metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­phenyl­tin(IV)]-μ-2-(2-picolinoylhydrazono)propanoato-κ2O1:O2]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 21 September 2009; accepted 1 October 2009; online 7 October 2009)

In the title polymeric coordination compound, [Sn(C6H5)3(C9H8N3O3)]n, the SnIV atom is in a distorted trigonal-bipyramidal geometry, being coordinated by two O atoms from two 2-(2-picolinoylhydrazono)propanoate ligands and three phenyl groups. Adjacent Sn atoms are bridged by the 2-(2-picolinoylhydrazono)propanoate ligand through one carbonyl O atom and one carboxyl­ate O atom, forming a chain structure propagating parallel to [100]. An intra­molecular N—H⋯O hydrogen bond is observed.

Related literature

For some organotin(IV) complexes with pyruvic acid iso­nicotinyl hydrazone, see: Yin et al. (2005[Yin, H., Hong, M., Xu, H., Gao, Z., Li, G. & Wang, D. (2005). Eur. J. Inorg. Chem. pp. 4572-4581.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C9H8N3O3)]

  • Mr = 556.17

  • Orthorhombic, P 21 21 21

  • a = 10.2622 (9) Å

  • b = 11.0105 (12) Å

  • c = 22.344 (2) Å

  • V = 2524.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 298 K

  • 0.33 × 0.20 × 0.15 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.724, Tmax = 0.859

  • 10482 measured reflections

  • 4441 independent reflections

  • 3863 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.068

  • S = 1.00

  • 4441 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1905 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Selected bond lengths (Å)

Sn1—O2i 2.123 (3)
Sn1—O3 2.549 (3)
Sn1—C10 2.130 (4)
Sn1—C16 2.134 (4)
Sn1—C22 2.129 (4)
Symmetry code: (i) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.99 2.647 (5) 132

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported some organotin(IV) complexes with pyruvic acid isonicotinyl hydrazone (Yin et al., 2005). As a part of our ongoing investigations in this field, we have synthesized the title compound and present its crystal structure here.

The title compound (Fig. 1) forms an extended one-dimensional chain structure arising from Sn—O bridges formed by the 2-(2-picolinoylhydrazono)propanoate ligand. The SnIV atom assumes a distorted trigonal-bipyramidal coordination geometry, with atoms O3 and O2i in the axial positions [O3—Sn1—O2i = 175.65 (13)°, symmetry code: (i) x+1, y, z] and the atoms C10, C16 and C22 in the equatorial positions. One of the two Sn—O bond lengths is shorter and the other is longer (Table 1). The complex involves an intramolecular N—H···O hydrogen bond (Table 2).

Related literature top

For some organotin(IV) complexes with pyruvic acid isonicotinyl hydrazone, see: Yin et al. (2005).

Experimental top

The reaction was carried out under nitrogen atmosphere. 2-(2-Picolinoylhydrazono)propanoic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to a solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Triphenyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 4 h at 313 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (v/v 1:1) to yield colorless block crystals of the title compound (yield 78%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C,N).

Structure description top

Recently, we have reported some organotin(IV) complexes with pyruvic acid isonicotinyl hydrazone (Yin et al., 2005). As a part of our ongoing investigations in this field, we have synthesized the title compound and present its crystal structure here.

The title compound (Fig. 1) forms an extended one-dimensional chain structure arising from Sn—O bridges formed by the 2-(2-picolinoylhydrazono)propanoate ligand. The SnIV atom assumes a distorted trigonal-bipyramidal coordination geometry, with atoms O3 and O2i in the axial positions [O3—Sn1—O2i = 175.65 (13)°, symmetry code: (i) x+1, y, z] and the atoms C10, C16 and C22 in the equatorial positions. One of the two Sn—O bond lengths is shorter and the other is longer (Table 1). The complex involves an intramolecular N—H···O hydrogen bond (Table 2).

For some organotin(IV) complexes with pyruvic acid isonicotinyl hydrazone, see: Yin et al. (2005).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the 50% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry code: (i) x+1, y, z.]
catena-Poly[[triphenyltin(IV)]-µ-2-(2-picolinoylhydrazono)propanoato- κ2O1:O2] top
Crystal data top
[Sn(C6H5)3(C9H8N3O3)]F(000) = 1120
Mr = 556.17Dx = 1.463 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4196 reflections
a = 10.2622 (9) Åθ = 2.6–23.1°
b = 11.0105 (12) ŵ = 1.04 mm1
c = 22.344 (2) ÅT = 298 K
V = 2524.6 (4) Å3Block, colorless
Z = 40.33 × 0.20 × 0.15 mm
Data collection top
Siemens SMART 1000 CCD
diffractometer
4441 independent reflections
Radiation source: fine-focus sealed tube3863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.724, Tmax = 0.859k = 1311
10482 measured reflectionsl = 1126
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.4754P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4441 reflectionsΔρmax = 0.50 e Å3
308 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 1905 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Sn(C6H5)3(C9H8N3O3)]V = 2524.6 (4) Å3
Mr = 556.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2622 (9) ŵ = 1.04 mm1
b = 11.0105 (12) ÅT = 298 K
c = 22.344 (2) Å0.33 × 0.20 × 0.15 mm
Data collection top
Siemens SMART 1000 CCD
diffractometer
4441 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3863 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.859Rint = 0.033
10482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.50 e Å3
S = 1.00Δρmin = 0.32 e Å3
4441 reflectionsAbsolute structure: Flack (1983), 1905 Friedel pairs
308 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.44055 (3)0.91214 (3)0.881010 (13)0.04040 (9)
N10.0246 (3)0.8712 (3)0.86140 (18)0.0525 (11)
N20.0091 (4)0.9927 (4)0.84881 (17)0.0500 (11)
H20.07491.03670.83890.060*
N30.0110 (4)1.2185 (4)0.8083 (2)0.0679 (13)
O10.2663 (3)1.0095 (3)0.84524 (16)0.0615 (10)
O20.3655 (3)0.8450 (3)0.88128 (16)0.0525 (8)
O30.2059 (3)0.9861 (3)0.87271 (16)0.0609 (9)
C10.2661 (4)0.9054 (5)0.86320 (18)0.0470 (11)
C20.1409 (4)0.8298 (4)0.8660 (2)0.0536 (14)
C30.1536 (5)0.6967 (4)0.8767 (4)0.095 (2)
H3A0.06890.65970.87530.143*
H3B0.20810.66170.84640.143*
H3C0.19180.68310.91530.143*
C40.1115 (5)1.0416 (5)0.8524 (2)0.0490 (13)
C50.1188 (5)1.1707 (5)0.8323 (2)0.0524 (13)
C60.2312 (6)1.2354 (5)0.8391 (3)0.0771 (17)
H60.30481.19920.85560.092*
C70.2344 (7)1.3558 (6)0.8210 (3)0.093 (2)
H70.30991.40160.82560.111*
C80.1258 (6)1.4063 (6)0.7964 (3)0.0855 (18)
H80.12581.48650.78330.103*
C90.0156 (6)1.3348 (6)0.7914 (3)0.084 (2)
H90.05931.36960.77550.101*
C100.3724 (4)0.7494 (4)0.92196 (19)0.0416 (11)
C110.4586 (6)0.6846 (4)0.9577 (2)0.0563 (13)
H110.54260.71410.96330.068*
C120.4220 (6)0.5767 (5)0.9851 (2)0.0695 (14)
H120.48160.53421.00840.083*
C130.2987 (7)0.5332 (5)0.9778 (3)0.0774 (18)
H130.27360.46100.99600.093*
C140.2120 (6)0.5972 (6)0.9432 (3)0.0807 (17)
H140.12760.56790.93830.097*
C150.2481 (5)0.7040 (5)0.9156 (2)0.0613 (15)
H150.18780.74600.89230.074*
C160.4224 (4)0.9300 (4)0.78627 (17)0.0401 (10)
C170.3600 (5)0.8390 (4)0.7544 (2)0.0567 (13)
H170.32650.77190.77450.068*
C180.3471 (6)0.8474 (6)0.6925 (3)0.0701 (16)
H180.30470.78610.67150.084*
C190.3964 (5)0.9455 (6)0.6623 (2)0.0710 (17)
H190.38890.95020.62090.085*
C200.4566 (6)1.0359 (5)0.6933 (2)0.0681 (15)
H200.48861.10330.67300.082*
C210.4705 (5)1.0281 (4)0.7553 (2)0.0564 (13)
H210.51271.09010.77590.068*
C220.4531 (5)1.0551 (4)0.94492 (18)0.0418 (10)
C230.5361 (6)1.1514 (4)0.9415 (2)0.0656 (15)
H230.59271.15800.90910.079*
C240.5371 (7)1.2402 (5)0.9860 (3)0.0850 (19)
H240.59381.30580.98260.102*
C250.4572 (7)1.2324 (5)1.0339 (3)0.0777 (17)
H250.45691.29301.06290.093*
C260.3775 (7)1.1350 (6)1.0388 (3)0.085 (2)
H260.32441.12691.07230.102*
C270.3745 (5)1.0475 (5)0.9946 (2)0.0698 (16)
H270.31790.98200.99860.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03474 (14)0.04058 (15)0.04589 (15)0.00566 (16)0.00029 (17)0.00224 (16)
N10.032 (2)0.054 (2)0.071 (3)0.0004 (16)0.0010 (18)0.0072 (19)
N20.030 (2)0.060 (3)0.060 (2)0.0003 (18)0.0007 (18)0.001 (2)
N30.049 (3)0.084 (3)0.070 (3)0.009 (2)0.006 (2)0.027 (3)
O10.0360 (19)0.061 (2)0.088 (3)0.0008 (16)0.0023 (18)0.016 (2)
O20.0291 (15)0.0616 (18)0.067 (2)0.0036 (14)0.0045 (18)0.008 (2)
O30.0346 (18)0.068 (2)0.080 (3)0.0012 (16)0.002 (2)0.004 (2)
C10.031 (2)0.061 (3)0.048 (3)0.008 (3)0.0073 (19)0.002 (3)
C20.033 (3)0.050 (3)0.077 (4)0.003 (2)0.011 (2)0.003 (3)
C30.050 (3)0.057 (3)0.179 (7)0.002 (3)0.005 (5)0.012 (4)
C40.037 (3)0.064 (3)0.047 (3)0.011 (2)0.002 (2)0.000 (3)
C50.036 (3)0.067 (3)0.054 (3)0.008 (3)0.002 (2)0.002 (3)
C60.056 (4)0.076 (4)0.100 (5)0.008 (3)0.005 (3)0.013 (4)
C70.071 (5)0.091 (5)0.117 (6)0.025 (4)0.009 (4)0.014 (4)
C80.077 (4)0.080 (4)0.099 (5)0.017 (4)0.001 (4)0.029 (4)
C90.073 (5)0.089 (5)0.091 (5)0.002 (4)0.010 (3)0.037 (4)
C100.040 (3)0.036 (2)0.049 (3)0.002 (2)0.009 (2)0.003 (2)
C110.053 (3)0.058 (3)0.058 (3)0.002 (3)0.005 (3)0.009 (2)
C120.081 (4)0.061 (3)0.066 (3)0.010 (4)0.011 (3)0.021 (3)
C130.087 (5)0.054 (3)0.091 (4)0.009 (3)0.021 (4)0.016 (3)
C140.059 (4)0.070 (4)0.113 (5)0.017 (4)0.015 (3)0.009 (4)
C150.049 (3)0.052 (3)0.083 (4)0.006 (3)0.006 (3)0.012 (3)
C160.031 (2)0.045 (2)0.044 (2)0.004 (2)0.0019 (19)0.000 (2)
C170.065 (3)0.051 (3)0.054 (3)0.002 (3)0.001 (3)0.001 (3)
C180.071 (4)0.079 (4)0.061 (4)0.002 (3)0.015 (3)0.018 (3)
C190.068 (4)0.095 (5)0.051 (3)0.010 (3)0.009 (3)0.004 (3)
C200.070 (4)0.074 (4)0.061 (3)0.007 (3)0.006 (3)0.019 (3)
C210.059 (4)0.053 (3)0.056 (3)0.007 (3)0.007 (3)0.007 (2)
C220.038 (2)0.043 (3)0.045 (2)0.001 (2)0.002 (2)0.0001 (18)
C230.074 (4)0.056 (3)0.067 (3)0.017 (3)0.010 (3)0.010 (3)
C240.097 (5)0.062 (4)0.096 (5)0.023 (4)0.006 (4)0.024 (3)
C250.090 (5)0.067 (4)0.076 (4)0.002 (4)0.011 (4)0.030 (3)
C260.097 (5)0.102 (5)0.055 (3)0.003 (4)0.016 (3)0.021 (4)
C270.074 (4)0.074 (4)0.062 (3)0.018 (3)0.016 (3)0.008 (3)
Geometric parameters (Å, º) top
Sn1—O2i2.123 (3)C11—C121.388 (7)
Sn1—O32.549 (3)C11—H110.9300
Sn1—C102.130 (4)C12—C131.363 (8)
Sn1—C162.134 (4)C12—H120.9300
Sn1—C222.129 (4)C13—C141.373 (8)
N1—C21.281 (6)C13—H130.9300
N1—N21.377 (5)C14—C151.380 (7)
N2—C41.352 (5)C14—H140.9300
N2—H20.8600C15—H150.9300
N3—C91.336 (7)C16—C211.375 (6)
N3—C51.337 (6)C16—C171.387 (6)
O1—C11.215 (6)C17—C181.393 (7)
O2—C11.283 (5)C17—H170.9300
O2—Sn1ii2.123 (3)C18—C191.370 (8)
O3—C41.232 (5)C18—H180.9300
C1—C21.532 (6)C19—C201.360 (7)
C2—C31.490 (7)C19—H190.9300
C3—H3A0.9600C20—C211.395 (6)
C3—H3B0.9600C20—H200.9300
C3—H3C0.9600C21—H210.9300
C4—C51.492 (7)C22—C231.363 (6)
C5—C61.365 (7)C22—C271.376 (6)
C6—C71.387 (8)C23—C241.394 (7)
C6—H60.9300C23—H230.9300
C7—C81.360 (8)C24—C251.351 (8)
C7—H70.9300C24—H240.9300
C8—C91.382 (8)C25—C261.353 (8)
C8—H80.9300C25—H250.9300
C9—H90.9300C26—C271.380 (7)
C10—C151.378 (7)C26—H260.9300
C10—C111.388 (6)C27—H270.9300
O2i—Sn1—C22101.46 (16)C12—C11—H11119.3
O2i—Sn1—C1090.77 (14)C10—C11—H11119.3
C22—Sn1—C10110.71 (16)C13—C12—C11119.9 (5)
O2i—Sn1—C1696.70 (14)C13—C12—H12120.1
C22—Sn1—C16127.04 (15)C11—C12—H12120.1
C10—Sn1—C16118.37 (16)C12—C13—C14119.3 (5)
O2i—Sn1—O3175.65 (13)C12—C13—H13120.3
C22—Sn1—O382.52 (15)C14—C13—H13120.3
C10—Sn1—O389.43 (14)C13—C14—C15121.0 (6)
C16—Sn1—O379.40 (13)C13—C14—H14119.5
C2—N1—N2118.0 (4)C15—C14—H14119.5
C4—N2—N1118.7 (4)C10—C15—C14120.7 (5)
C4—N2—H2120.6C10—C15—H15119.6
N1—N2—H2120.6C14—C15—H15119.6
C9—N3—C5117.5 (5)C21—C16—C17118.4 (4)
C1—O2—Sn1ii124.3 (3)C21—C16—Sn1122.8 (3)
C4—O3—Sn1158.1 (3)C17—C16—Sn1118.9 (3)
O1—C1—O2126.3 (4)C16—C17—C18120.4 (5)
O1—C1—C2121.8 (4)C16—C17—H17119.8
O2—C1—C2111.9 (4)C18—C17—H17119.8
N1—C2—C3116.3 (4)C19—C18—C17120.4 (5)
N1—C2—C1125.8 (4)C19—C18—H18119.8
C3—C2—C1117.9 (4)C17—C18—H18119.8
C2—C3—H3A109.5C20—C19—C18119.7 (5)
C2—C3—H3B109.5C20—C19—H19120.2
H3A—C3—H3B109.5C18—C19—H19120.2
C2—C3—H3C109.5C19—C20—C21120.4 (5)
H3A—C3—H3C109.5C19—C20—H20119.8
H3B—C3—H3C109.5C21—C20—H20119.8
O3—C4—N2123.0 (5)C16—C21—C20120.8 (5)
O3—C4—C5122.9 (4)C16—C21—H21119.6
N2—C4—C5114.0 (5)C20—C21—H21119.6
N3—C5—C6122.6 (5)C23—C22—C27117.3 (4)
N3—C5—C4117.0 (5)C23—C22—Sn1125.1 (3)
C6—C5—C4120.4 (5)C27—C22—Sn1117.5 (3)
C5—C6—C7119.1 (6)C22—C23—C24120.7 (5)
C5—C6—H6120.4C22—C23—H23119.7
C7—C6—H6120.4C24—C23—H23119.7
C8—C7—C6119.3 (6)C25—C24—C23121.1 (6)
C8—C7—H7120.4C25—C24—H24119.5
C6—C7—H7120.4C23—C24—H24119.5
C7—C8—C9118.0 (6)C24—C25—C26118.8 (5)
C7—C8—H8121.0C24—C25—H25120.6
C9—C8—H8121.0C26—C25—H25120.6
N3—C9—C8123.5 (6)C25—C26—C27120.6 (6)
N3—C9—H9118.2C25—C26—H26119.7
C8—C9—H9118.2C27—C26—H26119.7
C15—C10—C11117.6 (5)C22—C27—C26121.5 (5)
C15—C10—Sn1124.4 (4)C22—C27—H27119.3
C11—C10—Sn1118.1 (3)C26—C27—H27119.3
C12—C11—C10121.4 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.647 (5)132

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C9H8N3O3)]
Mr556.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.2622 (9), 11.0105 (12), 22.344 (2)
V3)2524.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.33 × 0.20 × 0.15
Data collection
DiffractometerSiemens SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.724, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
10482, 4441, 3863
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 1.00
No. of reflections4441
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.32
Absolute structureFlack (1983), 1905 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—O2i2.123 (3)Sn1—C162.134 (4)
Sn1—O32.549 (3)Sn1—C222.129 (4)
Sn1—C102.130 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.647 (5)132
 

Acknowledgements

We acknowledge the National Natural Foundation of China (grant No. 20771053), the Scientific Research Fund of Liaocheng University (X081006) and the Students Science and Technology Innovation Fund of Liaocheng University (SRT08031HX2).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, H., Hong, M., Xu, H., Gao, Z., Li, G. & Wang, D. (2005). Eur. J. Inorg. Chem. pp. 4572–4581.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds