organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1,3-Thia­zolidin-2-yl)phenol

aDepartment of Chemistry, Guangdong Medical College, Dongguan 523808, People's Republic of China
*Correspondence e-mail: xuemeiyang131@163.com

(Received 16 September 2009; accepted 14 October 2009; online 23 October 2009)

In the title compound, C9H11NOS, the thia­zolidinyl ring is almost perpendicular to the phenyl ring with N—C—C—C torsion angles of 71.7 (2) and 107.1 (2)°. In the crystal, mol­ecules are connected via N—H⋯O and O—H⋯N hydrogen bonds, forming layers.

Related literature

For the cyclization of 2-amino-ethanthiol Schiff bases, see: Al-Sayyab et al. (1968[Al-Sayyab, A. F., Lawson, A. & Stevens, J. O. (1968). J. Chem. Soc. C, pp. 411-415.]); Stacy & Strong (1967[Stacy, G. W. & Strong, P. L. (1967). J. Org. Chem. 32, 1487-1491.]); Thompson & Busch (1964[Thompson, M. C. & Busch, D. H. (1964). J. Am. Chem. Soc. 86, 213-217.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NOS

  • Mr = 181.25

  • Orthorhombic, P b c a

  • a = 12.3638 (6) Å

  • b = 8.9683 (5) Å

  • c = 15.8249 (8) Å

  • V = 1754.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.47 × 0.45 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.865, Tmax = 0.951

  • 9635 measured reflections

  • 1919 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.07

  • 1919 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (2) 2.28 (2) 3.073 (2) 156 (2)
O1—H1A⋯N1ii 0.82 (2) 1.91 (2) 2.713 (2) 164 (2)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our search for a new synthetic route to imipenem, a carbapenem antibiotic, we got a thiazolidine compound from a reaction of p-hydroxybenzaldehyde with 2-amino-ethanthiol, despite of our initial plan to prepare a Schiff base compound. This is consistent with reports that the 2-amino-ethanthiol Schiff base compounds can undergo intromolecular cyclization to form thiazolidines (Al-Sayyab et al., 1968; Thompson & Busch, 1964; Stacy & Strong, 1967).

In the molecular sturcture (Fig. 1), as it is expected the thiazolidinyl ring is not planar, showing a N(1)—C(1)—C(2)—S(1) torsion angle of -33.7 (2)°. Furthermore, the thiazolidinyl ring is almost perpendicular to the phenyl ring, with torsion angles N(1)—C(3)—C(4)—C(9) of 71.7 (2)° and N(1)—C(3)—C(4)—C(5) of 107.1 (2)°. In Fig. 1 the chiral center C(3) adopts R configuation. Nevertheless, due to space group symmetry a reacemate has been formed and both enantiomers are present in the crystal structure.

In the crystal structure two adjacent molecules are connected via N—H···O and O—H···N hydrogen bonds to form centrosymmetric molecule pairs. These pairs are further linked by additional N—H···O and O—H···N intermolecular hydrogen bonds leading to the observed layered supramolecular (Fig. 2).

Related literature top

For the cyclization of 2-amino-ethanthiol Schiff bases, see: Al-Sayyab et al. (1968); Stacy & Strong (1967); Thompson & Busch (1964).

Experimental top

2-Amino-ethanthiol 0.77 g (0.001 mol) was mixed with p-hydroxybenzaldehyde 1.22 g (0.001 mol) in ethanol (10 ml) and the mixture refluxed for 2 h. The solvent was evaporated to dryness under reduced pressure and the remaining residue recrystallized from ethanol to afford 1.5 g of yellow block crystals. (Yield 85%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution. Spectroscopic analysis: 1H NMR (DMSO-d6, δ, p.p.m.): 2.75–2.90 (m, 2H), 2.85–3.05 (m, 2H), 3.50 (m, 1H), 5.35 (s, 1H), 6.70 (d, 2H), 7.25 (d, 2H), 9.35 (s, 1H); elemental analysis, calculated for C9H11NOS: C, 59.67; H, 6.08; N, 7.73; found: C, 59.33; H, 5.93; N 7.41%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 1.00 Å, Uiso = 1.2Ueq (C) for CH, 0.99 Å, Uiso = 1.2Ueq (C) for CH2 and 0.88 Å, Uiso = 1.5Ueq (N) for the NH atoms.

Structure description top

In our search for a new synthetic route to imipenem, a carbapenem antibiotic, we got a thiazolidine compound from a reaction of p-hydroxybenzaldehyde with 2-amino-ethanthiol, despite of our initial plan to prepare a Schiff base compound. This is consistent with reports that the 2-amino-ethanthiol Schiff base compounds can undergo intromolecular cyclization to form thiazolidines (Al-Sayyab et al., 1968; Thompson & Busch, 1964; Stacy & Strong, 1967).

In the molecular sturcture (Fig. 1), as it is expected the thiazolidinyl ring is not planar, showing a N(1)—C(1)—C(2)—S(1) torsion angle of -33.7 (2)°. Furthermore, the thiazolidinyl ring is almost perpendicular to the phenyl ring, with torsion angles N(1)—C(3)—C(4)—C(9) of 71.7 (2)° and N(1)—C(3)—C(4)—C(5) of 107.1 (2)°. In Fig. 1 the chiral center C(3) adopts R configuation. Nevertheless, due to space group symmetry a reacemate has been formed and both enantiomers are present in the crystal structure.

In the crystal structure two adjacent molecules are connected via N—H···O and O—H···N hydrogen bonds to form centrosymmetric molecule pairs. These pairs are further linked by additional N—H···O and O—H···N intermolecular hydrogen bonds leading to the observed layered supramolecular (Fig. 2).

For the cyclization of 2-amino-ethanthiol Schiff bases, see: Al-Sayyab et al. (1968); Stacy & Strong (1967); Thompson & Busch (1964).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal lattice along c axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
4-(1,3-Thiazolidin-2-yl)phenol top
Crystal data top
C9H11NOSF(000) = 768
Mr = 181.25Dx = 1.372 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4931 reflections
a = 12.3638 (6) Åθ = 2.6–27.0°
b = 8.9683 (5) ŵ = 0.32 mm1
c = 15.8249 (8) ÅT = 173 K
V = 1754.7 (2) Å3Block, colorless
Z = 80.47 × 0.45 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1919 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.865, Tmax = 0.951k = 118
9635 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.7197P]
where P = (Fo2 + 2Fc2)/3
1919 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H11NOSV = 1754.7 (2) Å3
Mr = 181.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.3638 (6) ŵ = 0.32 mm1
b = 8.9683 (5) ÅT = 173 K
c = 15.8249 (8) Å0.47 × 0.45 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1919 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1615 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.951Rint = 0.022
9635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.37 e Å3
1919 reflectionsΔρmin = 0.17 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47979 (3)0.18010 (5)0.70817 (2)0.02679 (16)
C10.27121 (14)0.1895 (2)0.74816 (11)0.0355 (4)
H1B0.25010.29240.73270.043*
H1C0.20460.12880.75300.043*
C20.34426 (15)0.1245 (3)0.67981 (12)0.0417 (5)
H2A0.32450.16460.62360.050*
H2B0.33810.01450.67830.050*
C30.43704 (12)0.24880 (18)0.81446 (9)0.0217 (3)
H30.43230.36000.81190.026*
C40.51646 (12)0.20804 (17)0.88292 (9)0.0209 (3)
C50.55139 (13)0.31669 (17)0.93977 (10)0.0235 (3)
H50.52550.41590.93420.028*
C60.62307 (13)0.28297 (18)1.00422 (10)0.0248 (4)
H60.64610.35871.04210.030*
C70.66115 (13)0.13804 (18)1.01328 (9)0.0227 (3)
C80.62657 (13)0.02820 (18)0.95705 (10)0.0239 (3)
H80.65210.07120.96300.029*
C90.55519 (12)0.06344 (18)0.89265 (10)0.0229 (3)
H90.53230.01220.85460.027*
N10.32818 (11)0.19058 (16)0.82922 (9)0.0249 (3)
H10.3303 (16)0.103 (3)0.8493 (12)0.030*
O10.73103 (10)0.09658 (14)1.07553 (7)0.0302 (3)
H1A0.7567 (19)0.172 (3)1.0971 (13)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (2)0.0357 (3)0.0194 (2)0.00118 (16)0.00148 (14)0.00048 (16)
C10.0239 (9)0.0512 (12)0.0313 (9)0.0019 (8)0.0045 (7)0.0055 (8)
C20.0308 (9)0.0616 (14)0.0326 (9)0.0052 (9)0.0028 (8)0.0139 (9)
C30.0218 (7)0.0221 (8)0.0213 (7)0.0008 (6)0.0012 (6)0.0004 (6)
C40.0213 (7)0.0232 (8)0.0182 (7)0.0019 (6)0.0023 (6)0.0005 (6)
C50.0265 (8)0.0188 (7)0.0252 (8)0.0003 (6)0.0013 (6)0.0004 (6)
C60.0283 (8)0.0229 (8)0.0233 (7)0.0042 (6)0.0009 (6)0.0046 (6)
C70.0214 (7)0.0271 (8)0.0197 (7)0.0034 (6)0.0012 (6)0.0013 (6)
C80.0259 (8)0.0204 (7)0.0254 (8)0.0011 (6)0.0009 (6)0.0003 (6)
C90.0236 (7)0.0233 (8)0.0218 (7)0.0033 (6)0.0008 (6)0.0027 (6)
N10.0219 (7)0.0266 (7)0.0262 (7)0.0003 (5)0.0013 (5)0.0001 (6)
O10.0337 (7)0.0275 (6)0.0293 (6)0.0026 (5)0.0117 (5)0.0012 (5)
Geometric parameters (Å, º) top
S1—C21.8049 (19)C4—C51.395 (2)
S1—C31.8676 (15)C5—C61.385 (2)
C1—N11.463 (2)C5—H50.9500
C1—C21.525 (3)C6—C71.390 (2)
C1—H1B0.9900C6—H60.9500
C1—H1C0.9900C7—O11.3620 (19)
C2—H2A0.9900C7—C81.395 (2)
C2—H2B0.9900C8—C91.385 (2)
C3—N11.462 (2)C8—H80.9500
C3—C41.507 (2)C9—H90.9500
C3—H31.0000N1—H10.85 (2)
C4—C91.391 (2)O1—H1A0.82 (2)
C2—S1—C393.00 (8)C5—C4—C3119.73 (14)
N1—C1—C2109.83 (14)C6—C5—C4121.38 (15)
N1—C1—H1B109.7C6—C5—H5119.3
C2—C1—H1B109.7C4—C5—H5119.3
N1—C1—H1C109.7C5—C6—C7119.81 (14)
C2—C1—H1C109.7C5—C6—H6120.1
H1B—C1—H1C108.2C7—C6—H6120.1
C1—C2—S1105.55 (12)O1—C7—C6123.01 (14)
C1—C2—H2A110.6O1—C7—C8117.59 (14)
S1—C2—H2A110.6C6—C7—C8119.40 (14)
C1—C2—H2B110.6C9—C8—C7120.25 (15)
S1—C2—H2B110.6C9—C8—H8119.9
H2A—C2—H2B108.8C7—C8—H8119.9
N1—C3—C4113.46 (13)C8—C9—C4120.91 (14)
N1—C3—S1106.65 (10)C8—C9—H9119.5
C4—C3—S1112.52 (11)C4—C9—H9119.5
N1—C3—H3108.0C3—N1—C1107.78 (13)
C4—C3—H3108.0C3—N1—H1111.2 (14)
S1—C3—H3108.0C1—N1—H1109.8 (13)
C9—C4—C5118.25 (14)C7—O1—H1A108.7 (15)
C9—C4—C3122.01 (14)
N1—C1—C2—S133.3 (2)C5—C6—C7—O1179.46 (15)
C3—S1—C2—C110.32 (15)C5—C6—C7—C80.1 (2)
C2—S1—C3—N114.01 (13)O1—C7—C8—C9179.74 (14)
C2—S1—C3—C4139.03 (13)C6—C7—C8—C90.2 (2)
N1—C3—C4—C971.65 (19)C7—C8—C9—C40.2 (2)
S1—C3—C4—C949.55 (18)C5—C4—C9—C80.0 (2)
N1—C3—C4—C5107.07 (17)C3—C4—C9—C8178.77 (14)
S1—C3—C4—C5131.73 (13)C4—C3—N1—C1159.92 (14)
C9—C4—C5—C60.3 (2)S1—C3—N1—C135.47 (15)
C3—C4—C5—C6179.05 (14)C2—C1—N1—C345.7 (2)
C4—C5—C6—C70.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (2)2.28 (2)3.073 (2)156 (2)
O1—H1A···N1ii0.82 (2)1.91 (2)2.713 (2)164 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC9H11NOS
Mr181.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)12.3638 (6), 8.9683 (5), 15.8249 (8)
V3)1754.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.47 × 0.45 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.865, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
9635, 1919, 1615
Rint0.022
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.07
No. of reflections1919
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.17

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (2)2.28 (2)3.073 (2)156 (2)
O1—H1A···N1ii0.82 (2)1.91 (2)2.713 (2)164 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z+2.
 

Acknowledgements

The author thanks the National Science Foundation of China for financial support.

References

First citationAl-Sayyab, A. F., Lawson, A. & Stevens, J. O. (1968). J. Chem. Soc. C, pp. 411–415.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStacy, G. W. & Strong, P. L. (1967). J. Org. Chem. 32, 1487–1491.  CrossRef CAS Web of Science Google Scholar
First citationThompson, M. C. & Busch, D. H. (1964). J. Am. Chem. Soc. 86, 213–217.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds