metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­bis­(μ2-isonicotinato-κ2N:O)bis­­(μ3-isonicotinato-κ3N:O:O′)neodymium(III)disilver(I)] nitrate monohydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology on Electrochemical Energy, Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhanqg2001@yahoo.com.cn

(Received 26 September 2009; accepted 15 October 2009; online 28 October 2009)

In the title complex, {[Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2O}n, the NdIII ion is coordinated by eight O atoms from six isonicotinate ligands and two water mol­ecules in a distorted square anti­prismatic geometry. Each AgI ion is coordinated by two N atoms from two different isonicotinate ligands. The crystal structure exhibits a two-dimensional heterometallic polymeric layer. O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules and intra­layer ππ inter­actions between the pyridine rings [centroid–centroid distances = 3.571 (2) and 3.569 (2) Å] are observed. Each layer inter­acts with two neighboring ones via Ag⋯O(H2O) contacts and inter­layer ππ inter­actions [centroid–centroid distances = 3.479 (3) to 3.530 (3) Å], leading to a three-dimensional supra­molecular network.

Related literature

For general background to metal organic frameworks, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Min & Suh (2000[Min, K. S. & Suh, M. P. (2000). J. Am. Chem. Soc. 122, 6834-6840.]). For 4d–4f heterometallic coordination frameworks, see: Cai et al. (2009[Cai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006-1013.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2O

  • Mr = 964.45

  • Monoclinic, P 21 /c

  • a = 16.9648 (19) Å

  • b = 24.793 (3) Å

  • c = 6.7770 (8) Å

  • β = 95.849 (1)°

  • V = 2835.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.25 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.522, Tmax = 0.592

  • 14629 measured reflections

  • 5092 independent reflections

  • 4024 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.067

  • S = 1.01

  • 5092 reflections

  • 433 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O1i 2.381 (3)
Nd1—O2 2.502 (3)
Nd1—O3ii 2.426 (3)
Nd1—O4iii 2.432 (3)
Nd1—O5 2.416 (3)
Nd1—O7 2.406 (3)
Nd1—O2W 2.492 (4)
Nd1—O3W 2.564 (3)
Ag1—N1 2.155 (4)
Ag1—N2 2.155 (4)
Ag1⋯O1Wi 2.888 (4)
Ag1⋯O10 2.771 (5)
Ag2—N3iv 2.200 (4)
Ag2—N4 2.184 (4)
Ag2⋯O3Wv 2.741 (4)
Ag2⋯O9vi 2.950 (5)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) x, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O10vii 0.85 (3) 1.96 (2) 2.796 (8) 167 (7)
O1W—H1B⋯O9 0.85 (4) 2.12 (5) 2.945 (8) 164 (6)
O2W—H2A⋯O6 0.85 (4) 2.06 (3) 2.799 (5) 145 (5)
O2W—H2B⋯O4iii 0.84 (4) 2.21 (4) 3.033 (5) 166 (5)
O3W—H3A⋯O8 0.85 (3) 1.87 (2) 2.653 (5) 153 (4)
O3W—H3B⋯O6vii 0.85 (3) 2.11 (3) 2.951 (5) 174 (5)
Symmetry codes: (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, assembly processes directed by metal–ligand ligation have been extensively utilized to construct metal organic frameworks with novel topologies and potentially interesting functions in magnetism, photoluminescence, sorption, catalysis (Batten & Robson, 1998; Min & Suh, 2000). However, metal-directed assembly of 4d–4f heterometallic coordination frameworks with fascinating topological networks and potential applications have been few reported (Cai et al., 2009). We utilized isonicotinate as multifunctional ligand with O and N atoms on opposite sites. Here, a new metal-directed assembly of 4d–4f coordination polymer, which was synthesized under hydrothermal conditions, is reported.

The asymmetric unit of the title complex contains one NdIII ion, two AgI ions, four crystallographically unique isonicotinate ligands, one nitrate anion, two coordinated water molecules and one uncoordinated water molecule (Fig. 1). The NdIII ion is in a distorted square antiprismatic geometry, defined by eight O atoms from six isonicotinate ligands and two water molecules. The Nd—O bond distances and O—Nd—O bond angles range from 2.381 (3) to 2.564 (3) Å and 71.79 (11) to 145.83 (12)°, respectively (Table 1). The AgI ion exhibits an approximatly linear or bow-like configuration, being coordinated by two N atoms from two different isonicotinate ligands. The isonicotinate ligands link Nd and Ag metal centers, forming a layer in the (010) plane, which are stabilized by O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules (Table 2) and intralayer ππ stacking interactions between the pyridine rings, with a centroid–centroid distances of 3.571 (2) and 3.569 (2) Å. These layers are further connected by Ag···O(H2O) contacts and interlayer ππ stacking interactions [centroid–centroid distances = 3.479 (3) to 3.530 (3) Å] between the pyridine rings of two adjacent layers, assembling a three-dimensional supramolecular architecture (Fig. 2).

Related literature top

For general background to metal organic frameworks, see: Batten & Robson (1998); Min & Suh (2000). For 4d–4f heterometallic coordination frameworks, see: Cai et al. (2009).

Experimental top

A mixture of Nd2O3 (0.183 g, 0.5 mmol), AgNO3 (0.170 g, 1 mmol), isonicotinic acid (0.135 g, 1.5 mmol), water (10 ml) in the presence of HNO3(0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 443 K for 3 d, and then cooled to room temperature at 5 K h-1. The colorless block crystals of the title compound were obtained.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and refined with distance restraints of O—H = 0.85 (1) Å and H···H = 1.35 (1) Å, and with Uiso(H) = 1.5Ueq(O). H atoms attached to C atoms were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, assembly processes directed by metal–ligand ligation have been extensively utilized to construct metal organic frameworks with novel topologies and potentially interesting functions in magnetism, photoluminescence, sorption, catalysis (Batten & Robson, 1998; Min & Suh, 2000). However, metal-directed assembly of 4d–4f heterometallic coordination frameworks with fascinating topological networks and potential applications have been few reported (Cai et al., 2009). We utilized isonicotinate as multifunctional ligand with O and N atoms on opposite sites. Here, a new metal-directed assembly of 4d–4f coordination polymer, which was synthesized under hydrothermal conditions, is reported.

The asymmetric unit of the title complex contains one NdIII ion, two AgI ions, four crystallographically unique isonicotinate ligands, one nitrate anion, two coordinated water molecules and one uncoordinated water molecule (Fig. 1). The NdIII ion is in a distorted square antiprismatic geometry, defined by eight O atoms from six isonicotinate ligands and two water molecules. The Nd—O bond distances and O—Nd—O bond angles range from 2.381 (3) to 2.564 (3) Å and 71.79 (11) to 145.83 (12)°, respectively (Table 1). The AgI ion exhibits an approximatly linear or bow-like configuration, being coordinated by two N atoms from two different isonicotinate ligands. The isonicotinate ligands link Nd and Ag metal centers, forming a layer in the (010) plane, which are stabilized by O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules (Table 2) and intralayer ππ stacking interactions between the pyridine rings, with a centroid–centroid distances of 3.571 (2) and 3.569 (2) Å. These layers are further connected by Ag···O(H2O) contacts and interlayer ππ stacking interactions [centroid–centroid distances = 3.479 (3) to 3.530 (3) Å] between the pyridine rings of two adjacent layers, assembling a three-dimensional supramolecular architecture (Fig. 2).

For general background to metal organic frameworks, see: Batten & Robson (1998); Min & Suh (2000). For 4d–4f heterometallic coordination frameworks, see: Cai et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, 3/2-y, -1/2+z; (ii) -1+x, y, z; (iii) -1+x, 3/2-y, -1/2+z.]
[Figure 2] Fig. 2. A view of the layered networks in the title compound.
Poly[[diaquabis(µ2-isonicotinato-κ2N:O)bis(µ3- isonicotinato-κ3N:O:O')neodymium(III)disilver(I)] nitrate monohydrate] top
Crystal data top
[Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2OF(000) = 1868
Mr = 964.45Dx = 2.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3327 reflections
a = 16.9648 (19) Åθ = 2.4–25.9°
b = 24.793 (3) ŵ = 3.25 mm1
c = 6.7770 (8) ÅT = 296 K
β = 95.849 (1)°Block, colorless
V = 2835.7 (6) Å30.23 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5092 independent reflections
Radiation source: fine-focus sealed tube4024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1720
Tmin = 0.522, Tmax = 0.592k = 2929
14629 measured reflectionsl = 85
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0268P)2]
where P = (Fo2 + 2Fc2)/3
5092 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.57 e Å3
9 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2OV = 2835.7 (6) Å3
Mr = 964.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.9648 (19) ŵ = 3.25 mm1
b = 24.793 (3) ÅT = 296 K
c = 6.7770 (8) Å0.23 × 0.20 × 0.18 mm
β = 95.849 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4024 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 0.592Rint = 0.043
14629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0329 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.57 e Å3
5092 reflectionsΔρmin = 0.91 e Å3
433 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.269306 (14)0.662399 (10)0.11749 (4)0.01959 (8)
Ag10.77067 (2)0.728604 (19)0.49039 (7)0.04705 (14)
Ag20.76495 (3)0.510435 (19)0.09689 (7)0.05046 (14)
O70.38451 (19)0.60656 (13)0.1017 (5)0.0338 (9)
O20.35364 (18)0.68568 (12)0.4305 (5)0.0289 (8)
O50.1656 (2)0.60334 (15)0.0262 (5)0.0456 (10)
C30.5223 (3)0.77468 (17)0.5011 (7)0.0242 (11)
H30.49580.80740.50540.029*
C10.3912 (3)0.72711 (19)0.4857 (7)0.0229 (11)
C20.4801 (3)0.72666 (17)0.4924 (6)0.0197 (10)
N20.8974 (2)0.72776 (16)0.4834 (6)0.0341 (10)
N10.6441 (2)0.72777 (16)0.4996 (6)0.0327 (10)
C60.5224 (3)0.67929 (18)0.4894 (7)0.0246 (11)
H60.49630.64620.48350.030*
C100.9388 (3)0.77404 (19)0.4767 (7)0.0308 (12)
H100.91220.80670.48410.037*
C91.0183 (3)0.77478 (18)0.4595 (7)0.0275 (12)
H91.04480.80760.45630.033*
C200.5069 (3)0.56100 (17)0.1414 (7)0.0258 (11)
C190.4289 (3)0.57592 (18)0.2152 (8)0.0259 (11)
O80.4127 (2)0.55701 (14)0.3746 (5)0.0371 (9)
N40.6493 (2)0.52916 (15)0.0010 (6)0.0316 (10)
C220.5972 (3)0.56051 (19)0.1083 (8)0.0337 (13)
H220.60940.57190.23230.040*
C230.6300 (3)0.5135 (2)0.1793 (8)0.0341 (13)
H230.66490.49120.25610.041*
C50.6032 (3)0.6814 (2)0.4951 (8)0.0334 (13)
H50.63120.64910.49590.040*
C81.0594 (3)0.72707 (18)0.4469 (6)0.0218 (11)
C121.0174 (3)0.67961 (19)0.4565 (7)0.0279 (12)
H121.04300.64660.44930.033*
C140.0414 (3)0.57066 (17)0.1642 (7)0.0242 (11)
C150.0089 (3)0.57587 (18)0.0129 (7)0.0308 (12)
H150.03890.59040.12280.037*
C130.1266 (3)0.58696 (18)0.1849 (8)0.0277 (12)
C180.0059 (3)0.54950 (18)0.3233 (7)0.0291 (12)
H180.01300.54660.44690.035*
O60.1513 (2)0.58320 (14)0.3490 (5)0.0413 (10)
C240.5615 (3)0.52881 (19)0.2536 (8)0.0319 (12)
H240.55140.51760.37960.038*
C210.5267 (3)0.57646 (18)0.0447 (8)0.0299 (12)
H210.49190.59770.12630.036*
C160.0679 (3)0.55962 (19)0.0274 (8)0.0348 (13)
H160.08950.56450.14690.042*
C170.0811 (3)0.53274 (19)0.2966 (8)0.0341 (13)
H170.11170.51760.40430.041*
C40.6027 (3)0.77385 (19)0.5035 (7)0.0316 (12)
H40.62990.80640.50800.038*
C110.9378 (3)0.6811 (2)0.4766 (7)0.0323 (12)
H110.91070.64870.48590.039*
O10.3610 (2)0.76974 (13)0.5428 (5)0.0410 (10)
C71.1467 (3)0.72688 (19)0.4130 (7)0.0249 (11)
O31.17260 (19)0.68473 (13)0.3448 (5)0.0321 (8)
O41.1839 (2)0.76939 (14)0.4499 (6)0.0419 (10)
O3W0.2587 (2)0.57863 (14)0.3352 (5)0.0308 (8)
H3B0.2294 (19)0.578 (2)0.429 (4)0.046*
H3A0.3050 (10)0.571 (2)0.387 (6)0.046*
O2W0.2838 (2)0.64789 (16)0.2408 (6)0.0436 (10)
H2A0.257 (2)0.6245 (15)0.310 (7)0.065*
H2B0.251 (2)0.6703 (17)0.205 (8)0.065*
N50.7673 (3)0.5865 (2)0.3990 (10)0.0570 (15)
O110.7991 (3)0.5483 (2)0.3274 (7)0.0789 (15)
O90.7419 (3)0.5845 (2)0.5614 (7)0.094 (2)
O100.7590 (3)0.6295 (2)0.3006 (8)0.0892 (17)
N30.1129 (2)0.53684 (16)0.1258 (7)0.0326 (10)
O1W0.7704 (3)0.65730 (16)0.9046 (8)0.0724 (14)
H1A0.769 (5)0.644 (2)1.019 (4)0.109*
H1B0.763 (5)0.6313 (17)0.824 (7)0.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01421 (13)0.02069 (13)0.02424 (15)0.00081 (11)0.00374 (10)0.00027 (11)
Ag10.0152 (2)0.0632 (3)0.0635 (3)0.0000 (2)0.00745 (19)0.0005 (2)
Ag20.0231 (2)0.0605 (3)0.0700 (4)0.0006 (2)0.0150 (2)0.0039 (2)
O70.028 (2)0.037 (2)0.037 (2)0.0145 (16)0.0071 (16)0.0030 (16)
O20.0205 (18)0.0311 (18)0.035 (2)0.0041 (15)0.0004 (15)0.0064 (15)
O50.041 (2)0.062 (2)0.033 (2)0.028 (2)0.0013 (18)0.0006 (19)
C30.024 (3)0.019 (2)0.030 (3)0.001 (2)0.002 (2)0.001 (2)
C10.017 (3)0.032 (3)0.021 (3)0.003 (2)0.006 (2)0.003 (2)
C20.017 (2)0.027 (2)0.015 (3)0.002 (2)0.0024 (19)0.0007 (19)
N20.021 (2)0.040 (3)0.042 (3)0.005 (2)0.0059 (19)0.000 (2)
N10.022 (2)0.036 (3)0.040 (3)0.003 (2)0.0046 (19)0.002 (2)
C60.020 (3)0.025 (3)0.029 (3)0.003 (2)0.004 (2)0.003 (2)
C100.025 (3)0.028 (3)0.039 (3)0.006 (2)0.000 (2)0.001 (2)
C90.027 (3)0.023 (3)0.033 (3)0.002 (2)0.003 (2)0.002 (2)
C200.025 (3)0.018 (2)0.034 (3)0.000 (2)0.001 (2)0.002 (2)
C190.024 (3)0.020 (2)0.034 (3)0.003 (2)0.003 (2)0.005 (2)
O80.035 (2)0.046 (2)0.032 (2)0.0109 (18)0.0120 (17)0.0124 (18)
N40.024 (2)0.028 (2)0.044 (3)0.0003 (19)0.007 (2)0.004 (2)
C220.031 (3)0.030 (3)0.042 (4)0.003 (2)0.010 (2)0.005 (2)
C230.023 (3)0.034 (3)0.045 (4)0.005 (2)0.001 (2)0.002 (3)
C50.024 (3)0.031 (3)0.044 (4)0.012 (2)0.003 (2)0.000 (2)
C80.019 (3)0.029 (3)0.017 (3)0.001 (2)0.0016 (19)0.003 (2)
C120.022 (3)0.025 (3)0.037 (3)0.002 (2)0.003 (2)0.001 (2)
C140.024 (3)0.019 (2)0.029 (3)0.004 (2)0.000 (2)0.000 (2)
C150.035 (3)0.028 (3)0.029 (3)0.005 (2)0.003 (2)0.006 (2)
C130.028 (3)0.023 (3)0.031 (3)0.008 (2)0.000 (2)0.002 (2)
C180.029 (3)0.030 (3)0.029 (3)0.003 (2)0.006 (2)0.002 (2)
O60.035 (2)0.057 (3)0.033 (2)0.0149 (19)0.0110 (17)0.0100 (18)
C240.029 (3)0.033 (3)0.034 (3)0.001 (2)0.001 (2)0.001 (2)
C210.032 (3)0.025 (3)0.033 (3)0.002 (2)0.003 (2)0.002 (2)
C160.032 (3)0.038 (3)0.035 (3)0.006 (3)0.012 (2)0.001 (2)
C170.030 (3)0.035 (3)0.036 (3)0.009 (2)0.005 (3)0.003 (2)
C40.027 (3)0.028 (3)0.040 (3)0.007 (2)0.002 (2)0.000 (2)
C110.026 (3)0.032 (3)0.040 (3)0.006 (2)0.004 (2)0.004 (2)
O10.022 (2)0.034 (2)0.067 (3)0.0073 (16)0.0020 (17)0.0206 (19)
C70.020 (3)0.032 (3)0.022 (3)0.001 (2)0.000 (2)0.003 (2)
O30.0211 (19)0.037 (2)0.040 (2)0.0038 (16)0.0118 (15)0.0043 (17)
O40.022 (2)0.043 (2)0.061 (3)0.0105 (17)0.0040 (17)0.0183 (19)
O3W0.026 (2)0.034 (2)0.033 (2)0.0006 (17)0.0093 (15)0.0029 (16)
O2W0.043 (2)0.058 (3)0.030 (2)0.010 (2)0.0055 (18)0.0101 (18)
N50.033 (3)0.068 (4)0.066 (5)0.011 (3)0.011 (3)0.016 (4)
O110.052 (3)0.109 (4)0.073 (4)0.026 (3)0.003 (2)0.027 (3)
O90.082 (4)0.167 (6)0.035 (3)0.062 (4)0.013 (3)0.004 (3)
O100.096 (5)0.084 (4)0.090 (4)0.013 (3)0.021 (3)0.014 (3)
N30.027 (2)0.030 (2)0.041 (3)0.0025 (19)0.006 (2)0.002 (2)
O1W0.071 (3)0.041 (3)0.106 (4)0.009 (3)0.010 (3)0.001 (2)
Geometric parameters (Å, º) top
Nd1—O1i2.381 (3)N4—C231.341 (6)
Nd1—O22.502 (3)N4—C221.342 (6)
Nd1—O3ii2.426 (3)C22—C211.370 (7)
Nd1—O4iii2.432 (3)C22—H220.9300
Nd1—O52.416 (3)C23—C241.366 (7)
Nd1—O72.406 (3)C23—H230.9300
Nd1—O2W2.492 (4)C5—H50.9300
Nd1—O3W2.564 (3)C8—C121.381 (6)
Ag1—N12.155 (4)C8—C71.521 (6)
Ag1—N22.155 (4)C12—C111.372 (6)
Ag1—O1Wi2.888 (4)C12—H120.9300
Ag1—O102.771 (5)C14—C151.377 (7)
Ag2—N3iv2.200 (4)C14—C181.380 (6)
Ag2—N42.184 (4)C14—C131.521 (7)
Ag2—O3Wv2.741 (4)C15—C161.378 (7)
Ag2—O9vi2.950 (5)C15—H150.9300
O7—C191.272 (5)C13—O61.232 (6)
O2—C11.246 (5)C18—C171.372 (7)
O5—C131.271 (5)C18—H180.9300
C3—C41.361 (6)C24—H240.9300
C3—C21.387 (6)C21—H210.9300
C3—H30.9300C16—N31.348 (6)
C1—O11.253 (5)C16—H160.9300
C1—C21.505 (6)C17—N31.330 (7)
C2—C61.378 (6)C17—H170.9300
N2—C111.348 (6)C4—H40.9300
N2—C101.349 (6)C11—H110.9300
N1—C51.342 (6)C7—O41.241 (5)
N1—C41.343 (6)C7—O31.241 (5)
C6—C51.369 (6)O3W—H3B0.85 (3)
C6—H60.9300O3W—H3A0.85 (3)
C10—C91.365 (7)O2W—H2A0.85 (4)
C10—H100.9300O2W—H2B0.84 (4)
C9—C81.381 (6)N5—O111.215 (6)
C9—H90.9300N5—O91.223 (7)
C20—C241.390 (6)N5—O101.260 (7)
C20—C211.392 (7)O1W—H1A0.85 (3)
C20—C191.507 (7)O1W—H1B0.85 (4)
C19—O81.234 (6)
O1i—Nd1—O781.12 (12)O8—C19—C20118.6 (4)
O1i—Nd1—O5143.84 (12)O7—C19—C20115.6 (5)
O7—Nd1—O5101.23 (13)C23—N4—C22117.1 (5)
O1i—Nd1—O3ii118.20 (12)C23—N4—Ag2121.5 (3)
O7—Nd1—O3ii139.85 (11)C22—N4—Ag2121.2 (4)
O5—Nd1—O3ii83.25 (12)N4—C22—C21122.8 (5)
O1i—Nd1—O4iii77.33 (11)N4—C22—H22118.6
O7—Nd1—O4iii145.83 (12)C21—C22—H22118.6
O5—Nd1—O4iii81.87 (13)N4—C23—C24123.2 (5)
O3ii—Nd1—O4iii74.25 (12)N4—C23—H23118.4
O1i—Nd1—O2W76.30 (13)C24—C23—H23118.4
O7—Nd1—O2W73.28 (12)N1—C5—C6123.1 (4)
O5—Nd1—O2W70.13 (12)N1—C5—H5118.4
O3ii—Nd1—O2W142.39 (11)C6—C5—H5118.4
O4iii—Nd1—O2W76.03 (13)C9—C8—C12117.4 (4)
O1i—Nd1—O271.79 (11)C9—C8—C7121.2 (4)
O7—Nd1—O276.91 (11)C12—C8—C7121.3 (4)
O5—Nd1—O2144.23 (11)C11—C12—C8120.0 (4)
O3ii—Nd1—O276.96 (11)C11—C12—H12120.0
O4iii—Nd1—O2119.84 (11)C8—C12—H12120.0
O2W—Nd1—O2138.99 (12)C15—C14—C18117.7 (5)
O1i—Nd1—O3W141.28 (11)C15—C14—C13121.5 (4)
O7—Nd1—O3W70.39 (11)C18—C14—C13120.7 (5)
O5—Nd1—O3W69.53 (11)C14—C15—C16120.0 (5)
O3ii—Nd1—O3W74.22 (11)C14—C15—H15120.0
O4iii—Nd1—O3W139.34 (12)C16—C15—H15120.0
O2W—Nd1—O3W117.61 (12)O6—C13—O5126.3 (5)
O2—Nd1—O3W76.51 (10)O6—C13—C14118.5 (4)
O1i—Nd1—H2B75.9 (13)O5—C13—C14115.2 (5)
O7—Nd1—H2B92.3 (10)C17—C18—C14119.1 (5)
O5—Nd1—H2B68.0 (13)C17—C18—H18120.4
O3ii—Nd1—H2B125.2 (6)C14—C18—H18120.4
O4iii—Nd1—H2B56.7 (5)C23—C24—C20120.2 (5)
O2W—Nd1—H2B19.3 (10)C23—C24—H24119.9
O2—Nd1—H2B147.1 (13)C20—C24—H24119.9
O3W—Nd1—H2B129.5 (12)C22—C21—C20120.3 (5)
N2—Ag1—N1178.82 (16)C22—C21—H21119.9
N4—Ag2—N3iv147.86 (15)C20—C21—H21119.9
C19—O7—Nd1138.6 (3)N3—C16—C15122.2 (5)
C1—O2—Nd1132.5 (3)N3—C16—H16118.9
C13—O5—Nd1146.1 (3)C15—C16—H16118.9
C4—C3—C2119.9 (4)N3—C17—C18123.8 (5)
C4—C3—H3120.0N3—C17—H17118.1
C2—C3—H3120.0C18—C17—H17118.1
O2—C1—O1125.1 (4)N1—C4—C3122.5 (4)
O2—C1—C2118.9 (4)N1—C4—H4118.7
O1—C1—C2115.9 (4)C3—C4—H4118.7
C6—C2—C3117.7 (4)N2—C11—C12122.4 (5)
C6—C2—C1121.9 (4)N2—C11—H11118.8
C3—C2—C1120.4 (4)C12—C11—H11118.8
C11—N2—C10117.4 (4)C1—O1—Nd1vii163.4 (3)
C11—N2—Ag1121.4 (3)O4—C7—O3126.7 (5)
C10—N2—Ag1121.1 (3)O4—C7—C8116.7 (4)
C5—N1—C4117.4 (4)O3—C7—C8116.5 (4)
C5—N1—Ag1121.4 (3)C7—O3—Nd1iv135.8 (3)
C4—N1—Ag1121.2 (3)C7—O4—Nd1viii162.1 (3)
C5—C6—C2119.3 (4)Nd1—O3W—H3B122 (3)
C5—C6—H6120.4Nd1—O3W—H3A108 (3)
C2—C6—H6120.4H3B—O3W—H3A105.7 (17)
N2—C10—C9122.5 (4)Nd1—O2W—H2A122 (4)
N2—C10—H10118.8Nd1—O2W—H2B59 (4)
C9—C10—H10118.8H2A—O2W—H2B106 (4)
C10—C9—C8120.3 (4)O11—N5—O9122.7 (7)
C10—C9—H9119.9O11—N5—O10118.7 (7)
C8—C9—H9119.9O9—N5—O10118.6 (6)
C24—C20—C21116.4 (5)C17—N3—C16117.0 (5)
C24—C20—C19121.2 (5)C17—N3—Ag2ii121.6 (3)
C21—C20—C19122.3 (4)C16—N3—Ag2ii121.4 (4)
O8—C19—O7125.8 (5)H1A—O1W—H1B106 (5)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z; (iii) x1, y+3/2, z1/2; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y, z1; (vii) x, y+3/2, z+1/2; (viii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10ix0.85 (3)1.96 (2)2.796 (8)167 (7)
O1W—H1B···O90.85 (4)2.12 (5)2.945 (8)164 (6)
O2W—H2A···O60.85 (4)2.06 (3)2.799 (5)145 (5)
O2W—H2B···O4iii0.84 (4)2.21 (4)3.033 (5)166 (5)
O3W—H3A···O80.85 (3)1.87 (2)2.653 (5)153 (4)
O3W—H3B···O6ix0.85 (3)2.11 (3)2.951 (5)174 (5)
Symmetry codes: (iii) x1, y+3/2, z1/2; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2Nd(C6H4NO2)4(H2O)2]NO3·H2O
Mr964.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.9648 (19), 24.793 (3), 6.7770 (8)
β (°) 95.849 (1)
V3)2835.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.522, 0.592
No. of measured, independent and
observed [I > 2σ(I)] reflections
14629, 5092, 4024
Rint0.043
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 1.01
No. of reflections5092
No. of parameters433
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.91

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Nd1—O1i2.381 (3)Ag1—N12.155 (4)
Nd1—O22.502 (3)Ag1—N22.155 (4)
Nd1—O3ii2.426 (3)Ag1—O1Wi2.888 (4)
Nd1—O4iii2.432 (3)Ag1—O102.771 (5)
Nd1—O52.416 (3)Ag2—N3iv2.200 (4)
Nd1—O72.406 (3)Ag2—N42.184 (4)
Nd1—O2W2.492 (4)Ag2—O3Wv2.741 (4)
Nd1—O3W2.564 (3)Ag2—O9vi2.950 (5)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z; (iii) x1, y+3/2, z1/2; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10vii0.85 (3)1.96 (2)2.796 (8)167 (7)
O1W—H1B···O90.85 (4)2.12 (5)2.945 (8)164 (6)
O2W—H2A···O60.85 (4)2.06 (3)2.799 (5)145 (5)
O2W—H2B···O4iii0.84 (4)2.21 (4)3.033 (5)166 (5)
O3W—H3A···O80.85 (3)1.87 (2)2.653 (5)153 (4)
O3W—H3B···O6vii0.85 (3)2.11 (3)2.951 (5)174 (5)
Symmetry codes: (iii) x1, y+3/2, z1/2; (vii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Key Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities for supporting this work.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006–1013.  Web of Science CSD CrossRef CAS Google Scholar
First citationMin, K. S. & Suh, M. P. (2000). J. Am. Chem. Soc. 122, 6834–6840.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds