3 (5)
C8—C9—C10—C110.7 (5)C26—C27—C28—C290.4 (5)
C9—C10—C11—C120.9 (5)C27—C28—C29—C300.2 (5)
C9—C10—C11—C13177.4 (3)C27—C28—C29—C31176.6 (3)
C10—C11—C12—C70.2 (5)C26—C25—C30—C290.1 (5)
C13—C11—C12—C7178.0 (3)C24—C25—C30—C29178.2 (3)
C8—C7—C12—C110.7 (5)C28—C29—C30—C250.0 (5)
C6—C7—C12—C11175.1 (3)C31—C29—C30—C25176.4 (3)
C10—C11—C13—N14156.9 (3)C28—C29—C31—N3283.1 (4)
C12—C11—C13—N1424.9 (5)C30—C29—C31—N3293.3 (3)
C11—C13—N14—C18114.6 (4)C29—C31—N32—C3676.8 (4)
C11—C13—N14—C1566.3 (4)C29—C31—N32—C3395.7 (4)
C18—N14—C15—C160.2 (4)C36—N32—C33—C341.5 (4)
C13—N14—C15—C16179.4 (3)C31—N32—C33—C34175.1 (3)
N14—C15—C16—N170.0 (4)N32—C33—C34—N351.1 (4)
C15—C16—N17—C180.2 (4)C33—C34—N35—C360.3 (4)
C15—C16—N17—Zn1ii174.8 (2)C33—C34—N35—Zn1i176.7 (2)
C16—N17—C18—N140.3 (3)C34—N35—C36—N320.7 (4)
Zn1ii—N17—C18—N14174.5 (2)Zn1i—N35—C36—N32177.6 (2)
C15—N14—C18—N170.3 (4)C33—N32—C36—N351.4 (4)
C13—N14—C18—N17179.6 (3)C31—N32—C36—N35175.1 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O46—H46···O38iii0.841.962.755 (4)157
C2—H2···O380.952.403.240 (4)148
C2—H2···O400.952.543.420 (4)154
C4—H4···O440.952.283.216 (5)171
C6—H6B···O430.992.333.164 (4)141
C8—H8···O46iv0.952.543.432 (5)157
C13—H13B···O38v0.992.573.350 (5)136
C20—H20···O42ii0.952.303.085 (4)139
C20—H20···O44ii0.952.303.207 (5)160
C22—H22···O40i0.952.473.385 (4)162
C24—H24B···O39i0.992.513.379 (5)147
C28—H28···O42vi0.952.593.368 (4)139
C31—H31A···O46vi0.992.423.324 (4)151
C31—H31B···O43vi0.992.493.396 (4)151
C33—H33···O43vi0.952.573.313 (5)135
C36—H36···O40i0.952.273.135 (4)151
C10—H10···Cg1v0.952.793.539 (4)136
C15—H15···Cg2v0.952.853.762 (4)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C14H14N4)2](NO3)2·CH4O
Mr698.02
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.880 (2), 12.711 (3), 13.127 (3)
α, β, γ (°)68.798 (4), 83.167 (4), 87.476 (4)
V3)1526.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.21 × 0.10 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.838, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
17638, 7036, 4891
Rint0.063
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.121, 1.08
No. of reflections7036
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.71

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour 2001).

Selected geometric parameters (Å, º) top
Zn1—N11.985 (3)Zn1—N35i1.989 (3)
Zn1—N191.986 (3)Zn1—N17ii2.009 (3)
N1—Zn1—N19109.85 (11)N1—Zn1—N17ii107.39 (10)
N1—Zn1—N35i114.88 (11)N19—Zn1—N17ii110.59 (11)
N19—Zn1—N35i106.22 (10)N35i—Zn1—N17ii107.91 (11)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O46—H46···O38iii0.841.962.755 (4)157
C2—H2···O380.952.403.240 (4)148
C2—H2···O400.952.543.420 (4)154
C4—H4···O440.952.283.216 (5)171
C6—H6B···O430.992.333.164 (4)141
C8—H8···O46iv0.952.543.432 (5)157
C13—H13B···O38v0.992.573.350 (5)136
C20—H20···O42ii0.952.303.085 (4)139
C20—H20···O44ii0.952.303.207 (5)160
C22—H22···O40i0.952.473.385 (4)162
C24—H24B···O39i0.992.513.379 (5)147
C28—H28···O42vi0.952.593.368 (4)139
C31—H31A···O46vi0.992.423.324 (4)151
C31—H31B···O43vi0.992.493.396 (4)151
C33—H33···O43vi0.952.573.313 (5)135
C36—H36···O40i0.952.273.135 (4)151
C10—H10···Cg1v0.952.793.539 (4)136
C15—H15···Cg2v0.952.853.762 (4)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x1, y, z+1.
 

Acknowledgements

The author wishes to thank the National Research Found­ation of South Africa and the University of Stellenbosch for financial support.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChawla, S. K., Arora, M., Nättinen, K. & Rissanen, K. (2006). Mendeleev Commun. 16, 88–90.  Web of Science CrossRef Google Scholar
First citationDobrzańska, L., Kleinhans, D. & Barbour, L. J. (2008). New J. Chem. 32, 813–819.  Google Scholar
First citationDobrzańska, L., Lloyd, G. O. & Barbour, L. J. (2007). New J. Chem. 31, 669–676.  Google Scholar
First citationDobrzańska, L., Lloyd, G. O., Esterhuysen, C. & Barbour, L. J. (2006). Angew. Chem. Int. Ed. 45, 5856–5859.  Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). Angew. Chem. Int. Ed. 36, 2336–2338.  CrossRef CAS Google Scholar
First citationLi, T. & Du, S.-W. (2006). Acta Cryst. E62, m1933–m1935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds