organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-[(1,3-Di­hydro­naphtho[2,3-c]furan-4-yl)phenyl­methyl­ene]aniline

aDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China, and bYancheng Institute of Technology, School of Chemical and Biological Engineering, Yancheng 224003, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 11 October 2009; accepted 13 October 2009; online 17 October 2009)

The title compound, C25H19NO was synthesized by a Pd-catalysed intra­molecular Diels–Alders reaction. The dihedral angle between the two benzene rings is 82.33 (5)° and the dihedral angles between the hydro­naphtho[2,3-c]furan plane and the two benzene rings are 89.50 (3) and 77.64 (2)°. The O atom is displaced by 0.5929 (3) Å from the hydro­naphtho[2,3-c]furan plane.

Related literature

For Pd-catalysed [2 + 2 + 2] cocyclization of diynes and arynes, see: Sato et al. (2004[Sato, Y., Tamura, T. & Mori, M. (2004). Angew. Chem. Int. Ed. 43, 2436-2440.], 2007[Sato, Y., Tamura, T., Kinbara, A. & Mori, M. (2007). Adv. Synth. Catal. 349, 647-661.]). For the biological activity of hydro­naphtho[2,3-c]furan derivatives, see: Baldwin et al. (1995[Baldwin, J. E., Chesworth, R. A., Parker, J. S. & Russell, A. T. (1995). Tetrahedron Lett. 36, 9551-9554.]); Takadoi et al. (1999[Takadoi, M., Katoh, T., Ishiwata, A. & Terashima, S. (1999). Tetrahedron Lett. 40, 3399-3402.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19NO

  • Mr = 349.41

  • Triclinic, [P \overline 1]

  • a = 9.326 (2) Å

  • b = 10.198 (2) Å

  • c = 10.878 (2) Å

  • α = 64.410 (10)°

  • β = 79.037 (11)°

  • γ = 86.299 (12)°

  • V = 915.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.985

  • 4805 measured reflections

  • 3227 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.105

  • wR(F2) = 0.278

  • S = 1.04

  • 3227 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydronaphtho [2,3-c]-furan derivatives exhibit potent and selective antagonism against muscarine M~2~ receptor and are expected for the use as a therapeutic drug of Arzheimer's disease for example himbacine (Baldwin et al.,1995; Takadoi et al., 1999). These compounds were syhthesized by Pd Catalyzed [2 + 2+2] cocyclization of diynes and arynes(Sato et al., 2004, 2007). We report here the synthesis and crystal structure of the title compound. In the structure of title compound(Fig1), the values of the geometric parameters in (I) are normal (Allen et al., 1987) (Table 1). The intramolecular dihedral angle between the two benzene rings is 82.33 (5)°. The dihedral angles between the hydronaphtho[2,3-c]furan plane and the two benzene planes are 89.50 (3)° and 77.64 (2)°. The distance of O1 to the hydronaphtho[2,3-c]furan plane is 0.5929 (3) Å

Related literature top

For Pd-catalysed [2 + 2 + 2] cocyclization of diynes and arynes, see: Sato et al. (2004, 2007). For the biological activity of hydronaphtho[2,3-c]furan derivatives, see: Baldwin et al. (1995); Takadoi et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of Pd(dba)3.CHCl3 (20.8 mg, 0.02 mmol) in 2.0 ml anhydrous DMF under argon was added 1a (139.6 mg, 0.4 mmol), triethylamine (60.6 mg, 0.6 mmol). The mixture was stirred at 120 for 8 h. The reaction was quenched with a saturated aqueous solution of ammonium chloride, and the mixture was extracted with Et2O.The combined organic extracts were washed with water and saturated brine. The organic layer was dried (Na2SO4) and concentrated in vacuo. The residue was purified by chromatography on silica gel. The resulting solution was vapor at room temperature for 6 d, after which block-shaped crystals of the title compound suitable for X-ray diffraction analysis were obtained, yield 80%.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93–0.97 Å (methanol hydroxyl) and with Uĩso~(H) = 1.2U~eq~(parent atom),.

Structure description top

Hydronaphtho [2,3-c]-furan derivatives exhibit potent and selective antagonism against muscarine M~2~ receptor and are expected for the use as a therapeutic drug of Arzheimer's disease for example himbacine (Baldwin et al.,1995; Takadoi et al., 1999). These compounds were syhthesized by Pd Catalyzed [2 + 2+2] cocyclization of diynes and arynes(Sato et al., 2004, 2007). We report here the synthesis and crystal structure of the title compound. In the structure of title compound(Fig1), the values of the geometric parameters in (I) are normal (Allen et al., 1987) (Table 1). The intramolecular dihedral angle between the two benzene rings is 82.33 (5)°. The dihedral angles between the hydronaphtho[2,3-c]furan plane and the two benzene planes are 89.50 (3)° and 77.64 (2)°. The distance of O1 to the hydronaphtho[2,3-c]furan plane is 0.5929 (3) Å

For Pd-catalysed [2 + 2 + 2] cocyclization of diynes and arynes, see: Sato et al. (2004, 2007). For the biological activity of hydronaphtho[2,3-c]furan derivatives, see: Baldwin et al. (1995); Takadoi et al. (1999). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008)'.

Figures top
[Figure 1] Fig. 1. The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(E)-N-[(1,3-Dihydronaphtho[2,3-c]furan-4- yl)phenylmethylene]aniline top
Crystal data top
C25H19NOZ = 2
Mr = 349.41F(000) = 368
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.326 (2) ÅCell parameters from 831 reflections
b = 10.198 (2) Åθ = 2.7–28.6°
c = 10.878 (2) ŵ = 0.08 mm1
α = 64.41 (1)°T = 293 K
β = 79.037 (11)°Block, yellow
γ = 86.299 (12)°0.27 × 0.25 × 0.19 mm
V = 915.9 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3227 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.979, Tmax = 0.985k = 1211
4805 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.105Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.150P)2]
where P = (Fo2 + 2Fc2)/3
3227 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C25H19NOγ = 86.299 (12)°
Mr = 349.41V = 915.9 (3) Å3
Triclinic, P1Z = 2
a = 9.326 (2) ÅMo Kα radiation
b = 10.198 (2) ŵ = 0.08 mm1
c = 10.878 (2) ÅT = 293 K
α = 64.41 (1)°0.27 × 0.25 × 0.19 mm
β = 79.037 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3227 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1706 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.046
4805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1050 restraints
wR(F2) = 0.278H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
3227 reflectionsΔρmin = 0.48 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1356 (4)0.2470 (4)0.7731 (4)0.0433 (9)
C120.1319 (4)0.1578 (4)0.7038 (4)0.0435 (9)
C60.1621 (4)0.1824 (4)0.9125 (4)0.0446 (9)
C50.1846 (4)0.0328 (4)0.9765 (4)0.0486 (10)
H50.19950.01011.06770.058*
C40.1851 (4)0.0506 (4)0.9077 (4)0.0471 (9)
N10.0090 (4)0.2261 (4)0.5151 (3)0.0583 (10)
C10.1585 (4)0.0116 (4)0.7703 (4)0.0464 (10)
C100.1162 (4)0.3989 (4)0.7104 (4)0.0529 (10)
H100.09780.44270.62040.064*
C130.1141 (4)0.2222 (4)0.5537 (4)0.0473 (10)
C70.1645 (4)0.2734 (4)0.9793 (4)0.0553 (11)
H70.17880.23201.07070.066*
C140.2449 (4)0.2815 (4)0.4463 (4)0.0495 (10)
C90.1235 (4)0.4827 (4)0.7779 (4)0.0585 (11)
H90.11310.58280.73280.070*
C200.1432 (4)0.1792 (5)0.6102 (4)0.0527 (11)
C80.1467 (5)0.4190 (5)0.9153 (5)0.0605 (11)
H80.14990.47620.96210.073*
C190.2363 (5)0.3438 (5)0.3073 (4)0.0600 (11)
H190.14620.34760.28130.072*
C180.3576 (5)0.3999 (5)0.2072 (5)0.0708 (13)
H180.34900.44250.11420.085*
C210.2194 (5)0.2719 (5)0.6612 (4)0.0632 (12)
H210.17730.36000.64340.076*
C20.1712 (5)0.1041 (4)0.7202 (4)0.0645 (12)
H2A0.08320.11040.68750.077*
H2B0.25380.08400.64500.077*
C250.2089 (5)0.0486 (5)0.6375 (4)0.0626 (12)
H250.15950.01330.60210.075*
O10.1914 (4)0.2359 (3)0.8365 (3)0.0819 (11)
C220.3594 (5)0.2322 (5)0.7394 (5)0.0699 (13)
H220.41120.29440.77320.084*
C30.2152 (5)0.2078 (4)0.9480 (4)0.0608 (11)
H3A0.31530.22860.96250.073*
H3B0.15000.26761.03280.073*
C240.3477 (5)0.0100 (6)0.7172 (5)0.0705 (13)
H240.39020.07840.73670.085*
C230.4213 (5)0.1018 (6)0.7669 (5)0.0718 (14)
H230.51450.07580.81990.086*
C150.3807 (5)0.2772 (5)0.4806 (5)0.0739 (14)
H150.38960.23650.57340.089*
C160.5024 (5)0.3318 (6)0.3804 (5)0.0892 (17)
H160.59280.32630.40640.107*
C170.4933 (5)0.3938 (5)0.2436 (5)0.0753 (14)
H170.57630.43130.17600.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.041 (2)0.038 (2)0.050 (2)0.0026 (15)0.0135 (17)0.0164 (17)
C120.041 (2)0.043 (2)0.046 (2)0.0045 (16)0.0145 (16)0.0168 (17)
C60.040 (2)0.046 (2)0.050 (2)0.0062 (16)0.0150 (17)0.0201 (17)
C50.048 (2)0.050 (2)0.048 (2)0.0031 (17)0.0200 (17)0.0163 (18)
C40.044 (2)0.041 (2)0.054 (2)0.0055 (16)0.0168 (17)0.0169 (17)
N10.052 (2)0.069 (2)0.0467 (19)0.0011 (17)0.0183 (16)0.0149 (16)
C10.046 (2)0.042 (2)0.051 (2)0.0049 (17)0.0155 (18)0.0181 (17)
C100.054 (3)0.048 (2)0.054 (2)0.0031 (18)0.0186 (19)0.0156 (19)
C130.054 (2)0.040 (2)0.049 (2)0.0058 (17)0.0199 (19)0.0169 (17)
C70.058 (3)0.056 (3)0.059 (2)0.008 (2)0.024 (2)0.027 (2)
C140.055 (3)0.044 (2)0.050 (2)0.0060 (18)0.0173 (19)0.0176 (17)
C90.057 (3)0.044 (2)0.077 (3)0.0072 (19)0.026 (2)0.024 (2)
C200.052 (3)0.058 (3)0.043 (2)0.007 (2)0.0249 (19)0.0111 (18)
C80.062 (3)0.053 (3)0.077 (3)0.001 (2)0.022 (2)0.034 (2)
C190.058 (3)0.068 (3)0.048 (2)0.002 (2)0.018 (2)0.016 (2)
C180.066 (3)0.080 (3)0.054 (3)0.005 (2)0.012 (2)0.016 (2)
C210.062 (3)0.062 (3)0.063 (3)0.007 (2)0.023 (2)0.019 (2)
C20.079 (3)0.052 (3)0.067 (3)0.012 (2)0.028 (2)0.025 (2)
C250.065 (3)0.063 (3)0.057 (3)0.007 (2)0.028 (2)0.017 (2)
O10.120 (3)0.0447 (17)0.085 (2)0.0196 (17)0.0338 (19)0.0285 (16)
C220.065 (3)0.076 (3)0.064 (3)0.019 (3)0.021 (2)0.024 (2)
C30.071 (3)0.049 (2)0.061 (3)0.010 (2)0.023 (2)0.019 (2)
C240.065 (3)0.076 (3)0.067 (3)0.005 (3)0.025 (2)0.021 (2)
C230.055 (3)0.089 (4)0.062 (3)0.001 (3)0.023 (2)0.019 (3)
C150.057 (3)0.098 (4)0.055 (3)0.000 (2)0.021 (2)0.017 (2)
C160.049 (3)0.129 (5)0.071 (3)0.002 (3)0.015 (2)0.024 (3)
C170.061 (3)0.084 (3)0.066 (3)0.006 (2)0.002 (2)0.021 (3)
Geometric parameters (Å, º) top
C11—C101.413 (5)C8—H80.9300
C11—C121.416 (5)C19—C181.367 (6)
C11—C61.432 (5)C19—H190.9300
C12—C11.377 (5)C18—C171.387 (6)
C12—C131.513 (5)C18—H180.9300
C6—C51.398 (5)C21—C221.393 (6)
C6—C71.407 (5)C21—H210.9300
C5—C41.353 (5)C2—O11.426 (5)
C5—H50.9300C2—H2A0.9700
C4—C11.414 (5)C2—H2B0.9700
C4—C31.491 (5)C25—C241.388 (6)
N1—C131.288 (5)C25—H250.9300
N1—C201.422 (5)O1—C31.419 (5)
C1—C21.489 (5)C22—C231.372 (7)
C10—C91.357 (5)C22—H220.9300
C10—H100.9300C3—H3A0.9700
C13—C141.470 (5)C3—H3B0.9700
C7—C81.355 (6)C24—C231.361 (6)
C7—H70.9300C24—H240.9300
C14—C151.379 (5)C23—H230.9300
C14—C191.381 (5)C15—C161.368 (6)
C9—C81.404 (6)C15—H150.9300
C9—H90.9300C16—C171.360 (6)
C20—C211.387 (6)C16—H160.9300
C20—C251.390 (6)C17—H170.9300
C10—C11—C12123.0 (3)C14—C19—H19119.3
C10—C11—C6117.8 (3)C19—C18—C17120.3 (4)
C12—C11—C6119.3 (3)C19—C18—H18119.8
C1—C12—C11119.3 (3)C17—C18—H18119.8
C1—C12—C13119.3 (3)C20—C21—C22119.5 (4)
C11—C12—C13121.2 (3)C20—C21—H21120.2
C5—C6—C7122.7 (4)C22—C21—H21120.2
C5—C6—C11119.2 (3)O1—C2—C1105.7 (3)
C7—C6—C11118.2 (3)O1—C2—H2A110.6
C4—C5—C6120.9 (4)C1—C2—H2A110.6
C4—C5—H5119.5O1—C2—H2B110.6
C6—C5—H5119.5C1—C2—H2B110.6
C5—C4—C1120.5 (3)H2A—C2—H2B108.7
C5—C4—C3131.5 (4)C24—C25—C20120.5 (4)
C1—C4—C3108.0 (3)C24—C25—H25119.8
C13—N1—C20122.9 (3)C20—C25—H25119.8
C12—C1—C4120.8 (3)C3—O1—C2111.0 (3)
C12—C1—C2130.7 (3)C23—C22—C21120.4 (5)
C4—C1—C2108.4 (3)C23—C22—H22119.8
C9—C10—C11121.9 (4)C21—C22—H22119.8
C9—C10—H10119.1O1—C3—C4106.0 (3)
C11—C10—H10119.1O1—C3—H3A110.5
N1—C13—C14118.4 (3)C4—C3—H3A110.5
N1—C13—C12123.5 (3)O1—C3—H3B110.5
C14—C13—C12118.1 (3)C4—C3—H3B110.5
C8—C7—C6122.4 (4)H3A—C3—H3B108.7
C8—C7—H7118.8C23—C24—C25119.9 (5)
C6—C7—H7118.8C23—C24—H24120.1
C15—C14—C19117.5 (4)C25—C24—H24120.1
C15—C14—C13121.3 (4)C24—C23—C22120.6 (5)
C19—C14—C13121.2 (4)C24—C23—H23119.7
C10—C9—C8120.3 (4)C22—C23—H23119.7
C10—C9—H9119.8C16—C15—C14121.2 (4)
C8—C9—H9119.8C16—C15—H15119.4
C21—C20—C25119.1 (4)C14—C15—H15119.4
C21—C20—N1120.2 (4)C17—C16—C15121.1 (5)
C25—C20—N1120.0 (4)C17—C16—H16119.4
C7—C8—C9119.4 (4)C15—C16—H16119.4
C7—C8—H8120.3C16—C17—C18118.5 (4)
C9—C8—H8120.3C16—C17—H17120.7
C18—C19—C14121.3 (4)C18—C17—H17120.7
C18—C19—H19119.3
C10—C11—C12—C1177.0 (3)C12—C13—C14—C150.8 (5)
C6—C11—C12—C12.0 (5)N1—C13—C14—C191.9 (6)
C10—C11—C12—C133.1 (5)C12—C13—C14—C19179.1 (3)
C6—C11—C12—C13176.0 (3)C11—C10—C9—C81.9 (6)
C10—C11—C6—C5178.7 (3)C13—N1—C20—C2182.6 (5)
C12—C11—C6—C50.4 (5)C13—N1—C20—C25106.4 (5)
C10—C11—C6—C71.2 (5)C6—C7—C8—C90.6 (6)
C12—C11—C6—C7179.7 (3)C10—C9—C8—C71.2 (6)
C7—C6—C5—C4178.3 (3)C15—C14—C19—C180.4 (6)
C11—C6—C5—C41.5 (5)C13—C14—C19—C18179.5 (4)
C6—C5—C4—C11.8 (6)C14—C19—C18—C170.8 (7)
C6—C5—C4—C3175.7 (4)C25—C20—C21—C220.4 (6)
C11—C12—C1—C41.8 (5)N1—C20—C21—C22171.5 (4)
C13—C12—C1—C4175.9 (3)C12—C1—C2—O1176.9 (4)
C11—C12—C1—C2175.5 (4)C4—C1—C2—O15.5 (4)
C13—C12—C1—C21.4 (6)C21—C20—C25—C241.3 (6)
C5—C4—C1—C120.1 (6)N1—C20—C25—C24172.4 (4)
C3—C4—C1—C12177.9 (3)C1—C2—O1—C39.2 (5)
C5—C4—C1—C2178.0 (3)C20—C21—C22—C230.5 (6)
C3—C4—C1—C20.1 (4)C2—O1—C3—C49.2 (5)
C12—C11—C10—C9178.4 (3)C5—C4—C3—O1176.8 (4)
C6—C11—C10—C90.7 (6)C1—C4—C3—O15.5 (4)
C20—N1—C13—C14176.4 (3)C20—C25—C24—C231.3 (6)
C20—N1—C13—C124.6 (6)C25—C24—C23—C220.3 (7)
C1—C12—C13—N187.9 (5)C21—C22—C23—C240.6 (7)
C11—C12—C13—N198.2 (4)C19—C14—C15—C160.4 (7)
C1—C12—C13—C1491.2 (4)C13—C14—C15—C16179.7 (4)
C11—C12—C13—C1482.8 (4)C14—C15—C16—C170.9 (8)
C5—C6—C7—C8178.0 (4)C15—C16—C17—C180.4 (8)
C11—C6—C7—C81.8 (6)C19—C18—C17—C160.4 (7)
N1—C13—C14—C15178.3 (4)

Experimental details

Crystal data
Chemical formulaC25H19NO
Mr349.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.326 (2), 10.198 (2), 10.878 (2)
α, β, γ (°)64.41 (1), 79.037 (11), 86.299 (12)
V3)915.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.27 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.979, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4805, 3227, 1706
Rint0.046
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.105, 0.278, 1.04
No. of reflections3227
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)'.

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationBaldwin, J. E., Chesworth, R. A., Parker, J. S. & Russell, A. T. (1995). Tetrahedron Lett. 36, 9551–9554.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSato, Y., Tamura, T., Kinbara, A. & Mori, M. (2007). Adv. Synth. Catal. 349, 647–661.  Web of Science CrossRef CAS Google Scholar
First citationSato, Y., Tamura, T. & Mori, M. (2004). Angew. Chem. Int. Ed. 43, 2436–2440.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakadoi, M., Katoh, T., Ishiwata, A. & Terashima, S. (1999). Tetrahedron Lett. 40, 3399–3402.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds