metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,7,13,16,21,24-Hexaoxa-1,10-di­aza­bi­cyclo­[8.8.8]hexa­cosa­ne)sodium perchlorate

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA, bDR SUSS CORP, 6007 McLeod Dr, Las Vegas, NV 89120, USA, and cSchool of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, WI 53705, USA
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 13 August 2009; accepted 29 September 2009; online 17 October 2009)

The title compound, [Na(C18H36N2O6)]ClO4, was isolated and crystallized to understand more fully the ligand's binding specificity to cations. The cation and anion reside at an inter­section of crystallographic twofold and threefold axes. The carbon atoms in the cation are disordered over two positions in a 3:2 ratio, and the anion is equally disordered over two positions. The geometries of the cation and anion are typical. The compound packs in alternating sheets of discrete cations and anions stacked along the c axis, separated by a distance equal to one-sixth the length of the c axis.

Related literature

For general background to the macrocyclic polyether 4,7,13,16,21,24-hexa­oxa-1,10-diaza-bicyclo­[8.8.8]hexa­cosane, see: Izatt et al. (1985[Izatt, R. M., Bradshaw, J. S., Nielsen, B. L., Lamb, J. D. & Christensen, J. J. (1985). Chem. Rev. 85, 271-339.]); Tait et al. (1997[Tait, D., Haase, G. & Wiechen, A. (1997). J. Radioanal. Nucl. Chem. 226, 225-228.]); Varga et al. (1994[Varga, L. P., Sztanyik, L. B., Ronai, E., Bodo, K., Brucher, E., Gyori, B., Emri, J. & Kovacs, Z. (1994). Int. J. Radiat. Biol. 66, 399-405.]); Trend et al. (1993[Trend, J. E., Kipke, C. A., Rossmann, M., Yafuso, M. & Patil, S. L. (1993). US Patent No. 5 474 743.]); Hamacher et al. (1986[Hamacher, K., Coenen, H. H. & Stocklin, G. (1986). J. Nucl. Med. 27, 235-238.]); Su & Burnette (2008[Su, J. W. & Burnette, R. R. (2008). ChemPhysChem, 9, 1989-1996.]). For related structures, see: Belaj et al. (1997[Belaj, F., Trnoska, A. & Nachbaur, E. (1997). Z. Kristallogr. 212, 355-361.]); Tehan et al. (1974[Tehan, F. J., Barnett, B. L. & Dye, J. L. (1974). J. Am. Chem. Soc. 96, 7203-7208.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and for Mogul, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C18H36N2O6)]ClO4

  • Mr = 498.93

  • Rhombohedral, R 32

  • a = 8.4730 (3) Å

  • c = 28.220 (3) Å

  • V = 1754.5 (2) Å3

  • Z = 3

  • Mo- Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.49 × 0.37 × 0.35 mm

Data collection
  • Bruker CCD-1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.922

  • 6885 measured reflections

  • 805 independent reflections

  • 765 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.11

  • 805 reflections

  • 85 parameters

  • 144 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 319 Friedel pairs

  • Flack parameter: 0.01 (15)

Table 1
Selected geometric parameters (Å, °)

Cl1—O2i 1.422 (4)
Cl1—O2 1.422 (4)
Cl1—O3i 1.434 (3)
Cl1—O3ii 1.434 (3)
Cl1—O3 1.434 (3)
Cl1—O3iii 1.434 (3)
Cl1—O3iv 1.434 (3)
Cl1—O3v 1.434 (3)
Na1—O1 2.5661 (15)
Na1—N1 2.684 (2)
O2—O3iii 1.639 (5)
O3—O3v 1.797 (10)
Symmetry codes: (i) y, x, -z+2; (ii) -y+2, x-y+1, z; (iii) x-y+1, -y+2, -z+2; (iv) -x+y+1, -x+2, z; (v) -x+2, -x+y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, modiCIFer (Guzei, 2007[Guzei, I. A. (2007). modiCIFer. University of Wisconsin-Madison, USA.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The macrocyclic polyether 4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane (222) is a classic example of a host molecule possessing important clinical functions. 222 encapsulates 1:1 various alkali and alkaline earth metals, and features high selectivity for K+ and Sr2+ in solution (Izatt et al., 1985). Tait et al. (1997) formulated a cation exchange resin treated with 222 that sorbed more than 95% of the fallout nuclide 90Sr in liquid milk (295 K, pH 5.2, 4 h contact time, 1:50 resin to milk volume ratio). Varga et al. (1994) synthesized functionalized 222 for 85Sr2+ decorporation in the rat and mouse. J. E. Trend and co-workers (1993) formulated 222 with a covalently bound chromophore to assay clinical blood K+4. Hamacher et al. (1986) developed the use of [K+(222)]18F- as a phase transfer catalyst in synthesizing the clinically significant PET tracer 2-[18F]fluoro-2-deoxy-D-glucose. Due to 222 obvious industrial and clinical applications the relative binding characteristics of 222 to Li+, Na+ and K+ have been studied in order to more fully understand 222's binding specificity to cations (Su & Burnette, 2008).

In the title compound, (I), both the Na+(222) cation and the perchlorate anion of (I) reside at an intersection of crystallographic twofold and threefold axes. All the carbon atoms in the cation are disordered over two positions in a 3:2 ratio. The perchlorate anion is equally disordered over two positions. Multiple restraints were applied to ensure computational stability of the refinement.

The bond distances and angles within (I) are typical as confirmed by the Mogul structural check (Bruno et. al, 2004). Among 59 relevant compounds reported to the CSD (Allen, 2002), the most closely related is (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo(8.8.8)hexacosane)-sodium periodate which contains the same cation as (I) and a periodate anion instead of the perchlorate anion (Belaj et al., 1997), and sodium (2,2,2)-crypt-sodium (Tehan et al., 1974) which forms crystals in the same rhombohedral space group R32, as (I).

The packing structure of compound (I) consists of alternating sheets of cations and anions stacked along the c axis. The distance between these sheets is 4.70 Å, or one sixth of the length of the c axis.

Related literature top

For general backgroundto the macrocyclic polyether

4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane, see: Izatt et al. (1985); Tait et al. (1997); Varga et al. (1994); Trend et al. (1993); Hamacher et al. (1986); Su & Burnette (2008). For related structures, see: Belaj et al. (1997); Tehan et al. (1974). For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2004).

Experimental top

An equimolar mixture of 222 and NaClO4 was prepared in acetone. The mixture was allowed to evaporate slowly at room temperature until crystallization was observed.

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(bearing atom).

The following restraints (expressed as SHELXL commands) were used. Thus, we imposed distance similarity restraints on the C—C and C—N bonds involving disordered atoms and refined the ClO4- anion with an idealized geometry allowing the Cl—O distanct to refine as a free variable. The thermal displacement parameters for C3 and C3a were restrained to approximate isotropic behavior.

EQIV $3 Y+1/3, X-1/3, –Z+5/3 SADI 0.005 C1 C2 C1A C2A C3 C3_$3 C3A C3A_$3 SADI 0.005 N1 C1 N1 C1A SADI 0.005 O1 C2 O1 C2A O1 C3 O1 C3A DFIX 21 0.005 C L1 O3 CL1 O2 DFIX 21.633 0.005 O2 O3 SIMU DELU ISOR 0.02 C3 C3A FVAR 0.49309 1.43008 0.34032

Structure description top

The macrocyclic polyether 4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane (222) is a classic example of a host molecule possessing important clinical functions. 222 encapsulates 1:1 various alkali and alkaline earth metals, and features high selectivity for K+ and Sr2+ in solution (Izatt et al., 1985). Tait et al. (1997) formulated a cation exchange resin treated with 222 that sorbed more than 95% of the fallout nuclide 90Sr in liquid milk (295 K, pH 5.2, 4 h contact time, 1:50 resin to milk volume ratio). Varga et al. (1994) synthesized functionalized 222 for 85Sr2+ decorporation in the rat and mouse. J. E. Trend and co-workers (1993) formulated 222 with a covalently bound chromophore to assay clinical blood K+4. Hamacher et al. (1986) developed the use of [K+(222)]18F- as a phase transfer catalyst in synthesizing the clinically significant PET tracer 2-[18F]fluoro-2-deoxy-D-glucose. Due to 222 obvious industrial and clinical applications the relative binding characteristics of 222 to Li+, Na+ and K+ have been studied in order to more fully understand 222's binding specificity to cations (Su & Burnette, 2008).

In the title compound, (I), both the Na+(222) cation and the perchlorate anion of (I) reside at an intersection of crystallographic twofold and threefold axes. All the carbon atoms in the cation are disordered over two positions in a 3:2 ratio. The perchlorate anion is equally disordered over two positions. Multiple restraints were applied to ensure computational stability of the refinement.

The bond distances and angles within (I) are typical as confirmed by the Mogul structural check (Bruno et. al, 2004). Among 59 relevant compounds reported to the CSD (Allen, 2002), the most closely related is (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo(8.8.8)hexacosane)-sodium periodate which contains the same cation as (I) and a periodate anion instead of the perchlorate anion (Belaj et al., 1997), and sodium (2,2,2)-crypt-sodium (Tehan et al., 1974) which forms crystals in the same rhombohedral space group R32, as (I).

The packing structure of compound (I) consists of alternating sheets of cations and anions stacked along the c axis. The distance between these sheets is 4.70 Å, or one sixth of the length of the c axis.

For general backgroundto the macrocyclic polyether

4,7,13,16,21,24-hexaoxa-1,10-diaza-bicyclo[8.8.8]hexacosane, see: Izatt et al. (1985); Tait et al. (1997); Varga et al. (1994); Trend et al. (1993); Hamacher et al. (1986); Su & Burnette (2008). For related structures, see: Belaj et al. (1997); Tehan et al. (1974). For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), modiCIFer (Guzei, 2007) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. Only the preferred orientation of the carbon atoms is shown and only tone orientation of the perchlorate molecule is shown. All hydrogen atoms were omitted for clarity. Symmetry transformations used to generate equivalent atoms: i: (-x + y+1,-x + 1,z) ii: (-y + 1,x-y,z) iii: (-x + 4/3,-x + y+2/3,-z + 5/3) iv: (y + 1/3,x - 1/3,-z + 5/3) v: (x-y + 1/3,-y + 2/3,-z + 5/3) vi: (-x + y+1,-x + 2,z) vii: (-y + 2,x-y + 1,z).
(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)sodium perchlorate top
Crystal data top
[Na(C18H36N2O6)]ClO4F(000) = 798
Mr = 498.93Dx = 1.417 Mg m3
Rhombohedral, R32Mo Kα radiation, λ = 0.71073 Å
Hall symbol: R 3 2"Cell parameters from 999 reflections
a = 8.4730 (3) Åθ = 2.2–26.4°
c = 28.220 (3) ŵ = 0.24 mm1
α = 90°T = 100 K
γ = 120°Block, colorless
V = 1754.5 (2) Å30.49 × 0.37 × 0.35 mm
Z = 3
Data collection top
Bruker CCD-1000 area-detector
diffractometer
805 independent reflections
Radiation source: fine-focus sealed tube765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
0.30° ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.893, Tmax = 0.922k = 1010
6885 measured reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0715P)2 + 1.1083P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
805 reflectionsΔρmax = 0.28 e Å3
85 parametersΔρmin = 0.18 e Å3
144 restraintsAbsolute structure: Flack (1983), 319 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (15)
Crystal data top
[Na(C18H36N2O6)]ClO4V = 1754.5 (2) Å3
Mr = 498.93Z = 3
Rhombohedral, R32Mo Kα radiation
a = 8.4730 (3) ŵ = 0.24 mm1
c = 28.220 (3) ÅT = 100 K
α = 90°0.49 × 0.37 × 0.35 mm
γ = 120°
Data collection top
Bruker CCD-1000 area-detector
diffractometer
805 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
765 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.922Rint = 0.026
6885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.28 e Å3
S = 1.11Δρmin = 0.18 e Å3
805 reflectionsAbsolute structure: Flack (1983), 319 Friedel pairs
85 parametersAbsolute structure parameter: 0.01 (15)
144 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.00001.00001.00000.0347 (3)
Na10.66670.33330.83330.0246 (3)
O10.9844 (2)0.5262 (3)0.86993 (4)0.0589 (6)
O21.00001.00000.94963 (15)0.0768 (17)0.50
O30.8972 (8)0.8167 (4)1.01732 (13)0.0762 (10)0.50
N10.66670.33330.92846 (8)0.0420 (6)
C10.8527 (6)0.3802 (11)0.9424 (2)0.0688 (15)0.60
H1A0.86340.39670.97720.083*0.60
H1B0.86940.27540.93480.083*0.60
C1A0.8443 (7)0.4767 (11)0.9471 (3)0.0534 (16)0.40
H1C0.85250.59730.94520.064*0.40
H1D0.85810.45180.98070.064*0.40
C21.0022 (10)0.5443 (10)0.92024 (13)0.0614 (18)0.60
H2A0.99720.65350.93050.074*0.60
H2B1.12100.55920.93010.074*0.60
C2A0.9880 (17)0.475 (3)0.9180 (2)0.087 (4)0.40
H2C1.10840.56020.93190.104*0.40
H2D0.97250.35140.91860.104*0.40
C31.0622 (10)0.7167 (5)0.85941 (11)0.087 (2)0.60
H3A1.19090.78540.86990.105*0.60
H3B0.99340.76710.87560.105*0.60
C3A1.1033 (9)0.6727 (12)0.8398 (4)0.094 (4)0.40
H3C1.13270.62540.81100.113*0.40
H3D1.21830.75540.85650.113*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0316 (3)0.0316 (3)0.0408 (5)0.01580 (17)0.0000.000
Na10.0265 (4)0.0265 (4)0.0208 (6)0.0132 (2)0.0000.000
O10.0367 (7)0.0832 (14)0.0448 (8)0.0211 (8)0.0063 (6)0.0004 (7)
O20.093 (3)0.093 (3)0.045 (3)0.0464 (14)0.0000.000
O30.071 (3)0.0472 (18)0.109 (3)0.028 (2)0.015 (3)0.0307 (17)
N10.0486 (9)0.0486 (9)0.0289 (10)0.0243 (5)0.0000.000
C10.068 (3)0.087 (4)0.037 (2)0.028 (3)0.026 (2)0.003 (3)
C1A0.060 (4)0.058 (4)0.032 (3)0.022 (4)0.017 (3)0.000 (3)
C20.040 (3)0.077 (4)0.047 (3)0.014 (2)0.008 (2)0.0187 (19)
C2A0.046 (4)0.146 (12)0.054 (5)0.037 (6)0.025 (3)0.008 (5)
C30.067 (4)0.056 (3)0.088 (4)0.007 (3)0.033 (3)0.000 (3)
C3A0.041 (4)0.100 (7)0.089 (6)0.005 (4)0.009 (4)0.004 (5)
Geometric parameters (Å, º) top
Cl1—O2i1.422 (4)O3—O3i1.533 (9)
Cl1—O21.422 (4)O3—O3v1.797 (10)
Cl1—O3i1.434 (3)N1—C11.474 (4)
Cl1—O3ii1.434 (3)N1—C1vi1.474 (4)
Cl1—O31.434 (3)N1—C1viii1.474 (4)
Cl1—O3iii1.434 (3)N1—C1Avi1.480 (4)
Cl1—O3iv1.434 (3)N1—C1A1.480 (4)
Cl1—O3v1.434 (3)N1—C1Aviii1.480 (4)
Na1—O12.5661 (15)C1—C21.473 (5)
Na1—O1vi2.5661 (15)C1—H1A0.9900
Na1—O1vii2.5661 (15)C1—H1B0.9900
Na1—O1viii2.5661 (15)C1A—C2A1.476 (6)
Na1—O1ix2.5661 (15)C1A—H1C0.9900
Na1—O1x2.5661 (15)C1A—H1D0.9900
Na1—N12.684 (2)C2—H2A0.9900
Na1—N1ix2.685 (2)C2—H2B0.9900
O1—C21.428 (4)C2A—H2C0.9900
O1—C2A1.428 (4)C2A—H2D0.9900
O1—C31.436 (4)C3—C3ix1.483 (6)
O1—C3A1.425 (5)C3—H3A0.9900
O2—O3iii1.639 (5)C3—H3B0.9900
O2—O3v1.639 (5)C3A—C3Aix1.474 (6)
O2—O3i1.639 (5)C3A—H3C0.9900
O3—O2i1.639 (5)C3A—H3D0.9900
O2i—Cl1—O2180.000 (4)C3—O1—Na1112.2 (3)
O2i—Cl1—O3i109.92 (16)Cl1—O2—O3iii55.32 (15)
O2—Cl1—O3i70.08 (16)Cl1—O2—O3v55.32 (15)
O2i—Cl1—O3ii70.08 (16)O3iii—O2—O3v90.8 (2)
O2—Cl1—O3ii109.92 (16)Cl1—O2—O3i55.32 (15)
O3i—Cl1—O3ii172.5 (5)O3iii—O2—O3i90.8 (2)
O2i—Cl1—O370.08 (16)O3v—O2—O3i90.8 (2)
O2—Cl1—O3109.92 (16)Cl1—O3—O3i57.7 (2)
O3i—Cl1—O364.6 (5)Cl1—O3—O2i54.60 (16)
O3ii—Cl1—O3109.01 (16)O3i—O3—O2i94.9 (4)
O2i—Cl1—O3iii109.92 (16)Cl1—O3—O3v51.2 (2)
O2—Cl1—O3iii70.08 (16)O3i—O3—O3v88.7 (3)
O3i—Cl1—O3iii109.01 (16)O2i—O3—O3v85.6 (3)
O3ii—Cl1—O3iii77.6 (5)C1—N1—C1vi113.1 (2)
O3—Cl1—O3iii172.5 (5)C1—N1—C1viii113.1 (2)
O2i—Cl1—O3iv70.08 (16)C1vi—N1—C1viii113.1 (2)
O2—Cl1—O3iv109.92 (16)C1Avi—N1—C1A108.0 (3)
O3i—Cl1—O3iv77.6 (5)C1Avi—N1—C1Aviii108.0 (3)
O3ii—Cl1—O3iv109.01 (16)C1A—N1—C1Aviii108.0 (3)
O3—Cl1—O3iv109.01 (16)C1—N1—Na1105.5 (2)
O3iii—Cl1—O3iv64.6 (4)C1vi—N1—Na1105.5 (3)
O2i—Cl1—O3v109.92 (16)C1viii—N1—Na1105.5 (2)
O2—Cl1—O3v70.08 (16)C1Avi—N1—Na1110.9 (3)
O3i—Cl1—O3v109.01 (16)C1A—N1—Na1110.9 (3)
O3ii—Cl1—O3v64.6 (5)C1Aviii—N1—Na1110.9 (3)
O3—Cl1—O3v77.6 (5)C2—C1—N1116.1 (6)
O3iii—Cl1—O3v109.01 (16)C2—C1—H1A108.3
O3iv—Cl1—O3v172.5 (5)N1—C1—H1A108.3
O1—Na1—O1vi104.90 (3)C2—C1—H1B108.3
O1—Na1—O1vii167.11 (9)N1—C1—H1B108.3
O1vi—Na1—O1vii86.11 (9)H1A—C1—H1B107.4
O1—Na1—O1viii104.90 (3)C2A—C1A—N1107.4 (8)
O1vi—Na1—O1viii104.90 (3)C2A—C1A—H1C110.2
O1vii—Na1—O1viii65.09 (7)N1—C1A—H1C110.2
O1—Na1—O1ix65.09 (7)C2A—C1A—H1D110.2
O1vi—Na1—O1ix167.11 (9)N1—C1A—H1D110.2
O1vii—Na1—O1ix104.90 (3)H1C—C1A—H1D108.5
O1viii—Na1—O1ix86.11 (9)O1—C2—C1109.0 (4)
O1—Na1—O1x86.11 (9)O1—C2—H2A109.9
O1vi—Na1—O1x65.09 (7)C1—C2—H2A109.9
O1vii—Na1—O1x104.89 (3)O1—C2—H2B109.9
O1viii—Na1—O1x167.11 (9)C1—C2—H2B109.9
O1ix—Na1—O1x104.89 (3)H2A—C2—H2B108.3
O1—Na1—N166.27 (3)O1—C2A—C1A112.6 (7)
O1vi—Na1—N166.27 (3)O1—C2A—H2C109.1
O1vii—Na1—N1113.73 (3)C1A—C2A—H2C109.1
O1viii—Na1—N166.27 (3)O1—C2A—H2D109.1
O1ix—Na1—N1113.73 (3)C1A—C2A—H2D109.1
O1x—Na1—N1113.73 (3)H2C—C2A—H2D107.8
O1—Na1—N1ix113.73 (3)O1—C3—C3ix105.9 (4)
O1vi—Na1—N1ix113.73 (3)O1—C3—H3A110.5
O1vii—Na1—N1ix66.27 (3)C3ix—C3—H3A110.5
O1viii—Na1—N1ix113.73 (3)O1—C3—H3B110.5
O1ix—Na1—N1ix66.27 (3)C3ix—C3—H3B110.5
O1x—Na1—N1ix66.27 (3)H3A—C3—H3B108.7
N1—Na1—N1ix180.0O1—C3A—C3Aix106.5 (5)
C3A—O1—C2A135.9 (9)O1—C3A—H3C110.4
C2—O1—C396.9 (4)C3Aix—C3A—H3C110.4
C3A—O1—Na1112.0 (4)O1—C3A—H3D110.4
C2A—O1—Na1111.3 (6)C3Aix—C3A—H3D110.4
C2—O1—Na1119.3 (3)H3C—C3A—H3D108.6
O3i—Cl1—O2—O3iii120.000 (5)O1x—Na1—O1—C3126.9 (3)
O3ii—Cl1—O2—O3iii68.0 (5)N1—Na1—O1—C3115.1 (3)
O3—Cl1—O2—O3iii172.0 (5)N1ix—Na1—O1—C364.9 (3)
O3iv—Cl1—O2—O3iii52.0 (5)O1—Na1—N1—C123.0 (4)
O3v—Cl1—O2—O3iii120.000 (5)O1vi—Na1—N1—C197.0 (4)
O3i—Cl1—O2—O3v120.000 (14)O1vii—Na1—N1—C1171.1 (3)
O3ii—Cl1—O2—O3v52.0 (5)O1viii—Na1—N1—C1143.0 (4)
O3—Cl1—O2—O3v68.0 (5)O1ix—Na1—N1—C168.9 (3)
O3iii—Cl1—O2—O3v120.000 (13)O1x—Na1—N1—C151.1 (3)
O3iv—Cl1—O2—O3v172.0 (5)O1—Na1—N1—C1vi143.0 (3)
O3ii—Cl1—O2—O3i172.0 (5)O1vi—Na1—N1—C1vi23.0 (3)
O3—Cl1—O2—O3i52.0 (5)O1vii—Na1—N1—C1vi51.1 (3)
O3iii—Cl1—O2—O3i120.000 (3)O1viii—Na1—N1—C1vi97.0 (3)
O3iv—Cl1—O2—O3i68.0 (5)O1ix—Na1—N1—C1vi171.1 (3)
O3v—Cl1—O2—O3i120.000 (2)O1x—Na1—N1—C1vi68.9 (3)
O2i—Cl1—O3—O3i125.0 (4)O1—Na1—N1—C1viii97.0 (4)
O2—Cl1—O3—O3i55.0 (4)O1vi—Na1—N1—C1viii143.0 (4)
O3ii—Cl1—O3—O3i175.6 (3)O1vii—Na1—N1—C1viii68.9 (4)
O3iv—Cl1—O3—O3i65.5 (5)O1viii—Na1—N1—C1viii23.0 (4)
O3v—Cl1—O3—O3i118.2 (4)O1ix—Na1—N1—C1viii51.1 (4)
O2—Cl1—O3—O2i180.000 (4)O1x—Na1—N1—C1viii171.1 (4)
O3i—Cl1—O3—O2i125.0 (4)O1—Na1—N1—C1Avi107.5 (4)
O3ii—Cl1—O3—O2i59.45 (19)O1vi—Na1—N1—C1Avi12.5 (4)
O3iv—Cl1—O3—O2i59.45 (19)O1vii—Na1—N1—C1Avi86.6 (4)
O3v—Cl1—O3—O2i116.8 (3)O1viii—Na1—N1—C1Avi132.5 (4)
O2i—Cl1—O3—O3v116.8 (3)O1ix—Na1—N1—C1Avi153.4 (4)
O2—Cl1—O3—O3v63.2 (3)O1x—Na1—N1—C1Avi33.4 (4)
O3i—Cl1—O3—O3v118.2 (4)O1—Na1—N1—C1A12.5 (4)
O3ii—Cl1—O3—O3v57.3 (4)O1vi—Na1—N1—C1A132.5 (4)
O3iv—Cl1—O3—O3v176.2 (2)O1vii—Na1—N1—C1A153.4 (4)
O1vi—Na1—O1—C3A153.1 (4)O1viii—Na1—N1—C1A107.5 (4)
O1vii—Na1—O1—C3A58.9 (4)O1ix—Na1—N1—C1A33.4 (4)
O1viii—Na1—O1—C3A96.7 (4)O1x—Na1—N1—C1A86.6 (4)
O1ix—Na1—O1—C3A18.3 (4)O1—Na1—N1—C1Aviii132.5 (5)
O1x—Na1—O1—C3A90.1 (4)O1vi—Na1—N1—C1Aviii107.5 (5)
N1—Na1—O1—C3A151.8 (4)O1vii—Na1—N1—C1Aviii33.4 (4)
N1ix—Na1—O1—C3A28.2 (4)O1viii—Na1—N1—C1Aviii12.5 (5)
O1vi—Na1—O1—C2A35.5 (7)O1ix—Na1—N1—C1Aviii86.6 (5)
O1vii—Na1—O1—C2A112.5 (7)O1x—Na1—N1—C1Aviii153.4 (5)
O1viii—Na1—O1—C2A74.8 (7)C3—O1—C2—C1149.0 (7)
O1ix—Na1—O1—C2A153.2 (7)Na1—O1—C2—C128.7 (9)
O1x—Na1—O1—C2A98.4 (7)C3A—O1—C2A—C1A115.5 (10)
N1—Na1—O1—C2A19.7 (7)Na1—O1—C2A—C1A53.0 (13)
N1ix—Na1—O1—C2A160.3 (7)C2—O1—C3—C3ix177.7 (7)
O1vi—Na1—O1—C258.0 (5)Na1—O1—C3—C3ix52.1 (8)
O1vii—Na1—O1—C290.0 (5)C2A—O1—C3A—C3Aix116.9 (11)
O1viii—Na1—O1—C252.3 (5)Na1—O1—C3A—C3Aix51.6 (10)
O1ix—Na1—O1—C2130.7 (5)C1vi—N1—C1—C2166.0 (5)
O1x—Na1—O1—C2120.9 (5)C1viii—N1—C1—C263.7 (9)
N1—Na1—O1—C22.8 (5)Na1—N1—C1—C251.2 (6)
N1ix—Na1—O1—C2177.2 (5)C1Avi—N1—C1A—C2A79.9 (10)
O1vi—Na1—O1—C3170.2 (3)C1Aviii—N1—C1A—C2A163.5 (7)
O1vii—Na1—O1—C322.2 (3)Na1—N1—C1A—C2A41.8 (8)
O1viii—Na1—O1—C359.9 (3)N1—C1—C2—O155.6 (9)
O1ix—Na1—O1—C318.5 (3)N1—C1A—C2A—O165.1 (14)
Symmetry codes: (i) y, x, z+2; (ii) y+2, xy+1, z; (iii) xy+1, y+2, z+2; (iv) x+y+1, x+2, z; (v) x+2, x+y+1, z+2; (vi) x+y+1, x+1, z; (vii) x+4/3, x+y+2/3, z+5/3; (viii) y+1, xy, z; (ix) y+1/3, x1/3, z+5/3; (x) xy+1/3, y+2/3, z+5/3.

Experimental details

Crystal data
Chemical formula[Na(C18H36N2O6)]ClO4
Mr498.93
Crystal system, space groupRhombohedral, R32
Temperature (K)100
a, c (Å)8.4730 (3), 28.220 (3)
V3)1754.5 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.49 × 0.37 × 0.35
Data collection
DiffractometerBruker CCD-1000 area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.893, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
6885, 805, 765
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.11
No. of reflections805
No. of parameters85
No. of restraints144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18
Absolute structureFlack (1983), 319 Friedel pairs
Absolute structure parameter0.01 (15)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999), modiCIFer (Guzei, 2007) and publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Cl1—O2i1.422 (4)Cl1—O3iv1.434 (3)
Cl1—O21.422 (4)Cl1—O3v1.434 (3)
Cl1—O3i1.434 (3)Na1—O12.5661 (15)
Cl1—O3ii1.434 (3)Na1—N12.684 (2)
Cl1—O31.434 (3)O2—O3iii1.639 (5)
Cl1—O3iii1.434 (3)O3—O3v1.797 (10)
O2i—Cl1—O2180.000 (4)O3—Cl1—O3iii172.5 (5)
O2i—Cl1—O3i109.92 (16)O2i—Cl1—O3iv70.08 (16)
O2—Cl1—O3i70.08 (16)O2—Cl1—O3iv109.92 (16)
O2i—Cl1—O3ii70.08 (16)O3i—Cl1—O3iv77.6 (5)
O2—Cl1—O3ii109.92 (16)O3ii—Cl1—O3iv109.01 (16)
O3i—Cl1—O3ii172.5 (5)O3—Cl1—O3iv109.01 (16)
O2i—Cl1—O370.08 (16)O3iii—Cl1—O3iv64.6 (4)
O2—Cl1—O3109.92 (16)O2i—Cl1—O3v109.92 (16)
O3i—Cl1—O364.6 (5)O2—Cl1—O3v70.08 (16)
O3ii—Cl1—O3109.01 (16)O3i—Cl1—O3v109.01 (16)
O2i—Cl1—O3iii109.92 (16)O3ii—Cl1—O3v64.6 (5)
O2—Cl1—O3iii70.08 (16)O3—Cl1—O3v77.6 (5)
O3i—Cl1—O3iii109.01 (16)O3iii—Cl1—O3v109.01 (16)
O3ii—Cl1—O3iii77.6 (5)O3iv—Cl1—O3v172.5 (5)
Symmetry codes: (i) y, x, z+2; (ii) y+2, xy+1, z; (iii) xy+1, y+2, z+2; (iv) x+y+1, x+2, z; (v) x+2, x+y+1, z+2.
 

Acknowledgements

We thank the National Science Foundation for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBelaj, F., Trnoska, A. & Nachbaur, E. (1997). Z. Kristallogr. 212, 355–361.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuzei, I. A. (2007). modiCIFer. University of Wisconsin–Madison, USA.  Google Scholar
First citationHamacher, K., Coenen, H. H. & Stocklin, G. (1986). J. Nucl. Med. 27, 235–238.  CAS PubMed Web of Science Google Scholar
First citationIzatt, R. M., Bradshaw, J. S., Nielsen, B. L., Lamb, J. D. & Christensen, J. J. (1985). Chem. Rev. 85, 271–339.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J. W. & Burnette, R. R. (2008). ChemPhysChem, 9, 1989–1996.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTait, D., Haase, G. & Wiechen, A. (1997). J. Radioanal. Nucl. Chem. 226, 225–228.  Web of Science CrossRef CAS Google Scholar
First citationTehan, F. J., Barnett, B. L. & Dye, J. L. (1974). J. Am. Chem. Soc. 96, 7203–7208.  CSD CrossRef CAS Web of Science Google Scholar
First citationTrend, J. E., Kipke, C. A., Rossmann, M., Yafuso, M. & Patil, S. L. (1993). US Patent No. 5 474 743.  Google Scholar
First citationVarga, L. P., Sztanyik, L. B., Ronai, E., Bodo, K., Brucher, E., Gyori, B., Emri, J. & Kovacs, Z. (1994). Int. J. Radiat. Biol. 66, 399–405.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds