organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [(4-bromo­phen­yl)(5-chloro-2-hy­droxy­anilino)meth­yl]phospho­nate

aDepartment of Physics, S.V. University, Tirupati 517 502, India, bDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and cDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com

(Received 11 October 2009; accepted 19 October 2009; online 28 October 2009)

In the title compound, C17H20BrClNO4P, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds form centrosymmetric R22(10) dimers linked through O—H⋯O inter­molecular hydrogen bonds, which form centrosymmetric R22(16) dimers. All these hydrogen bonds form chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯Br hydrogen bonds. The very weak intramolecular N—H⋯O interaction forms a five-membered ring.

Related literature

For related structures, see: Krishnaiah et al. (2009[Krishnaiah, M., Surendra Babu, V. H. H., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2009). Acta Cryst. E65, o2506-o2507.]); Yang et al. (2005[Yang, S., Song, B., Zhang, G. P., Jin, L.-H., Hu, D.-Y. & Xue, W. (2005). Acta Cryst. E61, o1662-o1664.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20BrClNO4P

  • Mr = 448.66

  • Triclinic, [P \overline 1]

  • a = 7.8596 (15) Å

  • b = 9.1887 (13) Å

  • c = 14.425 (2) Å

  • α = 82.921 (13)°

  • β = 80.372 (15)°

  • γ = 70.701 (16)°

  • V = 966.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.]) Tmin = 0.511, Tmax = 0.653

  • 12477 measured reflections

  • 5846 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 1.05

  • 5846 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O8i 0.86 2.47 3.287 (4) 159
C24—H24A⋯O5ii 0.97 2.53 3.472 (7) 163
O8—H8⋯O5i 0.82 1.90 2.615 (4) 145
C15—H15⋯Br2iii 0.98 2.99 3.945 (4) 164
N4—H4⋯O8 0.86 2.27 2.626 (4) 104
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x-1, y, z.

Data collection: CryAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CryAlis Pro; data reduction: CryAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ZORTEPII (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEPII. University of Heidelberg, Germany.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

A similar co-ordination in hydrogen bonding, diethyl[(5-chloro- 2-hydroxyanilino)(4-chlorophenyl)methyl]phosphonate has been reported by us (Krishnaiah et al., 2009). In continuation of our study on series of phosphonate compounds, we are now reporting the conformation of the structure of the title compound. The P=O(2) bond length is in good agreement with related structures (Krishnaiah et al., 2009; Yang et al., 2005). The bond angles O(2)—P(1)—O(1), O(2)—P(1)—O(3), O(2)—P(1)—C(7) are much larger than O(1)—P(1)—O(3) , O(1)—P(1)—C(7), O(3)—P(1)—C(7) bond angles, indicate a distorted tetrahedral around the phosphorus atom. The planar benzene rings are nearly perpendicular to each with dihedral angle of 78.1 (1)°. The P—O—C—C groups are in trans configuration avoiding steric interactions. The P(1)/O(1)/C(14)/C(15) group is nearly planar unlike the P(1)/O(3)/C(16)/C(17) group, the end atoms C(16)and C(17) are completely out of plane due to more thermal vibrations.

The O—H···O intermolecular hydrogen bonds act as a bridge between C—H···O intermolecular bonds, intra and intermolecular N—H···O hydrogen bonds. Here the phosphonate double bonded oxygen atom, which behaves as an acceptor participates in C—H···O intermolecular hydrogen bonding, whereas, the hydroxyl oxygen, which acts as both donor and acceptor, participates in the N—H···O intra and intermolecular hydrogen bonding. These hydrogen bond form chains along [010]. Additionally, the crystal structure is stabilized by C—H···Br hydrogen bonds.

Related literature top

For related structures, see: Krishnaiah et al. (2009); Yang et al. (2005).

Experimental top

To a stirred solution of 2-amino-4-chlorophenol (0.72 g, 0.005 mol), 4-bromo benzaldehyde (0.005 mol) in anhydrous toluene (15 ml) was added dropwise. Stirring was continued at room temperature of lh. Then diethylphosphite (0.7 g, 0.005 mol) in anhydrous toulene (15 ml) was added dropwise. Stirring was continued at room temperature for another 0.5 h, later the mixture was heated under reflux for 4–6 h. After completion of reaction (monitored by TLC) and the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using petroleum ether-ethyl acetate (8:2) as eluent. Colorless, rectangular shaped single crystals were obtained for diffraction studies using methanol by slow evaporation.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.82 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N,O). Other H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C—H) = 0.93Å Uiso=1.2eq (C) for aromatic, C—H = 0.980Å Uiso=1.2eq (C) for methine, 0.97Å Uiso = 1.2eq (C) for CH2 group and 0.96Å Uiso = 1.5eq (C) for CH3 group.

Structure description top

A similar co-ordination in hydrogen bonding, diethyl[(5-chloro- 2-hydroxyanilino)(4-chlorophenyl)methyl]phosphonate has been reported by us (Krishnaiah et al., 2009). In continuation of our study on series of phosphonate compounds, we are now reporting the conformation of the structure of the title compound. The P=O(2) bond length is in good agreement with related structures (Krishnaiah et al., 2009; Yang et al., 2005). The bond angles O(2)—P(1)—O(1), O(2)—P(1)—O(3), O(2)—P(1)—C(7) are much larger than O(1)—P(1)—O(3) , O(1)—P(1)—C(7), O(3)—P(1)—C(7) bond angles, indicate a distorted tetrahedral around the phosphorus atom. The planar benzene rings are nearly perpendicular to each with dihedral angle of 78.1 (1)°. The P—O—C—C groups are in trans configuration avoiding steric interactions. The P(1)/O(1)/C(14)/C(15) group is nearly planar unlike the P(1)/O(3)/C(16)/C(17) group, the end atoms C(16)and C(17) are completely out of plane due to more thermal vibrations.

The O—H···O intermolecular hydrogen bonds act as a bridge between C—H···O intermolecular bonds, intra and intermolecular N—H···O hydrogen bonds. Here the phosphonate double bonded oxygen atom, which behaves as an acceptor participates in C—H···O intermolecular hydrogen bonding, whereas, the hydroxyl oxygen, which acts as both donor and acceptor, participates in the N—H···O intra and intermolecular hydrogen bonding. These hydrogen bond form chains along [010]. Additionally, the crystal structure is stabilized by C—H···Br hydrogen bonds.

For related structures, see: Krishnaiah et al. (2009); Yang et al. (2005).

Computing details top

Data collection: CryAlis Pro (Oxford Diffraction, 2007); cell refinement: CryAlis Pro (Oxford Diffraction, 2007); data reduction: CryAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing of the molecule in the unit cell
Diethyl [(4-bromophenyl)(5-chloro-2-hydroxyanilino)methyl]phosphonate top
Crystal data top
C17H20BrClNO4PZ = 2
Mr = 448.66F(000) = 456
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8596 (15) ÅCell parameters from 5846 reflections
b = 9.1887 (13) Åθ = 3.0–30.4°
c = 14.425 (2) ŵ = 2.37 mm1
α = 82.921 (13)°T = 293 K
β = 80.372 (15)°Rectangular, colorless
γ = 70.701 (16)°0.30 × 0.24 × 0.18 mm
V = 966.8 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5846 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω–2θ scansθmax = 30.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.511, Tmax = 0.653k = 1312
12477 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.6969P]
where P = (Fo2 + 2Fc2)/3
5846 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C17H20BrClNO4Pγ = 70.701 (16)°
Mr = 448.66V = 966.8 (3) Å3
Triclinic, P1Z = 2
a = 7.8596 (15) ÅMo Kα radiation
b = 9.1887 (13) ŵ = 2.37 mm1
c = 14.425 (2) ÅT = 293 K
α = 82.921 (13)°0.30 × 0.24 × 0.18 mm
β = 80.372 (15)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5846 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2891 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.653Rint = 0.031
12477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.60 e Å3
5846 reflectionsΔρmin = 0.54 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = 0.92698(0.00062) m2 = 0.36804(0.00155) m3 = -0.07254(0.00162) D = 3.47552(0.01244) Atom d s d/s (d/s)**2 C1 * 0.0028 0.0034 0.823 0.678 C2 * 0.0007 0.0036 0.200 0.040 C3 * -0.0059 0.0040 - 1.479 2.188 C4 * 0.0072 0.0044 1.650 2.723 C5 * -0.0013 0.0041 - 0.319 0.102 C6 * -0.0029 0.0036 - 0.820 0.672 ============ Sum((d/s)**2) for starred atoms 6.403 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity

Plane 2 m1 = -0.16802(0.00159) m2 = 0.90248(0.00070) m3 = -0.39660(0.00142) D = 1.25137(0.01035) Atom d s d/s (d/s)**2 C8 * -0.0067 0.0030 - 2.243 5.033 C9 * 0.0049 0.0037 1.315 1.729 C10 * 0.0025 0.0039 0.638 0.407 C11 * -0.0045 0.0040 - 1.120 1.255 C12 * -0.0028 0.0048 - 0.589 0.347 C13 * 0.0112 0.0042 2.665 7.102 ============ Sum((d/s)**2) for starred atoms 15.874 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.36915(0.00155) m2 = 0.61070(0.00101) m3 = -0.70056(0.00061) D = -2.91653(0.00529) Atom d s d/s (d/s)**2 C15 * 0.0308 0.0053 5.844 34.149 C14 * -0.5236 0.0050 - 104.869 10997.448 O1 * 0.2184 0.0026 83.495 6971.443 P1 * -0.0205 0.0009 - 21.861 477.911 O3 * 0.2076 0.0031 66.126 4372.694 C16 * -0.5226 0.0056 - 93.878 8813.083 C17 * 0.3577 0.0071 50.270 2527.044 ============ Sum((d/s)**2) for starred atoms 34193.770 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Plane 4 m1 = -0.94870(0.00212) m2 = 0.26578(0.00425) m3 = -0.17128(0.00538) D = -2.37887(0.01364) Atom d s d/s (d/s)**2 P1 * 0.0007 0.0011 0.612 0.374 O1 * -0.0074 0.0032 - 2.332 5.440 C14 * -0.0127 0.0062 - 2.026 4.105 C15 * 0.0198 0.0063 3.175 10.079 ============ Sum((d/s)**2) for starred atoms 19.998 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 5 m1 = 0.04035(0.00645) m2 = -0.93317(0.00349) m3 = 0.35715(0.00840) D = -0.00355(0.05973) Atom d s d/s (d/s)**2 P1 * -0.0057 0.0010 - 5.996 35.958 O3 * 0.0497 0.0032 15.570 242.410 C16 * 0.3855 0.0058 66.981 4486.437 C17 * -0.5407 0.0073 - 74.471 5545.978 ============ Sum((d/s)**2) for starred atoms 10310.782 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 78.16 (0.12) 101.84 (0.12) 1 3 86.18 (0.11) 93.82 (0.11) 1 4 39.72 (1/4) 140.28 (1/4) 1 5 70.61 (0.38) 109.39 (0.38) 2 3 27.00 (0.10) 153.00 (0.10) 2 4 62.15 (0.26) 117.85 (0.26) 2 5 7.86 (0.39) 172.14 (0.39) 3 4 50.76 (0.29) 129.24 (0.29) 3 5 33.39 (0.43) 146.61 (0.43) 4 5 69.67 (0.45) 110.33 (0.45)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.84116 (6)0.35425 (7)0.05533 (3)0.0831 (2)
P10.10786 (13)0.17964 (11)0.33103 (6)0.0449 (2)
Cl30.27410 (17)0.89126 (14)0.07732 (7)0.0780 (4)
C140.2049 (4)0.7262 (4)0.3792 (2)0.0411 (7)
C160.2724 (4)0.3699 (3)0.2163 (2)0.0376 (7)
N40.0040 (4)0.4840 (3)0.3349 (2)0.0485 (7)
H40.02340.46290.39270.058*
O80.1765 (4)0.6665 (3)0.46936 (17)0.0567 (7)
H80.23790.73040.50670.085*
C90.1081 (4)0.6286 (4)0.3084 (2)0.0382 (7)
C150.0895 (5)0.3672 (4)0.2688 (2)0.0423 (8)
H150.00740.38290.22170.051*
O50.2300 (4)0.1371 (3)0.40377 (17)0.0572 (7)
C110.2492 (5)0.8281 (4)0.1956 (3)0.0502 (9)
O60.1667 (4)0.0744 (3)0.24775 (18)0.0593 (7)
C190.6080 (5)0.3641 (5)0.1206 (3)0.0524 (9)
C100.1319 (4)0.6816 (4)0.2156 (2)0.0419 (8)
H100.06910.61890.16690.050*
O70.0912 (4)0.1837 (4)0.3670 (2)0.0753 (8)
C170.3277 (5)0.3198 (4)0.1277 (2)0.0487 (8)
H170.24980.28730.09940.058*
C130.3194 (5)0.8713 (4)0.3567 (3)0.0537 (9)
H130.38300.93490.40490.064*
C180.4954 (5)0.3157 (5)0.0789 (2)0.0538 (9)
H180.53080.28060.01870.065*
C200.5580 (6)0.4167 (6)0.2087 (3)0.0685 (12)
H200.63670.44910.23650.082*
C120.3424 (5)0.9249 (4)0.2649 (3)0.0588 (10)
H120.41881.02380.25030.071*
C210.3876 (5)0.4210 (5)0.2563 (3)0.0581 (10)
H210.35100.45870.31580.070*
C220.1764 (8)0.0834 (5)0.2531 (3)0.0801 (14)
H22A0.05840.09390.27860.096*
H22B0.26330.14380.29480.096*
C230.2321 (8)0.1402 (6)0.1596 (4)0.0888 (16)
H23A0.23940.24710.16330.133*
H23B0.34910.12990.13480.133*
H23C0.14470.08120.11890.133*
C240.1716 (7)0.1893 (7)0.4638 (4)0.0946 (17)
H24A0.18420.08930.48730.114*
H24B0.09290.21210.50110.114*
C250.3443 (8)0.3037 (8)0.4734 (5)0.139 (3)
H25A0.39460.30760.53880.208*
H25B0.42360.27880.43860.208*
H25C0.33190.40240.44950.208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0512 (3)0.1413 (5)0.0571 (3)0.0336 (3)0.00024 (19)0.0086 (3)
P10.0521 (5)0.0414 (5)0.0367 (5)0.0119 (4)0.0040 (4)0.0078 (4)
Cl30.0924 (8)0.0726 (7)0.0466 (6)0.0013 (6)0.0128 (5)0.0068 (5)
C140.0396 (17)0.0430 (19)0.0380 (17)0.0091 (14)0.0025 (14)0.0076 (14)
C160.0396 (17)0.0295 (16)0.0382 (17)0.0026 (13)0.0092 (13)0.0004 (13)
N40.0571 (18)0.0409 (16)0.0337 (14)0.0050 (13)0.0057 (13)0.0092 (12)
O80.0659 (16)0.0500 (15)0.0417 (14)0.0012 (12)0.0063 (12)0.0128 (11)
C90.0331 (16)0.0372 (18)0.0404 (17)0.0076 (13)0.0013 (13)0.0060 (14)
C150.0479 (19)0.0409 (18)0.0328 (16)0.0046 (15)0.0060 (14)0.0085 (14)
O50.0761 (18)0.0456 (15)0.0406 (14)0.0071 (13)0.0073 (12)0.0033 (11)
C110.046 (2)0.053 (2)0.047 (2)0.0094 (17)0.0110 (16)0.0035 (17)
O60.0845 (19)0.0450 (15)0.0504 (15)0.0265 (13)0.0051 (13)0.0142 (12)
C190.0420 (19)0.065 (2)0.048 (2)0.0172 (17)0.0069 (16)0.0058 (18)
C100.0411 (18)0.0381 (18)0.0394 (18)0.0041 (14)0.0005 (14)0.0077 (14)
O70.0709 (19)0.092 (2)0.0655 (19)0.0371 (17)0.0143 (15)0.0151 (16)
C170.052 (2)0.062 (2)0.0355 (18)0.0195 (18)0.0062 (15)0.0102 (16)
C130.056 (2)0.041 (2)0.050 (2)0.0055 (17)0.0049 (17)0.0109 (16)
C180.054 (2)0.070 (3)0.0354 (18)0.0170 (19)0.0011 (16)0.0130 (17)
C200.061 (3)0.100 (3)0.054 (2)0.033 (2)0.007 (2)0.019 (2)
C120.056 (2)0.042 (2)0.065 (3)0.0038 (17)0.0085 (19)0.0071 (18)
C210.056 (2)0.079 (3)0.043 (2)0.022 (2)0.0002 (17)0.0222 (19)
C220.115 (4)0.065 (3)0.068 (3)0.048 (3)0.019 (3)0.023 (2)
C230.113 (4)0.074 (3)0.086 (4)0.040 (3)0.018 (3)0.042 (3)
C240.077 (3)0.105 (4)0.080 (3)0.023 (3)0.021 (3)0.015 (3)
C250.086 (4)0.154 (6)0.115 (5)0.015 (4)0.039 (4)0.002 (4)
Geometric parameters (Å, º) top
Br2—C191.894 (4)C10—H100.9300
P1—O51.471 (3)O7—C241.433 (6)
P1—O61.548 (3)C17—C181.378 (5)
P1—O71.553 (3)C17—H170.9300
P1—C151.815 (3)C13—C121.375 (5)
Cl3—C111.755 (4)C13—H130.9300
C14—O81.372 (4)C18—H180.9300
C14—C131.375 (5)C20—C211.389 (6)
C14—C91.394 (4)C20—H200.9300
C16—C171.364 (5)C12—H120.9300
C16—C211.377 (5)C21—H210.9300
C16—C151.515 (5)C22—C231.452 (6)
N4—C91.379 (4)C22—H22A0.9700
N4—C151.440 (4)C22—H22B0.9700
N4—H40.8600C23—H23A0.9600
O8—H80.8200C23—H23B0.9600
C9—C101.388 (4)C23—H23C0.9600
C15—H150.9800C24—C251.413 (7)
C11—C121.367 (5)C24—H24A0.9700
C11—C101.385 (5)C24—H24B0.9700
O6—C221.420 (5)C25—H25A0.9600
C19—C181.358 (5)C25—H25B0.9600
C19—C201.365 (6)C25—H25C0.9600
O5—P1—O6115.61 (15)C12—C13—C14121.8 (3)
O5—P1—O7115.13 (17)C12—C13—H13119.1
O6—P1—O7104.18 (16)C14—C13—H13119.1
O5—P1—C15114.15 (16)C19—C18—C17118.7 (3)
O6—P1—C15100.95 (15)C19—C18—H18120.7
O7—P1—C15105.21 (17)C17—C18—H18120.7
O8—C14—C13124.4 (3)C19—C20—C21118.9 (4)
O8—C14—C9115.3 (3)C19—C20—H20120.6
C13—C14—C9120.3 (3)C21—C20—H20120.6
C17—C16—C21118.2 (3)C11—C12—C13117.8 (3)
C17—C16—C15120.3 (3)C11—C12—H12121.1
C21—C16—C15121.4 (3)C13—C12—H12121.1
C9—N4—C15122.0 (3)C16—C21—C20120.7 (3)
C9—N4—H4119.0C16—C21—H21119.6
C15—N4—H4119.0C20—C21—H21119.6
C14—O8—H8109.5O6—C22—C23109.5 (4)
N4—C9—C10123.9 (3)O6—C22—H22A109.8
N4—C9—C14117.9 (3)C23—C22—H22A109.8
C10—C9—C14118.2 (3)O6—C22—H22B109.8
N4—C15—C16115.6 (3)C23—C22—H22B109.8
N4—C15—P1108.2 (2)H22A—C22—H22B108.2
C16—C15—P1110.7 (2)C22—C23—H23A109.5
N4—C15—H15107.4C22—C23—H23B109.5
C16—C15—H15107.4H23A—C23—H23B109.5
P1—C15—H15107.4C22—C23—H23C109.5
C12—C11—C10122.0 (3)H23A—C23—H23C109.5
C12—C11—Cl3119.5 (3)H23B—C23—H23C109.5
C10—C11—Cl3118.5 (3)C25—C24—O7110.6 (5)
C22—O6—P1126.1 (3)C25—C24—H24A109.5
C18—C19—C20121.5 (4)O7—C24—H24A109.5
C18—C19—Br2119.0 (3)C25—C24—H24B109.5
C20—C19—Br2119.6 (3)O7—C24—H24B109.5
C11—C10—C9119.9 (3)H24A—C24—H24B108.1
C11—C10—H10120.0C24—C25—H25A109.5
C9—C10—H10120.0C24—C25—H25B109.5
C24—O7—P1124.8 (3)H25A—C25—H25B109.5
C16—C17—C18122.0 (3)C24—C25—H25C109.5
C16—C17—H17119.0H25A—C25—H25C109.5
C18—C17—H17119.0H25B—C25—H25C109.5
C15—N4—C9—C108.0 (5)N4—C9—C10—C11179.2 (3)
C15—N4—C9—C14171.1 (3)C14—C9—C10—C110.1 (5)
O8—C14—C9—N40.3 (4)O5—P1—O7—C2416.9 (4)
C13—C14—C9—N4179.6 (3)O6—P1—O7—C24144.5 (4)
O8—C14—C9—C10179.5 (3)C15—P1—O7—C24109.7 (4)
C13—C14—C9—C100.4 (5)C21—C16—C17—C181.5 (5)
C9—N4—C15—C1688.1 (4)C15—C16—C17—C18177.9 (3)
C9—N4—C15—P1147.2 (3)O8—C14—C13—C12180.0 (4)
C17—C16—C15—N4150.5 (3)C9—C14—C13—C120.1 (6)
C21—C16—C15—N430.1 (4)C20—C19—C18—C170.3 (6)
C17—C16—C15—P186.1 (3)Br2—C19—C18—C17178.5 (3)
C21—C16—C15—P193.3 (3)C16—C17—C18—C190.4 (6)
O5—P1—C15—N465.4 (3)C18—C19—C20—C210.2 (7)
O6—P1—C15—N4169.9 (2)Br2—C19—C20—C21179.0 (3)
O7—P1—C15—N461.7 (3)C10—C11—C12—C131.4 (6)
O5—P1—C15—C1662.1 (3)Cl3—C11—C12—C13180.0 (3)
O6—P1—C15—C1662.6 (3)C14—C13—C12—C110.9 (6)
O7—P1—C15—C16170.7 (2)C17—C16—C21—C202.1 (6)
O5—P1—O6—C2266.1 (4)C15—C16—C21—C20177.3 (4)
O7—P1—O6—C2261.3 (4)C19—C20—C21—C161.4 (7)
C15—P1—O6—C22170.2 (4)P1—O6—C22—C23178.3 (3)
C12—C11—C10—C90.9 (6)P1—O7—C24—C25132.8 (5)
Cl3—C11—C10—C9179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O8i0.862.473.287 (4)159
C24—H24A···O5ii0.972.533.472 (7)163
O8—H8···O5i0.821.902.615 (4)145
C15—H15···Br2iii0.982.993.945 (4)164
N4—H4···O80.862.272.626 (4)104
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H20BrClNO4P
Mr448.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8596 (15), 9.1887 (13), 14.425 (2)
α, β, γ (°)82.921 (13), 80.372 (15), 70.701 (16)
V3)966.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.511, 0.653
No. of measured, independent and
observed [I > 2σ(I)] reflections
12477, 5846, 2891
Rint0.031
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.05
No. of reflections5846
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.54

Computer programs: CryAlis Pro (Oxford Diffraction, 2007), CryAlis RED (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEPII (Zsolnai, 1997), PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O8i0.862.473.287 (4)159
C24—H24A···O5ii0.972.533.472 (7)163
O8—H8···O5i0.821.902.615 (4)145
C15—H15···Br2iii0.982.993.945 (4)164
N4—H4···O80.862.272.626 (4)104
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.
 

Acknowledgements

MK thanks the University Grants Commission, New Delhi, for sanctioning the major research project for this work.

References

First citationKrishnaiah, M., Surendra Babu, V. H. H., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2009). Acta Cryst. E65, o2506–o2507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S., Song, B., Zhang, G. P., Jin, L.-H., Hu, D.-Y. & Xue, W. (2005). Acta Cryst. E61, o1662–o1664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZsolnai, L. (1997). ZORTEPII. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds