organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-[3-(2-methyl­benzo­yl)thio­ureido]benzoate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan., and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany.
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 20 September 2009; accepted 13 October 2009; online 17 October 2009)

The mol­ecular conformation of the title compound, C18H18N2O3S, is stabilized by an intra­molecular N—H⋯O hydrogen bond. The crystal packing shows centrosymmetric dimers connected by N—H⋯S hydrogen bonds. The terminal eth­oxy substituents are statistically disordered [occupancy ratio 0.527 (5):0.473 (5)].

Related literature

For the use of thio­urea derivatives in organic synthesis and analysis, see: Eynde & Watte (2003[Eynde, J. J. V. & Watte, O. (2003). Arkivoc, iv, 93-101.]); Fu et al. (1999[Fu, M., Fernandez, M., Smith, M. L. & Flygae, J. A. (1999). Org. Lett. 1, 1351-1353.]); Rashdan et al. (2006[Rashdan, S., Light, M. E. & Kilburn, J. D. (2006). Chem. Commun. pp. 4578-4580.]); Maryanoff et al. (1986[Maryanoff, C. A., Stanzione, R. C., Plampin, J. N. & Mills, J. E. (1986). J. Org. Chem. 51, 1882-1884.]); Wang et al.(2005[Wang, X.-C., Wang, F., Quan, Z.-J., Wang, M.-G. & Li, Z. (2005). J. Chem. Res. 61, 689-690.]); Saeed et al. (2008[Saeed, A., Zaman, S. & Bolte, M. (2008). Synth. Commun. 38, 2185-2199.]); Koch, (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]). For their bioactivity and pharmaceutical applications, see: Upadhyaya & Srivastava (1982[Upadhyaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc. 59, 767-769.]); Ramadas et al. (1998[Ramadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. (1998). Pestic. Sci. 52, 145-151.]); Blum & Hayes (1979[Blum, J. J. & Hayes, A. (1979). J. Supramol. Struct. 12, 23-34.]); DeBeer et al. (1936[DeBeer, E. J., Buck, J. S., Ide, W. S. & Hjort, A. M. (1936). J. Pharmacol. 57, 19-33.]). For related structures, see: Saeed & Flörke (2007a[Saeed, A. & Flörke, U. (2007a). Acta Cryst. E63, o4259.],b[Saeed, A. & Flörke, U. (2007b). Acta Cryst. E63, o4614.]); Saeed et al. (2009[Saeed, A., Khera, R. A., Simpson, J. & Stanley, R. G. (2009). Acta Cryst. E65, o1735-o1736.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O3S

  • Mr = 342.40

  • Triclinic, [P \overline 1]

  • a = 7.4555 (3) Å

  • b = 7.6311 (4) Å

  • c = 15.2468 (8) Å

  • α = 96.456 (4)°

  • β = 103.860 (5)°

  • γ = 92.908 (4)°

  • V = 834.13 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.33 × 0.32 × 0.28 mm

Data collection
  • Stoe IPDS II two-circle-diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.933, Tmax = 0.943

  • 22798 measured reflections

  • 4659 independent reflections

  • 4311 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.04

  • 4659 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.80 2.01 2.669 (1) 139
N2—H2⋯S1i 0.89 2.67 3.5551 (9) 170
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The background of this study has been described in our earlier paper concerning the crystal structure of 1-(2-Chloro-5-nitrophenyl)-3-(2,2-dimethylpropionyl)thiourea (Saeed et al., 2009). As part of our work on the structure of thioureas, we report here the structure of the title derivative, I, Fig 1.

The molecular conformation of the title compound, C18H18N2O3S, is stabilized by intramolecular N—H···O hydrogen bonds. The crystal packing shows centrosymmetric dimers connected by N—H···S hydrogen bonds (Table 1). Terminal ethoxy substituents are statistically disordered.

Related literature top

For the use of thiourea derivatives in organic synthesis and analysis, see: Eynde & Watte (2003); Fu et al. (1999); Rashdan et al. (2006); Maryanoff et al. (1986); Wang et al.(2005); Saeed et al. (2008); Koch, (2001). For their bioactivity and pharmaceutical applications, see: Upadhyaya & Srivastava (1982); Ramadas et al. (1998); Blum & Hayes (1979); DeBeer et al. (1936). For related structures, see: Saeed & Flörke (2007a,b); Saeed et al. (2009).

Experimental top

A solution of 2-methylbenzoyl chloride (10 mmol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (10 mmol) in acetone (30 ml) and the reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 4-aminobenzoic acid ethyl ester (10 mmol) in acetone (10 ml) was added and the resulting mixture refluxed for 3 h. The reaction mixture was poured into cold water and the precipitated thiourea was recrystallized from aqueous ethanol. Anal. calcd. for C18H18N2O3S: C, 63.14; H, 5.30; N, 8.18; S, 9.36% found: C, 63.26; H, 5.34; N, 8.21; S, 9.27%;

Refinement top

H atoms were positioned geometrically and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C,N) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with C—H(aromatic) = 0.95 Å, CH(methyl) = 0.98 Å, or CH(methylene) = 0.99 Å, respectively. H atoms bonded to N were set to the position where they were found in the difference map. The ethoxy group is disordered over two positions with a site occupation factor of 0.527 (5) for the major occupied site.

Structure description top

The background of this study has been described in our earlier paper concerning the crystal structure of 1-(2-Chloro-5-nitrophenyl)-3-(2,2-dimethylpropionyl)thiourea (Saeed et al., 2009). As part of our work on the structure of thioureas, we report here the structure of the title derivative, I, Fig 1.

The molecular conformation of the title compound, C18H18N2O3S, is stabilized by intramolecular N—H···O hydrogen bonds. The crystal packing shows centrosymmetric dimers connected by N—H···S hydrogen bonds (Table 1). Terminal ethoxy substituents are statistically disordered.

For the use of thiourea derivatives in organic synthesis and analysis, see: Eynde & Watte (2003); Fu et al. (1999); Rashdan et al. (2006); Maryanoff et al. (1986); Wang et al.(2005); Saeed et al. (2008); Koch, (2001). For their bioactivity and pharmaceutical applications, see: Upadhyaya & Srivastava (1982); Ramadas et al. (1998); Blum & Hayes (1979); DeBeer et al. (1936). For related structures, see: Saeed & Flörke (2007a,b); Saeed et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound. The disordered atoms of the minor occupied site have been omitted for clarity. Displacement ellipsoids are shown at the 50 % probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds shown as dashed lines. The minor occupied sites are omitted for clarity.
Ethyl 4-[3-(2-methylbenzoyl)thioureido]benzoate top
Crystal data top
C18H18N2O3SZ = 2
Mr = 342.40F(000) = 360
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4555 (3) ÅCell parameters from 42517 reflections
b = 7.6311 (4) Åθ = 3.4–29.9°
c = 15.2468 (8) ŵ = 0.21 mm1
α = 96.456 (4)°T = 173 K
β = 103.860 (5)°Block, colourless
γ = 92.908 (4)°0.33 × 0.32 × 0.28 mm
V = 834.13 (7) Å3
Data collection top
Stoe IPDS II two-circle-
diffractometer
4659 independent reflections
Radiation source: fine-focus sealed tube4311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 29.6°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1010
Tmin = 0.933, Tmax = 0.943k = 1010
22798 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2098P]
where P = (Fo2 + 2Fc2)/3
4659 reflections(Δ/σ)max = 0.002
246 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H18N2O3Sγ = 92.908 (4)°
Mr = 342.40V = 834.13 (7) Å3
Triclinic, P1Z = 2
a = 7.4555 (3) ÅMo Kα radiation
b = 7.6311 (4) ŵ = 0.21 mm1
c = 15.2468 (8) ÅT = 173 K
α = 96.456 (4)°0.33 × 0.32 × 0.28 mm
β = 103.860 (5)°
Data collection top
Stoe IPDS II two-circle-
diffractometer
4659 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
4311 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.943Rint = 0.057
22798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
4659 reflectionsΔρmin = 0.37 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.09603 (4)0.22920 (4)0.599200 (16)0.02926 (8)
O10.54635 (11)0.37544 (11)0.42973 (5)0.03282 (18)
O21.1748 (4)1.1151 (2)0.86115 (13)0.0302 (5)0.527 (5)
O2A1.0912 (4)1.1206 (2)0.88161 (14)0.0309 (6)0.473 (5)
O31.23261 (17)0.91072 (12)0.96012 (6)0.0521 (3)
N10.82261 (12)0.44800 (11)0.57980 (5)0.02358 (17)
H10.72820.47280.54780.028*
N20.77873 (12)0.19546 (11)0.47488 (6)0.02420 (17)
H20.82420.09560.45700.029*
C10.89035 (13)0.29850 (13)0.55169 (6)0.02227 (18)
C20.61524 (13)0.23496 (13)0.41838 (6)0.02368 (18)
C110.90732 (12)0.57062 (12)0.65792 (6)0.02124 (17)
C120.98398 (14)0.51635 (13)0.74226 (7)0.02457 (19)
H120.98400.39410.74900.029*
C131.06022 (14)0.64342 (13)0.81625 (7)0.02587 (19)
H131.11310.60750.87390.031*
C141.06025 (15)0.82288 (13)0.80705 (7)0.0273 (2)
C150.97895 (15)0.87601 (13)0.72331 (7)0.0286 (2)
H150.97550.99830.71700.034*
C160.90262 (14)0.74958 (13)0.64881 (6)0.02458 (19)
H160.84710.78560.59150.029*
C171.1522 (2)0.95152 (16)0.88788 (9)0.0456 (3)
C181.2785 (4)1.2514 (3)0.93166 (16)0.0336 (6)0.527 (5)
H18A1.32221.35040.90330.040*0.527 (5)
H18B1.38861.20240.96810.040*0.527 (5)
C191.1602 (4)1.3183 (4)0.9924 (2)0.0404 (6)0.527 (5)
H19A1.23191.41071.03940.061*0.527 (5)
H19B1.11931.22061.02150.061*0.527 (5)
H19C1.05181.36730.95640.061*0.527 (5)
C18A1.1603 (4)1.2562 (4)0.9587 (2)0.0324 (6)0.473 (5)
H18C1.16391.20481.01580.039*0.473 (5)
H18D1.07511.35190.95530.039*0.473 (5)
C19A1.3507 (5)1.3318 (4)0.9602 (2)0.0419 (8)0.473 (5)
H19D1.39421.42261.01310.063*0.473 (5)
H19E1.34691.38490.90430.063*0.473 (5)
H19F1.43561.23750.96440.063*0.473 (5)
C210.53091 (13)0.08983 (13)0.34332 (7)0.02406 (19)
C220.50526 (15)0.08026 (14)0.36571 (8)0.0294 (2)
H220.54250.10130.42750.035*
C230.42550 (17)0.21929 (16)0.29831 (9)0.0373 (3)
H230.40640.33490.31360.045*
C240.37444 (18)0.18683 (18)0.20872 (9)0.0419 (3)
H240.32120.28120.16210.050*
C250.40002 (17)0.01808 (17)0.18616 (8)0.0369 (3)
H250.36470.00110.12410.044*
C260.47678 (14)0.12474 (15)0.25293 (7)0.0277 (2)
C270.49622 (18)0.30658 (17)0.22573 (8)0.0363 (2)
H27A0.38520.36780.22910.054*
H27B0.51090.29690.16320.054*
H27C0.60530.37370.26710.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02783 (13)0.03461 (14)0.02109 (12)0.01339 (10)0.00154 (9)0.00282 (9)
O10.0292 (4)0.0317 (4)0.0296 (4)0.0119 (3)0.0037 (3)0.0098 (3)
O20.0369 (11)0.0226 (7)0.0255 (8)0.0031 (6)0.0009 (7)0.0036 (6)
O2A0.0409 (14)0.0227 (8)0.0229 (8)0.0024 (7)0.0005 (8)0.0048 (6)
O30.0761 (7)0.0317 (4)0.0293 (4)0.0019 (4)0.0204 (4)0.0010 (3)
N10.0232 (4)0.0242 (4)0.0187 (3)0.0062 (3)0.0018 (3)0.0032 (3)
N20.0249 (4)0.0245 (4)0.0195 (4)0.0070 (3)0.0007 (3)0.0045 (3)
C10.0242 (4)0.0250 (4)0.0161 (4)0.0044 (3)0.0029 (3)0.0004 (3)
C20.0224 (4)0.0264 (4)0.0199 (4)0.0046 (3)0.0031 (3)0.0032 (3)
C110.0198 (4)0.0235 (4)0.0180 (4)0.0019 (3)0.0021 (3)0.0020 (3)
C120.0290 (4)0.0217 (4)0.0205 (4)0.0023 (3)0.0022 (3)0.0007 (3)
C130.0305 (5)0.0248 (4)0.0188 (4)0.0020 (4)0.0003 (3)0.0017 (3)
C140.0304 (5)0.0234 (4)0.0219 (4)0.0016 (4)0.0035 (4)0.0004 (3)
C150.0337 (5)0.0215 (4)0.0252 (5)0.0009 (4)0.0020 (4)0.0024 (3)
C160.0262 (4)0.0253 (4)0.0193 (4)0.0023 (3)0.0002 (3)0.0025 (3)
C170.0634 (8)0.0239 (5)0.0322 (6)0.0038 (5)0.0185 (6)0.0001 (4)
C180.0361 (12)0.0261 (11)0.0317 (11)0.0045 (10)0.0014 (9)0.0073 (9)
C190.0509 (14)0.0331 (13)0.0341 (14)0.0081 (11)0.0081 (11)0.0053 (11)
C18A0.0436 (14)0.0228 (12)0.0262 (13)0.0009 (10)0.0060 (10)0.0101 (10)
C19A0.0430 (15)0.0352 (15)0.0415 (15)0.0034 (13)0.0032 (12)0.0028 (12)
C210.0200 (4)0.0269 (4)0.0222 (4)0.0034 (3)0.0035 (3)0.0065 (3)
C220.0272 (5)0.0292 (5)0.0310 (5)0.0026 (4)0.0085 (4)0.0031 (4)
C230.0334 (5)0.0283 (5)0.0479 (7)0.0032 (4)0.0129 (5)0.0090 (5)
C240.0357 (6)0.0405 (6)0.0406 (6)0.0035 (5)0.0054 (5)0.0208 (5)
C250.0342 (5)0.0455 (6)0.0244 (5)0.0044 (5)0.0018 (4)0.0121 (4)
C260.0243 (4)0.0336 (5)0.0222 (4)0.0049 (4)0.0036 (3)0.0053 (4)
C270.0398 (6)0.0395 (6)0.0283 (5)0.0073 (5)0.0056 (4)0.0034 (4)
Geometric parameters (Å, º) top
S1—C11.6709 (10)C18—H18A0.9900
O1—C21.2247 (12)C18—H18B0.9900
O2—C171.370 (2)C19—H19A0.9800
O2—C181.451 (3)C19—H19B0.9800
O2A—C171.395 (2)C19—H19C0.9800
O2A—C18A1.449 (4)C18A—C19A1.499 (4)
O3—C171.2038 (15)C18A—H18C0.9900
N1—C11.3388 (12)C18A—H18D0.9900
N1—C111.4220 (11)C19A—H19D0.9800
N1—H10.7998C19A—H19E0.9800
N2—C21.3824 (12)C19A—H19F0.9800
N2—C11.3936 (12)C21—C221.3941 (15)
N2—H20.8911C21—C261.4001 (14)
C2—C211.4937 (13)C22—C231.3904 (15)
C11—C161.3895 (13)C22—H220.9500
C11—C121.3941 (13)C23—C241.382 (2)
C12—C131.3881 (13)C23—H230.9500
C12—H120.9500C24—C251.385 (2)
C13—C141.3923 (14)C24—H240.9500
C13—H130.9500C25—C261.4000 (14)
C14—C151.3900 (14)C25—H250.9500
C14—C171.4858 (14)C26—C271.5021 (17)
C15—C161.3904 (13)C27—H27A0.9800
C15—H150.9500C27—H27B0.9800
C16—H160.9500C27—H27C0.9800
C18—C191.493 (4)
C17—O2—C18115.67 (16)C18—C19—H19A109.5
C17—O2A—C18A118.32 (17)C18—C19—H19B109.5
C1—N1—C11126.33 (8)H19A—C19—H19B109.5
C1—N1—H1116.3C18—C19—H19C109.5
C11—N1—H1117.2H19A—C19—H19C109.5
C2—N2—C1128.53 (8)H19B—C19—H19C109.5
C2—N2—H2115.7O2A—C18A—C19A111.2 (4)
C1—N2—H2115.5O2A—C18A—H18C109.4
N1—C1—N2116.03 (8)C19A—C18A—H18C109.4
N1—C1—S1125.74 (7)O2A—C18A—H18D109.4
N2—C1—S1118.21 (7)C19A—C18A—H18D109.4
O1—C2—N2122.79 (9)H18C—C18A—H18D108.0
O1—C2—C21123.60 (9)C18A—C19A—H19D109.5
N2—C2—C21113.61 (8)C18A—C19A—H19E109.5
C16—C11—C12120.35 (8)H19D—C19A—H19E109.5
C16—C11—N1117.45 (8)C18A—C19A—H19F109.5
C12—C11—N1122.11 (9)H19D—C19A—H19F109.5
C13—C12—C11119.08 (9)H19E—C19A—H19F109.5
C13—C12—H12120.5C22—C21—C26120.98 (9)
C11—C12—H12120.5C22—C21—C2118.37 (9)
C12—C13—C14120.85 (9)C26—C21—C2120.65 (9)
C12—C13—H13119.6C23—C22—C21120.47 (11)
C14—C13—H13119.6C23—C22—H22119.8
C15—C14—C13119.70 (9)C21—C22—H22119.8
C15—C14—C17122.23 (10)C24—C23—C22119.01 (12)
C13—C14—C17118.05 (9)C24—C23—H23120.5
C14—C15—C16119.80 (9)C22—C23—H23120.5
C14—C15—H15120.1C23—C24—C25120.70 (10)
C16—C15—H15120.1C23—C24—H24119.7
C11—C16—C15120.18 (9)C25—C24—H24119.7
C11—C16—H16119.9C24—C25—C26121.39 (11)
C15—C16—H16119.9C24—C25—H25119.3
O3—C17—O2124.17 (12)C26—C25—H25119.3
O3—C17—O2A120.61 (13)C25—C26—C21117.44 (11)
O3—C17—C14124.28 (11)C25—C26—C27119.59 (10)
O2—C17—C14109.38 (11)C21—C26—C27122.97 (9)
O2A—C17—C14112.60 (11)C26—C27—H27A109.5
O2—C18—C19110.5 (3)C26—C27—H27B109.5
O2—C18—H18A109.6H27A—C27—H27B109.5
C19—C18—H18A109.6C26—C27—H27C109.5
O2—C18—H18B109.6H27A—C27—H27C109.5
C19—C18—H18B109.6H27B—C27—H27C109.5
H18A—C18—H18B108.1
C11—N1—C1—N2177.55 (9)C15—C14—C17—O3175.89 (16)
C11—N1—C1—S13.80 (15)C13—C14—C17—O32.8 (2)
C2—N2—C1—N16.94 (15)C15—C14—C17—O212.1 (2)
C2—N2—C1—S1171.82 (9)C13—C14—C17—O2166.59 (17)
C1—N2—C2—O10.83 (17)C15—C14—C17—O2A22.0 (2)
C1—N2—C2—C21178.64 (9)C13—C14—C17—O2A159.3 (2)
C1—N1—C11—C16137.72 (11)C17—O2—C18—C1977.4 (3)
C1—N1—C11—C1245.70 (15)C17—O2A—C18A—C19A79.8 (3)
C16—C11—C12—C131.85 (15)O1—C2—C21—C22128.25 (12)
N1—C11—C12—C13178.34 (9)N2—C2—C21—C2251.21 (12)
C11—C12—C13—C140.19 (16)O1—C2—C21—C2650.88 (15)
C12—C13—C14—C151.59 (17)N2—C2—C21—C26129.66 (10)
C12—C13—C14—C17177.10 (12)C26—C21—C22—C230.19 (16)
C13—C14—C15—C161.71 (17)C2—C21—C22—C23179.32 (9)
C17—C14—C15—C16176.93 (12)C21—C22—C23—C240.89 (17)
C12—C11—C16—C151.74 (15)C22—C23—C24—C250.76 (19)
N1—C11—C16—C15178.39 (9)C23—C24—C25—C260.44 (19)
C14—C15—C16—C110.06 (17)C24—C25—C26—C211.48 (17)
C18—O2—C17—O310.6 (4)C24—C25—C26—C27177.99 (11)
C18—O2—C17—O2A83.6 (3)C22—C21—C26—C251.35 (15)
C18—O2—C17—C14174.5 (2)C2—C21—C26—C25179.54 (9)
C18A—O2A—C17—O313.0 (4)C22—C21—C26—C27178.11 (10)
C18A—O2A—C17—O293.5 (4)C2—C21—C26—C271.00 (15)
C18A—O2A—C17—C14175.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.802.012.669 (1)139
N2—H2···S1i0.892.673.5551 (9)170
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H18N2O3S
Mr342.40
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.4555 (3), 7.6311 (4), 15.2468 (8)
α, β, γ (°)96.456 (4), 103.860 (5), 92.908 (4)
V3)834.13 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.33 × 0.32 × 0.28
Data collection
DiffractometerStoe IPDS II two-circle-
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.933, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
22798, 4659, 4311
Rint0.057
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.04
No. of reflections4659
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.37

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.802.012.669 (1)138.9
N2—H2···S1i0.892.673.5551 (9)170.4
Symmetry code: (i) x+2, y, z+1.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlum, J. J. & Hayes, A. (1979). J. Supramol. Struct. 12, 23–34.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDeBeer, E. J., Buck, J. S., Ide, W. S. & Hjort, A. M. (1936). J. Pharmacol. 57, 19–33.  CAS Google Scholar
First citationEynde, J. J. V. & Watte, O. (2003). Arkivoc, iv, 93–101.  CrossRef Google Scholar
First citationFu, M., Fernandez, M., Smith, M. L. & Flygae, J. A. (1999). Org. Lett. 1, 1351–1353.  Web of Science CrossRef CAS Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationMaryanoff, C. A., Stanzione, R. C., Plampin, J. N. & Mills, J. E. (1986). J. Org. Chem. 51, 1882–1884.  CrossRef CAS Web of Science Google Scholar
First citationRamadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. (1998). Pestic. Sci. 52, 145–151.  CrossRef CAS Google Scholar
First citationRashdan, S., Light, M. E. & Kilburn, J. D. (2006). Chem. Commun. pp. 4578–4580.  Web of Science CSD CrossRef Google Scholar
First citationSaeed, A. & Flörke, U. (2007a). Acta Cryst. E63, o4259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007b). Acta Cryst. E63, o4614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Simpson, J. & Stanley, R. G. (2009). Acta Cryst. E65, o1735–o1736.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Zaman, S. & Bolte, M. (2008). Synth. Commun. 38, 2185–2199.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUpadhyaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc. 59, 767–769.  CAS Google Scholar
First citationWang, X.-C., Wang, F., Quan, Z.-J., Wang, M.-G. & Li, Z. (2005). J. Chem. Res. 61, 689–690.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds