organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Dimeth­­oxy-2,2′-[(nonane-1,9-diyldi­­oxy)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, bThe Five TBM, China Railway Tunnel Co. Ltd, Xinxiang 453000, People's Republic of China, and cSchool of Environmental Science and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com

(Received 5 October 2009; accepted 8 October 2009; online 17 October 2009)

The mol­ecule of the title compound, C25H34N2O6, adopts a fully extended configuration. The oxime (—CH=N—O—) group is coplanar with the aromatic ring and the two benzene rings are almost parallel, making a dihedral angle of 0.16 (3)°. In the crystal structure, strong intra­molecular O—H⋯N hydrogen bonds generate six-membered S(6) ring motifs. Inter­molecular C—H⋯O hydrogen bonds link each mol­ecule to five others, forming an infinite three-dimensional supra­molecular structure. The crystal is further stabilized by ππ stacking inter­actions between neighbouring benzene rings [centroid–centroid distance = 3.744 (2) Å].

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Campbell et al. (2001[Campbell, E. J., Zhou, H. & Nguyen, S. T. (2001). Org. Lett. 3, 2391-2393.]); Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]); Dong, He, Guan et al. (2008[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008). Acta Cryst. E64, o1600-o1601.]); Dong, He, Li et al. (2008[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008). Acta Cryst. E64, o1405.]); Dong, Li et al. (2008[Dong, W.-K., Li, L., Li, C.-F., Xu, L. & Duan, J.-G. (2008). Spectrochim. Acta Part A, 71, 650-654.]); Dong et al. (2009[Dong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117-124.]); Mohand et al. (1995[Mohand, S. A., Levina, A. & Muzart, J. (1995). J. Chem. Res. (S), 25, 2051-2058.]); Sun et al. (2009[Sun, Y.-X., Li, L., Dong, W.-K., Wu, J.-C. & Tong, J.-F. (2009). Acta Cryst. E65, o1160.]).

[Scheme 1]

Experimental

Crystal data
  • C25H34N2O6

  • Mr = 458.54

  • Triclinic, [P \overline 1]

  • a = 10.4701 (10) Å

  • b = 11.1249 (12) Å

  • c = 12.7602 (14) Å

  • α = 65.544 (1)°

  • β = 86.664 (2)°

  • γ = 67.085 (1)°

  • V = 1236.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.48 × 0.46 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.982

  • 6463 measured reflections

  • 4303 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.05

  • 4303 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O4i 0.96 2.68 3.369 (3) 129
C18—H18⋯O3ii 0.93 2.40 3.295 (3) 160
C25—H25C⋯O3iii 0.96 2.59 3.541 (4) 170
C25—H25B⋯O6iv 0.96 2.61 3.469 (4) 150
O3—H3⋯N1 0.82 1.86 2.583 (4) 147
O5—H5⋯N2 0.82 1.94 2.663 (4) 147
Symmetry codes: (i) -x, -y-2, -z+1; (ii) x+1, y+1, z; (iii) -x+1, -y, -z+2; (iv) -x+2, -y+2, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are one of most important mixed-donor ligands in the field of modern coordination chemistry. They play an important role in the development of coordination chemistry related to biochemistry, synthesis and catalysis (Mohand et al., 1995; Campbell et al., 2001), enzymatic reactions, magnetism, and supramolecular architectures. Our group are interested in the synthesis and structure of salen-type bisoxime compounds formed by Schiff base reactions (Dong et al., 2008a; Dong et al., 2008b). Herein, we report, the synthesis and crystal structure of a salen-type bisoxime compound containing nine-methene bridge, 5,5'-dimethoxy-2,2'-[(nonane-1,9-diyldioxy)bis(nitrilomethylidyne)]diphenol.

The molecular structure of the title compound, C25H34N2O6, as shown in Fig. 1, adopts a linear configuration, which is similar to our previously reported compound (Sun et al., 2009). In the crystal unit, the oxime (–CH=N—O–) group is coplanar with the aromatic ring and the two benzene rings are approximately parallel, making a dihedral angle of 0.16 (3)°. The bond lengths and angles in the molecule are within normal ranges.

In the crystal structure, strong intramolecular O—H···N hydrogen bonds generate two six-membered rings, producing S(6) ring motifs (Fig. 1) (Bernstein et al., 1995). Intermolecular C—H···O hydrogen bonds (Fig. 2) link the each molecule to five others, foming an infinite three-dimensional supramolecular structure (Desiraju, 1996) (Fig. 3). The crystal is further stabilized by π-π stacking interactions between the neighbouring benzene rings (centroid-centroid distances = 3.744 (2) Å) (Fig. 4).

Related literature top

For related literature, see: Bernstein et al. (1995); Campbell et al. (2001); Desiraju (1996); Dong, He, Guan et al. (2008); Dong, He, Li et al. (2008); Dong, Li et al. (2008); Dong et al. (2009); Mohand et al. (1995); Sun et al. (2009).

Experimental top

5,5'-Dimethoxy-2,2'-[(nonane-1,9-diyldioxy)bis(nitrilomethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2008c; Dong et al., 2009). To an ethanol solution (5 ml) of 4-methoxy-2-hydroxybenzaldehyde (159.5 mg, 1.05 mmol) was added an ethanol solution (5 ml) of 1,9-bis(aminooxy)nonane (99.0 mg, 0.52 mmol). The reaction mixture was stirred at 328 K for 8 h. The formed precipitate was separated by filtration under reduced pressure, and washed successively with ethanol and ethanol-hexane (1:4), respectively. The product was dried under vacuum to yield 155.4 mg of the title compound. Yield, 32.3%. m. p. 465–467 K. Anal. Calcd. for C25H34N2O6: C, 62.67; H, 6.51; N, 9.96. Found: C, 62.79; H, 6.68; N, 9.83.

Colorless block-like single crystals suitable for X-ray diffraction studies were obtained after about three weeks by slow evaporation from an ethanol solution of the title compound.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), 0.93 Å (CH), O—H = 0.82 Å and Uiso(H)= 1.20 1.2 Ueq(C) for methylene and methylidyne, 1.50 Ueq(C) for methyl, 1.50 Ueq(O) for hydroxy.

Structure description top

Schiff bases are one of most important mixed-donor ligands in the field of modern coordination chemistry. They play an important role in the development of coordination chemistry related to biochemistry, synthesis and catalysis (Mohand et al., 1995; Campbell et al., 2001), enzymatic reactions, magnetism, and supramolecular architectures. Our group are interested in the synthesis and structure of salen-type bisoxime compounds formed by Schiff base reactions (Dong et al., 2008a; Dong et al., 2008b). Herein, we report, the synthesis and crystal structure of a salen-type bisoxime compound containing nine-methene bridge, 5,5'-dimethoxy-2,2'-[(nonane-1,9-diyldioxy)bis(nitrilomethylidyne)]diphenol.

The molecular structure of the title compound, C25H34N2O6, as shown in Fig. 1, adopts a linear configuration, which is similar to our previously reported compound (Sun et al., 2009). In the crystal unit, the oxime (–CH=N—O–) group is coplanar with the aromatic ring and the two benzene rings are approximately parallel, making a dihedral angle of 0.16 (3)°. The bond lengths and angles in the molecule are within normal ranges.

In the crystal structure, strong intramolecular O—H···N hydrogen bonds generate two six-membered rings, producing S(6) ring motifs (Fig. 1) (Bernstein et al., 1995). Intermolecular C—H···O hydrogen bonds (Fig. 2) link the each molecule to five others, foming an infinite three-dimensional supramolecular structure (Desiraju, 1996) (Fig. 3). The crystal is further stabilized by π-π stacking interactions between the neighbouring benzene rings (centroid-centroid distances = 3.744 (2) Å) (Fig. 4).

For related literature, see: Bernstein et al. (1995); Campbell et al. (2001); Desiraju (1996); Dong, He, Guan et al. (2008); Dong, He, Li et al. (2008); Dong, Li et al. (2008); Dong et al. (2009); Mohand et al. (1995); Sun et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound. Intra- and intermolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Three-dimensional packing diagram of the title compound, showing the layer configuration along b axis.
[Figure 4] Fig. 4. Part π···π stacking interactions in the title compound (as shown as dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
5,5'-Dimethoxy-2,2'-[(nonane-1,9-diyldioxy)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C25H34N2O6Z = 2
Mr = 458.54F(000) = 492
Triclinic, P1Dx = 1.231 Mg m3
Hall symbol: -P 1Melting point = 465–467 K
a = 10.4701 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1249 (12) ÅCell parameters from 1465 reflections
c = 12.7602 (14) Åθ = 2.2–22.6°
α = 65.544 (1)°µ = 0.09 mm1
β = 86.664 (2)°T = 298 K
γ = 67.085 (1)°Block-like, colorless
V = 1236.7 (2) Å30.48 × 0.46 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4303 independent reflections
Radiation source: fine-focus sealed tube2050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.959, Tmax = 0.982k = 1313
6463 measured reflectionsl = 915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H34N2O6γ = 67.085 (1)°
Mr = 458.54V = 1236.7 (2) Å3
Triclinic, P1Z = 2
a = 10.4701 (10) ÅMo Kα radiation
b = 11.1249 (12) ŵ = 0.09 mm1
c = 12.7602 (14) ÅT = 298 K
α = 65.544 (1)°0.48 × 0.46 × 0.21 mm
β = 86.664 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2050 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.982Rint = 0.036
6463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
4303 reflectionsΔρmin = 0.18 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2659 (2)0.4795 (2)0.60645 (19)0.0660 (6)
N20.7314 (2)0.4634 (2)0.87062 (18)0.0634 (6)
O10.34859 (18)0.40335 (19)0.59502 (16)0.0766 (6)
O20.72925 (18)0.37983 (19)0.81319 (15)0.0766 (6)
O30.07937 (17)0.58178 (17)0.68503 (15)0.0769 (6)
H30.12690.53620.67940.115*
O40.02223 (19)0.88667 (18)0.53611 (16)0.0767 (6)
O50.67807 (19)0.59846 (18)1.00861 (15)0.0830 (6)
H50.66990.54720.98050.124*
O60.9436 (2)0.87142 (19)0.98147 (17)0.0857 (6)
C10.3053 (3)0.3278 (3)0.6680 (2)0.0719 (8)
H1A0.31080.39480.74780.086*
H1B0.20980.25670.64220.086*
C20.4015 (3)0.2568 (3)0.6585 (2)0.0746 (8)
H2A0.39480.19200.57770.089*
H2B0.49630.33010.68130.089*
C30.3762 (3)0.1723 (3)0.7304 (2)0.0681 (8)
H3A0.28100.09990.70970.082*
H3B0.38710.23690.81190.082*
C40.4758 (2)0.0993 (3)0.7122 (2)0.0659 (7)
H4A0.57050.17270.73370.079*
H4B0.46610.03740.63020.079*
C50.4563 (2)0.0103 (2)0.7788 (2)0.0656 (7)
H5A0.47170.07270.86120.079*
H5B0.36050.06060.76050.079*
C60.5536 (3)0.0667 (2)0.7526 (2)0.0660 (7)
H6A0.64910.00450.76890.079*
H6B0.53670.13000.67030.079*
C70.5397 (3)0.1549 (3)0.8196 (2)0.0695 (8)
H7A0.55730.09220.90190.083*
H7B0.44460.22690.80320.083*
C80.6393 (3)0.2293 (3)0.7898 (2)0.0715 (8)
H8A0.73370.15680.80350.086*
H8B0.61960.29320.70760.086*
C90.6336 (3)0.3152 (3)0.8561 (2)0.0728 (8)
H9A0.54010.38850.84450.087*
H9B0.65940.25280.93840.087*
C100.2957 (2)0.5469 (3)0.5419 (2)0.0622 (7)
H100.36580.54070.49430.075*
C110.2216 (2)0.6325 (2)0.5424 (2)0.0525 (6)
C120.1170 (2)0.6471 (2)0.6125 (2)0.0510 (6)
C130.0470 (2)0.7291 (2)0.6116 (2)0.0565 (7)
H130.02420.73590.65780.068*
C140.0836 (3)0.8008 (2)0.5414 (2)0.0566 (7)
C150.1875 (3)0.7888 (3)0.4717 (2)0.0669 (8)
H150.21200.83710.42430.080*
C160.2542 (3)0.7060 (3)0.4726 (2)0.0656 (7)
H160.32390.69830.42480.079*
C170.0791 (3)0.9095 (3)0.6107 (2)0.0883 (9)
H17A0.03920.94930.68970.132*
H17B0.10960.97550.60060.132*
H17C0.15750.81940.59270.132*
C180.8248 (3)0.5120 (2)0.8369 (2)0.0580 (7)
H180.87920.48710.78290.070*
C190.8512 (2)0.6043 (2)0.8781 (2)0.0511 (6)
C200.7786 (2)0.6443 (3)0.9615 (2)0.0573 (7)
C210.8074 (3)0.7331 (3)0.9981 (2)0.0632 (7)
H210.75820.75941.05370.076*
C220.9084 (3)0.7820 (3)0.9523 (2)0.0606 (7)
C230.9834 (3)0.7427 (3)0.8705 (2)0.0670 (8)
H231.05320.77480.84050.080*
C240.9532 (3)0.6557 (2)0.8348 (2)0.0617 (7)
H241.00300.63010.77920.074*
C250.8799 (3)0.9062 (3)1.0714 (3)0.1070 (12)
H25A0.78060.95551.04990.161*
H25B0.91510.96731.08420.161*
H25C0.90050.81931.14120.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0605 (15)0.0674 (15)0.0816 (16)0.0295 (13)0.0040 (13)0.0379 (14)
N20.0647 (15)0.0654 (14)0.0738 (15)0.0312 (13)0.0088 (13)0.0376 (13)
O10.0729 (13)0.0867 (13)0.0998 (14)0.0434 (11)0.0196 (11)0.0570 (12)
O20.0791 (13)0.0933 (14)0.0953 (14)0.0536 (12)0.0278 (12)0.0592 (12)
O30.0862 (13)0.0910 (13)0.0914 (13)0.0466 (11)0.0382 (12)0.0665 (12)
O40.0870 (14)0.0836 (14)0.0873 (14)0.0448 (12)0.0190 (12)0.0527 (12)
O50.0860 (14)0.1028 (15)0.0933 (14)0.0538 (12)0.0403 (12)0.0610 (12)
O60.1094 (16)0.0787 (13)0.0937 (15)0.0487 (13)0.0137 (13)0.0494 (12)
C10.0660 (19)0.0783 (19)0.088 (2)0.0345 (16)0.0122 (17)0.0460 (18)
C20.0654 (19)0.0794 (19)0.093 (2)0.0348 (17)0.0070 (17)0.0434 (18)
C30.0597 (18)0.0706 (18)0.084 (2)0.0268 (16)0.0026 (16)0.0405 (17)
C40.0593 (18)0.0659 (18)0.0772 (19)0.0237 (15)0.0022 (16)0.0347 (16)
C50.0592 (17)0.0637 (17)0.0777 (19)0.0250 (15)0.0034 (15)0.0327 (16)
C60.0649 (19)0.0628 (17)0.0726 (19)0.0252 (15)0.0001 (16)0.0303 (16)
C70.0700 (19)0.0682 (18)0.0774 (19)0.0329 (16)0.0062 (17)0.0322 (16)
C80.0739 (19)0.0740 (18)0.0771 (19)0.0367 (17)0.0091 (16)0.0352 (16)
C90.075 (2)0.0714 (19)0.089 (2)0.0382 (17)0.0162 (18)0.0419 (18)
C100.0551 (17)0.0641 (18)0.0634 (18)0.0177 (15)0.0060 (15)0.0289 (16)
C110.0466 (16)0.0540 (16)0.0557 (17)0.0151 (14)0.0017 (14)0.0264 (14)
C120.0492 (16)0.0474 (15)0.0514 (16)0.0089 (13)0.0013 (14)0.0256 (14)
C130.0568 (17)0.0577 (16)0.0588 (17)0.0221 (14)0.0082 (14)0.0292 (15)
C140.0582 (17)0.0511 (16)0.0594 (18)0.0185 (14)0.0016 (15)0.0251 (15)
C150.0669 (19)0.080 (2)0.0701 (19)0.0280 (16)0.0146 (17)0.0486 (17)
C160.0576 (18)0.0809 (19)0.0643 (18)0.0245 (16)0.0168 (15)0.0407 (17)
C170.103 (2)0.091 (2)0.095 (2)0.059 (2)0.025 (2)0.0444 (19)
C180.0515 (17)0.0588 (17)0.0602 (17)0.0166 (14)0.0030 (15)0.0268 (14)
C190.0462 (15)0.0476 (15)0.0546 (16)0.0142 (13)0.0002 (14)0.0208 (14)
C200.0490 (16)0.0572 (16)0.0580 (17)0.0191 (14)0.0094 (15)0.0201 (15)
C210.074 (2)0.0568 (17)0.0601 (17)0.0202 (16)0.0069 (16)0.0315 (15)
C220.0676 (19)0.0467 (16)0.0613 (18)0.0192 (15)0.0061 (16)0.0192 (15)
C230.0651 (18)0.0658 (18)0.077 (2)0.0300 (16)0.0125 (17)0.0332 (17)
C240.0611 (18)0.0617 (17)0.0643 (17)0.0230 (15)0.0104 (15)0.0307 (15)
C250.161 (3)0.102 (2)0.091 (2)0.063 (2)0.028 (2)0.064 (2)
Geometric parameters (Å, º) top
N1—C101.280 (3)C7—H7B0.9700
N1—O11.394 (2)C8—C91.501 (3)
N2—C181.266 (3)C8—H8A0.9700
N2—O21.409 (2)C8—H8B0.9700
O1—C11.443 (3)C9—H9A0.9700
O2—C91.410 (3)C9—H9B0.9700
O3—C121.353 (2)C10—C111.441 (3)
O3—H30.8200C10—H100.9300
O4—C141.366 (3)C11—C161.390 (3)
O4—C171.410 (3)C11—C121.390 (3)
O5—C201.349 (3)C12—C131.379 (3)
O5—H50.8200C13—C141.377 (3)
O6—C221.369 (3)C13—H130.9300
O6—C251.410 (3)C14—C151.377 (3)
C1—C21.476 (3)C15—C161.358 (3)
C1—H1A0.9700C15—H150.9300
C1—H1B0.9700C16—H160.9300
C2—C31.513 (3)C17—H17A0.9600
C2—H2A0.9700C17—H17B0.9600
C2—H2B0.9700C17—H17C0.9600
C3—C41.509 (3)C18—C191.446 (3)
C3—H3A0.9700C18—H180.9300
C3—H3B0.9700C19—C241.385 (3)
C4—C51.504 (3)C19—C201.394 (3)
C4—H4A0.9700C20—C211.384 (3)
C4—H4B0.9700C21—C221.367 (3)
C5—C61.512 (3)C21—H210.9300
C5—H5A0.9700C22—C231.383 (3)
C5—H5B0.9700C23—C241.366 (3)
C6—C71.511 (3)C23—H230.9300
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C25—H25A0.9600
C7—C81.512 (3)C25—H25B0.9600
C7—H7A0.9700C25—H25C0.9600
C10—N1—O1112.5 (2)C8—C9—H9A110.4
C18—N2—O2109.9 (2)O2—C9—H9B110.4
N1—O1—C1108.68 (18)C8—C9—H9B110.4
N2—O2—C9110.86 (18)H9A—C9—H9B108.6
C12—O3—H3109.5N1—C10—C11120.6 (2)
C14—O4—C17118.41 (19)N1—C10—H10119.7
C20—O5—H5109.5C11—C10—H10119.7
C22—O6—C25117.9 (2)C16—C11—C12117.1 (2)
O1—C1—C2106.5 (2)C16—C11—C10120.6 (2)
O1—C1—H1A110.4C12—C11—C10122.3 (2)
C2—C1—H1A110.4O3—C12—C13116.9 (2)
O1—C1—H1B110.4O3—C12—C11121.6 (2)
C2—C1—H1B110.4C13—C12—C11121.5 (2)
H1A—C1—H1B108.6C14—C13—C12119.3 (2)
C1—C2—C3115.4 (2)C14—C13—H13120.4
C1—C2—H2A108.4C12—C13—H13120.4
C3—C2—H2A108.4O4—C14—C15116.1 (2)
C1—C2—H2B108.4O4—C14—C13123.6 (2)
C3—C2—H2B108.4C15—C14—C13120.3 (2)
H2A—C2—H2B107.5C16—C15—C14119.7 (2)
C4—C3—C2111.8 (2)C16—C15—H15120.2
C4—C3—H3A109.3C14—C15—H15120.2
C2—C3—H3A109.3C15—C16—C11122.2 (2)
C4—C3—H3B109.3C15—C16—H16118.9
C2—C3—H3B109.3C11—C16—H16118.9
H3A—C3—H3B107.9O4—C17—H17A109.5
C5—C4—C3115.4 (2)O4—C17—H17B109.5
C5—C4—H4A108.4H17A—C17—H17B109.5
C3—C4—H4A108.4O4—C17—H17C109.5
C5—C4—H4B108.4H17A—C17—H17C109.5
C3—C4—H4B108.4H17B—C17—H17C109.5
H4A—C4—H4B107.5N2—C18—C19123.3 (2)
C4—C5—C6113.3 (2)N2—C18—H18118.3
C4—C5—H5A108.9C19—C18—H18118.3
C6—C5—H5A108.9C24—C19—C20117.4 (2)
C4—C5—H5B108.9C24—C19—C18119.8 (2)
C6—C5—H5B108.9C20—C19—C18122.8 (2)
H5A—C5—H5B107.7O5—C20—C21118.0 (2)
C7—C6—C5115.0 (2)O5—C20—C19121.3 (2)
C7—C6—H6A108.5C21—C20—C19120.8 (2)
C5—C6—H6A108.5C22—C21—C20119.7 (2)
C7—C6—H6B108.5C22—C21—H21120.1
C5—C6—H6B108.5C20—C21—H21120.1
H6A—C6—H6B107.5C21—C22—O6124.4 (3)
C6—C7—C8112.7 (2)C21—C22—C23120.8 (2)
C6—C7—H7A109.1O6—C22—C23114.8 (3)
C8—C7—H7A109.1C24—C23—C22118.7 (3)
C6—C7—H7B109.1C24—C23—H23120.7
C8—C7—H7B109.1C22—C23—H23120.7
H7A—C7—H7B107.8C23—C24—C19122.5 (2)
C9—C8—C7115.3 (2)C23—C24—H24118.7
C9—C8—H8A108.4C19—C24—H24118.7
C7—C8—H8A108.4O6—C25—H25A109.5
C9—C8—H8B108.4O6—C25—H25B109.5
C7—C8—H8B108.4H25A—C25—H25B109.5
H8A—C8—H8B107.5O6—C25—H25C109.5
O2—C9—C8106.6 (2)H25A—C25—H25C109.5
O2—C9—H9A110.4H25B—C25—H25C109.5
C10—N1—O1—C1178.4 (2)C12—C13—C14—C151.0 (4)
C18—N2—O2—C9175.3 (2)O4—C14—C15—C16179.6 (2)
N1—O1—C1—C2176.5 (2)C13—C14—C15—C160.1 (4)
O1—C1—C2—C3179.1 (2)C14—C15—C16—C110.3 (4)
C1—C2—C3—C4178.0 (2)C12—C11—C16—C150.1 (4)
C2—C3—C4—C5178.9 (2)C10—C11—C16—C15179.3 (2)
C3—C4—C5—C6176.9 (2)O2—N2—C18—C19178.71 (19)
C4—C5—C6—C7178.7 (2)N2—C18—C19—C24178.5 (2)
C5—C6—C7—C8180.0 (2)N2—C18—C19—C202.1 (4)
C6—C7—C8—C9178.3 (2)C24—C19—C20—O5179.7 (2)
N2—O2—C9—C8179.98 (18)C18—C19—C20—O50.2 (3)
C7—C8—C9—O2177.8 (2)C24—C19—C20—C210.6 (3)
O1—N1—C10—C11179.65 (19)C18—C19—C20—C21179.9 (2)
N1—C10—C11—C16179.8 (2)O5—C20—C21—C22179.9 (2)
N1—C10—C11—C120.7 (4)C19—C20—C21—C220.2 (4)
C16—C11—C12—O3178.9 (2)C20—C21—C22—O6179.2 (2)
C10—C11—C12—O30.3 (3)C20—C21—C22—C230.7 (4)
C16—C11—C12—C131.0 (3)C25—O6—C22—C215.4 (4)
C10—C11—C12—C13179.8 (2)C25—O6—C22—C23174.7 (2)
O3—C12—C13—C14178.4 (2)C21—C22—C23—C241.1 (4)
C11—C12—C13—C141.5 (3)O6—C22—C23—C24178.8 (2)
C17—O4—C14—C15176.3 (2)C22—C23—C24—C190.6 (4)
C17—O4—C14—C133.4 (3)C20—C19—C24—C230.2 (3)
C12—C13—C14—O4178.7 (2)C18—C19—C24—C23179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O4i0.962.683.369 (3)129
C18—H18···O3ii0.932.403.295 (3)160
C25—H25C···O3iii0.962.593.541 (4)170
C25—H25B···O6iv0.962.613.469 (4)150
O3—H3···N10.821.862.583 (4)147
O5—H5···N20.821.942.663 (4)147
Symmetry codes: (i) x, y2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+2; (iv) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC25H34N2O6
Mr458.54
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.4701 (10), 11.1249 (12), 12.7602 (14)
α, β, γ (°)65.544 (1), 86.664 (2), 67.085 (1)
V3)1236.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.46 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6463, 4303, 2050
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.05
No. of reflections4303
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O4i0.962.683.369 (3)129.1
C18—H18···O3ii0.932.403.295 (3)160.4
C25—H25C···O3iii0.962.593.541 (4)170.1
C25—H25B···O6iv0.962.613.469 (4)149.8
O3—H3···N10.8201.8582.583 (4)146.69
O5—H5···N20.8201.9392.663 (4)146.83
Symmetry codes: (i) x, y2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+2; (iv) x+2, y+2, z+2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (grant No. 0904-11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCampbell, E. J., Zhou, H. & Nguyen, S. T. (2001). Org. Lett. 3, 2391–2393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Li, L., Li, C.-F., Xu, L. & Duan, J.-G. (2008). Spectrochim. Acta Part A, 71, 650–654.  CrossRef Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohand, S. A., Levina, A. & Muzart, J. (1995). J. Chem. Res. (S), 25, 2051–2058.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y.-X., Li, L., Dong, W.-K., Wu, J.-C. & Tong, J.-F. (2009). Acta Cryst. E65, o1160.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds