metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cyclo-Tris[μ-5-(2-pyrid­yl)pyrazol-1-ido-κ3N1,N5:N2]tris­­ilver(I)

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 22 September 2009; accepted 1 October 2009; online 10 October 2009)

In the title compound, [Ag3(C8H6N3)3], the asymmetric unit contains three silver cations and three depronated 5-(2-pyrid­yl)pyrazol-1-ide ligands. Each silver cation is chelated by one 5-(2-pyrid­yl)pyrazol-1-ide ligand, which also acts as a bridging ligand towards the next silver ion via the second pyrazole N atom. In summary, three silver cations and three deprotonated 3-(2-pyrid­yl)-1H-pyrazole ligands produce a macrocyclic trimeric coordination oligomer that exhibits an almost planar conformation (mean deviation 0.1483 Å). In addition, short non-bonding Ag⋯Ag inter­actions [3.127 (2) Å] are observed.

Related literature

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998[Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.], 2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag3(C8H6N3)3]

  • Mr = 756.07

  • Monoclinic, P 21 /c

  • a = 11.597 (9) Å

  • b = 8.555 (6) Å

  • c = 25.52 (2) Å

  • β = 103.018 (9)°

  • V = 2467 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 294 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.832

  • 12411 measured reflections

  • 4294 independent reflections

  • 2947 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.064

  • S = 1.00

  • 4294 reflections

  • 325 parameters

  • H-atom parameters not refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Deprotonated 3-(2-pyridyl)pyrazole is a potentially tridentate ligands and it's derivatives have been widely used for the construction of supramolecular architectures by their ability of producing coordination compounds (Ward et al. 1998; 2001). As a continuation of these studies, we now report the crystal structure of the title complex.

As shown in figure 1, the asymmetric unit contains three silver cations and three depronated 5-(2-pyridyl)pyrazol-1-ide ligands. Each silver cation is chelated with one 5-(2-pyridyl)pyrazol-1-ide ligand, which in addition acts as a bridging ligand towards the next silver ion via the second pyrazole nitrogen.

In summary, three silver cations and three depronated 5-(2-pyridyl)pyrazol-1-ide ligands produce a macrocyclic trimeric coordination oligomer that exhibits an almost planar conformation. In addition, short non-bonding Ag-Ag interactions (3.127 (2) Å) are observed.

Related literature top

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001).

Experimental top

The synthesis of the title compound is performed in 25 ml Teflon-lined stainless steel vessels. Powdered 3-(2-pyridyl)pyrazole (1 mmol) together with silver nitrate (1 mmol) is heated to 170°C in 10 ml of a water/ethanol mixture (1:1) for 24 h. Colorless crystals were obtained after cooling to room temperature.

Refinement top

All hydrogen atoms were positioned geometrically and were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Deprotonated 3-(2-pyridyl)pyrazole is a potentially tridentate ligands and it's derivatives have been widely used for the construction of supramolecular architectures by their ability of producing coordination compounds (Ward et al. 1998; 2001). As a continuation of these studies, we now report the crystal structure of the title complex.

As shown in figure 1, the asymmetric unit contains three silver cations and three depronated 5-(2-pyridyl)pyrazol-1-ide ligands. Each silver cation is chelated with one 5-(2-pyridyl)pyrazol-1-ide ligand, which in addition acts as a bridging ligand towards the next silver ion via the second pyrazole nitrogen.

In summary, three silver cations and three depronated 5-(2-pyridyl)pyrazol-1-ide ligands produce a macrocyclic trimeric coordination oligomer that exhibits an almost planar conformation. In addition, short non-bonding Ag-Ag interactions (3.127 (2) Å) are observed.

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
cyclo-Tris[µ-5-(2-pyridyl)pyrazol-1-ido- κ3N1,N5:N2]trisilver(I) top
Crystal data top
[Ag3(C8H6N3)3]F(000) = 1464
Mr = 756.07Dx = 2.036 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 843 reflections
a = 11.597 (9) Åθ = 2.9–20.3°
b = 8.555 (6) ŵ = 2.39 mm1
c = 25.52 (2) ÅT = 294 K
β = 103.018 (9)°Block, colorless
V = 2467 (3) Å30.10 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4294 independent reflections
Radiation source: fine-focus sealed tube2947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.796, Tmax = 0.832k = 910
12411 measured reflectionsl = 3027
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
4294 reflections(Δ/σ)max = 0.005
325 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ag3(C8H6N3)3]V = 2467 (3) Å3
Mr = 756.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.597 (9) ŵ = 2.39 mm1
b = 8.555 (6) ÅT = 294 K
c = 25.52 (2) Å0.10 × 0.10 × 0.08 mm
β = 103.018 (9)°
Data collection top
Bruker SMART CCD
diffractometer
4294 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2947 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.832Rint = 0.041
12411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.064H-atom parameters not refined
S = 1.00Δρmax = 0.41 e Å3
4294 reflectionsΔρmin = 0.41 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.22973 (3)0.98307 (4)0.144566 (15)0.06499 (13)
Ag20.13700 (3)0.74112 (4)0.019289 (14)0.06424 (13)
C10.4980 (4)1.0995 (6)0.2419 (2)0.0747 (15)
H10.44831.15770.25840.090*
C20.6185 (4)1.1006 (6)0.26491 (19)0.0719 (14)
H20.64901.15810.29590.086*
C30.6909 (4)1.0148 (5)0.24072 (19)0.0659 (14)
H30.77201.01130.25530.079*
C40.6424 (4)0.9331 (5)0.19436 (18)0.0580 (12)
H40.69110.87590.17710.070*
C50.5212 (4)0.9362 (5)0.17348 (17)0.0470 (11)
C60.4645 (4)0.8456 (5)0.12563 (17)0.0504 (11)
C70.5111 (4)0.7483 (6)0.09242 (19)0.0708 (14)
H70.59040.72480.09490.085*
C80.4147 (4)0.6935 (6)0.0548 (2)0.0727 (15)
H80.41870.62580.02680.087*
C90.1397 (4)0.4507 (6)0.0809 (2)0.0657 (13)
H90.22080.44570.06670.079*
C100.0916 (5)0.3499 (6)0.1224 (2)0.0731 (14)
H100.13900.28070.13620.088*
C110.0290 (5)0.3556 (6)0.14265 (19)0.0741 (15)
H110.06480.28890.17030.089*
C120.0958 (4)0.4609 (5)0.12148 (18)0.0635 (13)
H120.17740.46550.13440.076*
C130.0391 (4)0.5615 (5)0.08009 (16)0.0476 (11)
C140.1064 (4)0.6755 (5)0.05658 (16)0.0484 (11)
C150.2255 (4)0.7133 (6)0.06914 (19)0.0658 (14)
H150.28460.66980.09590.079*
C160.2375 (4)0.8301 (6)0.03316 (19)0.0653 (14)
H160.30810.87960.03180.078*
N10.4493 (3)1.0192 (4)0.19734 (15)0.0632 (11)
N20.3451 (3)0.8464 (4)0.10893 (14)0.0544 (10)
N30.3148 (3)0.7521 (4)0.06469 (15)0.0619 (10)
N40.0777 (3)0.5539 (4)0.05982 (14)0.0555 (10)
N50.0503 (3)0.7659 (4)0.01505 (14)0.0518 (9)
N60.1319 (3)0.8612 (4)0.00053 (14)0.0552 (10)
Ag30.08697 (3)1.00054 (4)0.069660 (14)0.06312 (13)
N70.2477 (3)1.1562 (4)0.10333 (16)0.0636 (11)
N80.0152 (3)1.0984 (4)0.14786 (13)0.0522 (9)
C170.3626 (5)1.1848 (6)0.0800 (2)0.0807 (16)
H170.39681.13200.04840.097*
C210.1995 (4)1.2328 (5)0.1486 (2)0.0568 (12)
C220.0746 (4)1.1992 (5)0.17237 (18)0.0531 (12)
N90.0977 (3)1.0881 (4)0.17771 (14)0.0565 (10)
C180.4303 (5)1.2879 (8)0.1008 (3)0.101 (2)
H180.50901.30460.08360.122*
C200.2641 (5)1.3382 (6)0.1718 (2)0.0766 (15)
H200.22921.38940.20350.092*
C230.0005 (4)1.2554 (5)0.21894 (19)0.0638 (13)
H230.01741.32650.24350.077*
C240.1063 (4)1.1833 (6)0.22055 (19)0.0667 (13)
H240.17451.19780.24740.080*
C190.3813 (6)1.3662 (7)0.1470 (3)0.099 (2)
H190.42601.43720.16170.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0523 (2)0.0727 (3)0.0678 (3)0.01114 (19)0.00901 (18)0.0029 (2)
Ag20.0542 (2)0.0702 (3)0.0589 (2)0.00637 (19)0.00713 (17)0.0037 (2)
C10.076 (4)0.073 (4)0.075 (4)0.002 (3)0.016 (3)0.020 (3)
C20.072 (4)0.073 (4)0.060 (3)0.002 (3)0.009 (3)0.011 (3)
C30.051 (3)0.066 (3)0.069 (4)0.001 (3)0.010 (3)0.000 (3)
C40.052 (3)0.059 (3)0.059 (3)0.005 (2)0.005 (2)0.003 (3)
C50.043 (3)0.046 (3)0.049 (3)0.004 (2)0.004 (2)0.006 (2)
C60.046 (3)0.052 (3)0.049 (3)0.009 (2)0.001 (2)0.002 (2)
C70.052 (3)0.085 (4)0.072 (3)0.018 (3)0.007 (3)0.017 (3)
C80.068 (3)0.076 (4)0.069 (4)0.014 (3)0.005 (3)0.019 (3)
C90.064 (3)0.065 (4)0.071 (4)0.001 (3)0.022 (3)0.005 (3)
C100.094 (4)0.058 (4)0.075 (4)0.004 (3)0.035 (3)0.001 (3)
C110.094 (4)0.068 (4)0.060 (4)0.012 (3)0.017 (3)0.016 (3)
C120.067 (3)0.070 (4)0.051 (3)0.008 (3)0.007 (3)0.009 (3)
C130.053 (3)0.052 (3)0.038 (3)0.007 (2)0.010 (2)0.003 (2)
C140.047 (3)0.055 (3)0.037 (3)0.007 (2)0.003 (2)0.005 (2)
C150.053 (3)0.079 (4)0.059 (3)0.003 (3)0.001 (2)0.007 (3)
C160.052 (3)0.072 (4)0.066 (4)0.005 (3)0.001 (3)0.004 (3)
N10.052 (2)0.071 (3)0.060 (3)0.006 (2)0.000 (2)0.011 (2)
N20.046 (2)0.056 (2)0.057 (2)0.0048 (18)0.0026 (18)0.007 (2)
N30.059 (2)0.062 (3)0.059 (3)0.008 (2)0.002 (2)0.007 (2)
N40.054 (2)0.056 (3)0.056 (2)0.0006 (19)0.012 (2)0.001 (2)
N50.052 (2)0.052 (2)0.048 (2)0.002 (2)0.0045 (18)0.0009 (19)
N60.053 (2)0.059 (3)0.049 (2)0.003 (2)0.0016 (19)0.0032 (19)
Ag30.0699 (3)0.0608 (3)0.0563 (2)0.00182 (19)0.00949 (19)0.00739 (19)
N70.055 (3)0.067 (3)0.071 (3)0.008 (2)0.018 (2)0.006 (2)
N80.048 (2)0.055 (2)0.052 (2)0.0061 (18)0.0074 (19)0.0068 (19)
C170.066 (4)0.082 (4)0.093 (4)0.004 (3)0.014 (3)0.010 (3)
C210.061 (3)0.049 (3)0.069 (3)0.001 (2)0.034 (3)0.009 (3)
C220.061 (3)0.049 (3)0.055 (3)0.001 (2)0.025 (3)0.003 (2)
N90.054 (2)0.059 (2)0.055 (2)0.0018 (19)0.009 (2)0.007 (2)
C180.061 (4)0.106 (5)0.144 (7)0.024 (4)0.039 (4)0.022 (5)
C200.090 (4)0.066 (4)0.082 (4)0.016 (3)0.038 (3)0.007 (3)
C230.081 (3)0.058 (3)0.058 (3)0.006 (3)0.026 (3)0.003 (3)
C240.074 (4)0.067 (3)0.055 (3)0.009 (3)0.006 (3)0.007 (3)
C190.092 (5)0.093 (5)0.125 (6)0.033 (4)0.053 (4)0.016 (4)
Geometric parameters (Å, º) top
Ag1—N92.110 (4)C13—N41.338 (5)
Ag1—N22.129 (4)C13—C141.460 (6)
Ag1—N12.617 (4)C14—N51.354 (5)
Ag2—N32.127 (4)C14—C151.384 (6)
Ag2—N52.162 (4)C15—C161.385 (6)
Ag2—N42.547 (4)C15—H150.9300
Ag2—Ag3i3.1274 (17)C16—N61.343 (5)
C1—N11.340 (5)C16—H160.9300
C1—C21.389 (6)N2—N31.368 (4)
C1—H10.9300N5—N61.361 (4)
C2—C31.363 (6)N6—Ag32.117 (4)
C2—H20.9300Ag3—N82.151 (4)
C3—C41.380 (6)Ag3—N72.590 (4)
C3—H30.9300Ag3—Ag2i3.1274 (17)
C4—C51.387 (5)N7—C211.337 (5)
C4—H40.9300N7—C171.354 (6)
C5—N11.341 (5)N8—C221.343 (5)
C5—C61.470 (5)N8—N91.362 (4)
C6—N21.354 (5)C17—C181.365 (7)
C6—C71.382 (6)C17—H170.9300
C7—C81.381 (6)C21—C201.387 (6)
C7—H70.9300C21—C221.467 (6)
C8—N31.338 (5)C22—C231.391 (6)
C8—H80.9300N9—C241.349 (5)
C9—N41.326 (5)C18—C191.365 (8)
C9—C101.383 (6)C18—H180.9300
C9—H90.9300C20—C191.385 (7)
C10—C111.378 (6)C20—H200.9300
C10—H100.9300C23—C241.365 (6)
C11—C121.376 (6)C23—H230.9300
C11—H110.9300C24—H240.9300
C12—C131.406 (6)C19—H190.9300
C12—H120.9300
N9—Ag1—N2171.09 (14)C5—N1—C1118.1 (4)
N9—Ag1—N1116.95 (14)C5—N1—Ag1109.6 (3)
N2—Ag1—N169.66 (13)C1—N1—Ag1132.3 (3)
N3—Ag2—N5168.08 (14)C6—N2—N3108.1 (3)
N3—Ag2—N4120.99 (13)C6—N2—Ag1124.4 (3)
N5—Ag2—N470.93 (13)N3—N2—Ag1127.4 (3)
N3—Ag2—Ag3i111.26 (10)C8—N3—N2107.7 (4)
N5—Ag2—Ag3i68.36 (9)C8—N3—Ag2130.9 (3)
N4—Ag2—Ag3i84.05 (10)N2—N3—Ag2120.9 (3)
N1—C1—C2123.6 (5)C9—N4—C13118.0 (4)
N1—C1—H1118.2C9—N4—Ag2131.7 (3)
C2—C1—H1118.2C13—N4—Ag2110.2 (3)
C3—C2—C1118.0 (4)C14—N5—N6108.3 (3)
C3—C2—H2121.0C14—N5—Ag2121.5 (3)
C1—C2—H2121.0N6—N5—Ag2130.1 (3)
C2—C3—C4119.1 (4)C16—N6—N5107.8 (4)
C2—C3—H3120.4C16—N6—Ag3130.7 (3)
C4—C3—H3120.4N5—N6—Ag3120.9 (3)
C3—C4—C5120.1 (4)N6—Ag3—N8166.96 (13)
C3—C4—H4119.9N6—Ag3—N7120.80 (14)
C5—C4—H4119.9N8—Ag3—N769.45 (14)
N1—C5—C4121.0 (4)N6—Ag3—Ag2i79.27 (11)
N1—C5—C6116.7 (4)N8—Ag3—Ag2i111.59 (10)
C4—C5—C6122.3 (4)N7—Ag3—Ag2i81.24 (9)
N2—C6—C7108.9 (4)C21—N7—C17118.1 (4)
N2—C6—C5119.5 (4)C21—N7—Ag3110.3 (3)
C7—C6—C5131.5 (4)C17—N7—Ag3131.1 (4)
C8—C7—C6105.3 (4)C22—N8—N9108.1 (4)
C8—C7—H7127.4C22—N8—Ag3123.4 (3)
C6—C7—H7127.4N9—N8—Ag3128.0 (3)
N3—C8—C7110.0 (4)C18—C17—N7122.7 (5)
N3—C8—H8125.0C18—C17—H17118.6
C7—C8—H8125.0N7—C17—H17118.6
N4—C9—C10124.3 (5)N7—C21—C20121.7 (5)
N4—C9—H9117.8N7—C21—C22116.3 (4)
C10—C9—H9117.8C20—C21—C22122.0 (5)
C9—C10—C11117.8 (5)N8—C22—C23109.4 (4)
C9—C10—H10121.1N8—C22—C21119.7 (4)
C11—C10—H10121.1C23—C22—C21130.9 (4)
C12—C11—C10119.3 (5)C24—N9—N8107.5 (3)
C12—C11—H11120.3C24—N9—Ag1130.9 (3)
C10—C11—H11120.3N8—N9—Ag1119.8 (3)
C11—C12—C13119.1 (5)C17—C18—C19119.3 (6)
C11—C12—H12120.5C17—C18—H18120.3
C13—C12—H12120.5C19—C18—H18120.4
N4—C13—C12121.5 (4)C21—C20—C19119.2 (5)
N4—C13—C14117.5 (4)C21—C20—H20120.4
C12—C13—C14121.0 (4)C19—C20—H20120.4
N5—C14—C15109.0 (4)C24—C23—C22104.8 (4)
N5—C14—C13119.8 (4)C24—C23—H23127.6
C15—C14—C13131.2 (4)C22—C23—H23127.6
C14—C15—C16105.0 (4)N9—C24—C23110.3 (4)
C14—C15—H15127.5N9—C24—H24124.9
C16—C15—H15127.5C23—C24—H24124.9
N6—C16—C15109.9 (4)C18—C19—C20119.0 (6)
N6—C16—H16125.1C18—C19—H19120.5
C15—C16—H16125.1C20—C19—H19120.5
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Ag3(C8H6N3)3]
Mr756.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.597 (9), 8.555 (6), 25.52 (2)
β (°) 103.018 (9)
V3)2467 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.796, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
12411, 4294, 2947
Rint0.041
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.064, 1.00
No. of reflections4294
No. of parameters325
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the program for Talent Introduction in Guangdong Higher Education Institutions and the Scientific Research Start-up Funds of Talent Introduction in Maoming University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds