metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diaceto­nitrile[N,N′-bis­(2,6-diiso­propyl­phenyl)ethane-1,2-di­imine]di­chloridochromium(II) aceto­nitrile solvate

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: stephan.peitz@catalysis.de

(Received 30 September 2009; accepted 1 October 2009; online 10 October 2009)

The title compound, [CrCl2(CH3CN)2(C26H36N2)]·CH3CN, was synthesized by the reaction of CrCl2(THF)2 with N,N′-bis­(2,6-diisopropyl­phen­yl)ethane-1,2-diimine in dichloro­methane/acetonitrile. The chromium center is coordinated by two N atoms of the chelating diimine ligand, two chloride ions in a trans configuration with respect to each other, and by two N atoms of two acetonitrile mol­ecules in a distorted octa­hedral geometry.

Related literature

For derivatives of the title compound, see: Turki et al. (2006[Turki, T., Guerfel, T. & Bouachir, F. (2006). Inorg. Chem. Commun. 9, 1023-1025.]); Kreisel et al. (2007[Kreisel, K. A., Yap, G. P. A., Dmitrenko, O., Landis, C. R. & Theopold, K. H. (2007). J. Am. Chem. Soc. 129, 14162-14163.]); Ghosh et al. (2008[Ghosh, M., Sproules, S., Weyhermüller, T. & Wieghardt, K. (2008). Inorg. Chem. 47, 5963-5970.]). For catalytic features of diimine and PNP ligands, see: tom Dieck & Kinzel (1979[Dieck, H. tom & Kinzel, A. (1979). Angew. Chem. 91, 344-345.]); Bart et al. (2004[Bart, S. C., Hawrelak, E. J., Schmisseur, A. K., Lobkovsky, E. & Chirik, P. J. (2004). Organometallics, 23, 237-246.]); Huang et al. (2007[Huang, R., Koning, C. E. & Chadwick, J. C. (2007). Macromolecules, 40, 3021-3029.]); Wöhl et al. (2009[Wöhl, A., Müller, W., Peulecke, N., Müller, B. H., Peitz, S., Heller, D. & Rosenthal, U. (2009). J. Mol. Cat. A, 297, 1-8.]).

[Scheme 1]

Experimental

Crystal data
  • [CrCl2(C2H3N)2(C26H36N2)]·C2H3N

  • Mr = 622.63

  • Monoclinic, P 21 /c

  • a = 18.7305 (6) Å

  • b = 13.2462 (5) Å

  • c = 13.9582 (4) Å

  • β = 97.838 (2)°

  • V = 3430.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 200 K

  • 0.5 × 0.5 × 0.4 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.761, Tmax = 0.847

  • 53468 measured reflections

  • 7489 independent reflections

  • 6233 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.20

  • 7489 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2-Diiminoethane ligands, also called diazabutadiene ligands, have been used for many purposes in catalysis and coordination chemistry. Complexes with different metals including chromium have been investigated concerning their electronic and structural features (Turki et al., 2006; Ghosh et al., 2008). Dimerization of isoprene (tom Dieck et al., 1979) and polymerization of ethene (Bart et al., 2004; Huang et al., 2007) are examples for catalytic investigations with this type of ligand. The shortest metal-metal bond at that time was observed in a dinuclear chromium complex with this ligand (Kreisel et al., 2007).

We became interested in chromium complexes with this ligand during our studies on the selective oligomerization of ethylene via transition-metal catalyzed tri- or tetramerization, yielding 1-hexene or 1-octene (Wöhl et al., 2009). Derived thereof we wanted to examine the N,N'-chelating ligand in combination with chromium in order to find differences and similarities in coordination and catalysis compared to other oligomerization systems. We deployed a simple preparation procedure that is described here, to obtain the complex for our screening experiments.

The molecular structure of the title compound shows that the chromium(II) center is coordinated by two N atoms of the chelating diazabutadiene ligand, (i-Pr)2C6H3–NC(H)C(H)N—C6H3(i-Pr)2, two chloride ions in trans-configuration with respect to each other and two acetonitrile molecules (Fig. 1). Its coordination geometry can be best described as distorted octahedral. Furthermore, the chelating ligand and the metal form a five-membered ring Cr(NC–CN), which is folded along the NN-axis by an angle of 162.5 (1)°. The asymmetric unit contains additionally one solvent molecule acetonitrile.

Related literature top

For derivatives of the title compound, see: Turki et al. (2006); Kreisel et al. (2007); Ghosh et al. (2008). For catalytic features of diimine ligands, see: tom Dieck & Kinzel (1979); Bart et al. (2004); Huang et al. (2007); Wöhl et al. (2009).

Experimental top

CrCl2(THF)2 (1.50 g, 5.66 mmol) and N,N'-bis(2,6-diisopropylphenyl)ethane-1,2-diimine (2.13 g, 5.66 mmol) were dissolved in 20 ml of dichloromethane at room temperature and stirred over night. After removal of all volatiles in vacuum the residue was washed with small amounts of n-hexane. Crystallization in acetonitrile yielded 0.59 g (27%) of brown single crystals suitable for X-ray analysis.

Refinement top

The H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95–1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH.

Structure description top

1,2-Diiminoethane ligands, also called diazabutadiene ligands, have been used for many purposes in catalysis and coordination chemistry. Complexes with different metals including chromium have been investigated concerning their electronic and structural features (Turki et al., 2006; Ghosh et al., 2008). Dimerization of isoprene (tom Dieck et al., 1979) and polymerization of ethene (Bart et al., 2004; Huang et al., 2007) are examples for catalytic investigations with this type of ligand. The shortest metal-metal bond at that time was observed in a dinuclear chromium complex with this ligand (Kreisel et al., 2007).

We became interested in chromium complexes with this ligand during our studies on the selective oligomerization of ethylene via transition-metal catalyzed tri- or tetramerization, yielding 1-hexene or 1-octene (Wöhl et al., 2009). Derived thereof we wanted to examine the N,N'-chelating ligand in combination with chromium in order to find differences and similarities in coordination and catalysis compared to other oligomerization systems. We deployed a simple preparation procedure that is described here, to obtain the complex for our screening experiments.

The molecular structure of the title compound shows that the chromium(II) center is coordinated by two N atoms of the chelating diazabutadiene ligand, (i-Pr)2C6H3–NC(H)C(H)N—C6H3(i-Pr)2, two chloride ions in trans-configuration with respect to each other and two acetonitrile molecules (Fig. 1). Its coordination geometry can be best described as distorted octahedral. Furthermore, the chelating ligand and the metal form a five-membered ring Cr(NC–CN), which is folded along the NN-axis by an angle of 162.5 (1)°. The asymmetric unit contains additionally one solvent molecule acetonitrile.

For derivatives of the title compound, see: Turki et al. (2006); Kreisel et al. (2007); Ghosh et al. (2008). For catalytic features of diimine ligands, see: tom Dieck & Kinzel (1979); Bart et al. (2004); Huang et al. (2007); Wöhl et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. The asymmetric unit additionally contains one solvent molecule acetonitrile which is not shown.
Diacetonitrile[N,N'-bis(2,6-diisopropylphenyl)ethane-1,2-diimine]dichloridochromium(II) acetonitrile solvate top
Crystal data top
[CrCl2(C2H3N)2(C26H36N2)]·C2H3NF(000) = 1320
Mr = 622.63Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12659 reflections
a = 18.7305 (6) Åθ = 2.1–29.6°
b = 13.2462 (5) ŵ = 0.52 mm1
c = 13.9582 (4) ÅT = 200 K
β = 97.838 (2)°Prism, brown
V = 3430.8 (2) Å30.5 × 0.5 × 0.4 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
7489 independent reflections
Radiation source: fine-focus sealed tube6233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 2323
Tmin = 0.761, Tmax = 0.847k = 1616
53468 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0286P)2 + 3.9005P]
where P = (Fo2 + 2Fc2)/3
7489 reflections(Δ/σ)max = 0.001
364 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CrCl2(C2H3N)2(C26H36N2)]·C2H3NV = 3430.8 (2) Å3
Mr = 622.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.7305 (6) ŵ = 0.52 mm1
b = 13.2462 (5) ÅT = 200 K
c = 13.9582 (4) Å0.5 × 0.5 × 0.4 mm
β = 97.838 (2)°
Data collection top
Stoe IPDSII
diffractometer
7489 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
6233 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.847Rint = 0.036
53468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.20Δρmax = 0.47 e Å3
7489 reflectionsΔρmin = 0.40 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.1588 (3)0.3180 (4)0.4602 (4)0.1140 (18)
C310.1283 (3)0.3863 (4)0.4315 (3)0.0728 (13)
C320.0890 (2)0.4750 (3)0.3954 (3)0.0679 (11)
H32A0.12130.53360.40200.102*
H32B0.04900.48660.43250.102*
H32C0.07000.46520.32710.102*
C10.27829 (12)0.77519 (18)0.13545 (17)0.0227 (5)
H1A0.28940.81900.08570.027*
C20.24076 (12)0.68549 (18)0.11524 (18)0.0225 (5)
H2A0.22360.66560.05080.027*
C30.32484 (13)0.89587 (17)0.25385 (17)0.0215 (5)
C40.27698 (13)0.96797 (18)0.28368 (18)0.0249 (5)
C50.30411 (14)1.06144 (19)0.3145 (2)0.0301 (6)
H5A0.27291.11010.33650.036*
C60.37644 (15)1.0852 (2)0.3138 (2)0.0329 (6)
H6A0.39451.14900.33690.039*
C70.42186 (14)1.0162 (2)0.2795 (2)0.0315 (6)
H7A0.47051.03430.27620.038*
C80.39764 (13)0.91987 (19)0.24949 (19)0.0264 (5)
C90.19649 (13)0.9481 (2)0.2747 (2)0.0320 (6)
H9A0.18930.87320.27160.038*
C100.16000 (18)0.9923 (3)0.1792 (3)0.0591 (10)
H10A0.18310.96540.12570.089*
H10B0.16471.06600.18090.089*
H10C0.10880.97400.16990.089*
C110.16168 (17)0.9872 (3)0.3605 (3)0.0514 (9)
H11A0.18630.95790.42050.077*
H11B0.11070.96790.35240.077*
H11C0.16571.06090.36360.077*
C120.44939 (14)0.8477 (2)0.2111 (2)0.0335 (6)
H12A0.42340.78260.19520.040*
C130.47405 (18)0.8879 (3)0.1183 (3)0.0487 (8)
H13A0.43190.90120.07030.073*
H13B0.50490.83770.09270.073*
H13C0.50120.95070.13240.073*
C140.51433 (16)0.8257 (3)0.2870 (3)0.0483 (8)
H14A0.49770.79950.34570.073*
H14B0.54170.88800.30220.073*
H14C0.54530.77540.26160.073*
C150.17107 (13)0.55834 (18)0.17315 (17)0.0223 (5)
C160.09994 (13)0.5968 (2)0.15552 (18)0.0257 (5)
C170.04407 (15)0.5284 (2)0.1314 (2)0.0344 (6)
H17A0.00400.55260.11850.041*
C180.05677 (16)0.4263 (2)0.1257 (2)0.0390 (7)
H18A0.01770.38120.10890.047*
C190.12614 (16)0.3896 (2)0.1445 (2)0.0374 (7)
H19A0.13420.31900.14130.045*
C200.18483 (14)0.45424 (19)0.16800 (19)0.0282 (5)
C210.08221 (13)0.7084 (2)0.1614 (2)0.0293 (6)
H21A0.12750.74490.18720.035*
C220.05521 (16)0.7513 (2)0.0607 (2)0.0401 (7)
H22A0.09130.73880.01740.060*
H22B0.04740.82420.06570.060*
H22C0.00980.71840.03480.060*
C230.02642 (16)0.7285 (3)0.2299 (2)0.0448 (8)
H23A0.04400.70120.29400.067*
H23B0.01920.69570.20460.067*
H23C0.01880.80140.23480.067*
C240.26105 (15)0.4138 (2)0.1798 (2)0.0331 (6)
H24A0.29300.46470.21730.040*
C250.28633 (18)0.4018 (3)0.0804 (3)0.0496 (8)
H25A0.28070.46620.04560.074*
H25B0.25730.34990.04330.074*
H25C0.33710.38170.08890.074*
C260.2691 (2)0.3140 (2)0.2351 (3)0.0593 (10)
H26A0.25310.32270.29850.089*
H26B0.31980.29320.24370.089*
H26C0.23970.26220.19840.089*
Cl10.39614 (3)0.60550 (5)0.26626 (5)0.03066 (15)
Cl20.19247 (3)0.71492 (5)0.38646 (4)0.02861 (14)
Cr10.29054 (2)0.67426 (3)0.31096 (3)0.01897 (9)
N10.29772 (10)0.79602 (14)0.22866 (14)0.0200 (4)
N20.23010 (10)0.62865 (14)0.19125 (14)0.0191 (4)
N30.35525 (11)0.75068 (17)0.42260 (15)0.0273 (5)
C270.38699 (14)0.8105 (2)0.46731 (19)0.0298 (6)
C280.42740 (19)0.8893 (3)0.5229 (2)0.0474 (8)
H28A0.47900.87370.52930.071*
H28B0.41230.89320.58730.071*
H28C0.41830.95410.48980.071*
N40.29488 (12)0.54279 (17)0.39918 (16)0.0306 (5)
C290.30724 (16)0.4809 (2)0.4545 (2)0.0364 (6)
C300.3258 (2)0.4026 (3)0.5276 (3)0.0606 (10)
H30A0.37280.37350.52000.091*
H30B0.28910.34940.51960.091*
H30C0.32790.43230.59230.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.094 (3)0.100 (4)0.139 (5)0.025 (3)0.018 (3)0.045 (3)
C310.072 (3)0.080 (3)0.063 (3)0.039 (3)0.000 (2)0.012 (2)
C320.075 (3)0.072 (3)0.056 (2)0.030 (2)0.005 (2)0.004 (2)
C10.0220 (11)0.0240 (12)0.0226 (12)0.0000 (9)0.0053 (9)0.0049 (9)
C20.0225 (11)0.0237 (12)0.0212 (11)0.0004 (9)0.0028 (9)0.0000 (9)
C30.0218 (11)0.0196 (11)0.0223 (12)0.0035 (9)0.0004 (9)0.0033 (9)
C40.0244 (12)0.0209 (11)0.0284 (13)0.0001 (9)0.0005 (10)0.0035 (10)
C50.0306 (13)0.0212 (12)0.0386 (15)0.0017 (10)0.0050 (11)0.0013 (11)
C60.0366 (14)0.0213 (12)0.0397 (15)0.0096 (11)0.0020 (12)0.0012 (11)
C70.0254 (13)0.0298 (14)0.0388 (15)0.0088 (10)0.0028 (11)0.0012 (11)
C80.0235 (12)0.0268 (12)0.0290 (13)0.0027 (10)0.0039 (10)0.0030 (10)
C90.0222 (12)0.0241 (13)0.0491 (17)0.0017 (10)0.0028 (11)0.0021 (12)
C100.0368 (17)0.059 (2)0.075 (3)0.0022 (16)0.0151 (17)0.0134 (19)
C110.0326 (16)0.0463 (18)0.079 (3)0.0003 (14)0.0208 (16)0.0147 (17)
C120.0227 (12)0.0334 (14)0.0460 (16)0.0069 (10)0.0104 (11)0.0077 (12)
C130.0465 (18)0.053 (2)0.0511 (19)0.0157 (15)0.0244 (15)0.0143 (16)
C140.0292 (15)0.0533 (19)0.063 (2)0.0093 (14)0.0066 (14)0.0056 (17)
C150.0253 (12)0.0227 (12)0.0188 (11)0.0049 (9)0.0026 (9)0.0016 (9)
C160.0210 (11)0.0328 (13)0.0232 (12)0.0038 (10)0.0023 (9)0.0027 (10)
C170.0255 (13)0.0437 (16)0.0335 (15)0.0083 (12)0.0027 (11)0.0029 (12)
C180.0350 (15)0.0412 (16)0.0402 (16)0.0197 (13)0.0034 (13)0.0052 (13)
C190.0450 (17)0.0249 (13)0.0415 (16)0.0119 (12)0.0035 (13)0.0029 (12)
C200.0345 (14)0.0241 (12)0.0254 (13)0.0051 (10)0.0028 (10)0.0013 (10)
C210.0205 (12)0.0336 (14)0.0332 (14)0.0015 (10)0.0013 (10)0.0064 (11)
C220.0350 (15)0.0423 (16)0.0419 (17)0.0061 (13)0.0013 (13)0.0014 (13)
C230.0336 (15)0.059 (2)0.0427 (17)0.0101 (14)0.0077 (13)0.0114 (15)
C240.0373 (15)0.0211 (12)0.0394 (15)0.0021 (11)0.0006 (12)0.0004 (11)
C250.0441 (18)0.054 (2)0.051 (2)0.0076 (15)0.0073 (15)0.0061 (16)
C260.062 (2)0.0332 (17)0.081 (3)0.0076 (16)0.004 (2)0.0178 (17)
Cl10.0237 (3)0.0302 (3)0.0383 (4)0.0063 (2)0.0051 (2)0.0025 (3)
Cl20.0267 (3)0.0366 (3)0.0235 (3)0.0023 (2)0.0070 (2)0.0041 (2)
Cr10.01892 (18)0.01898 (18)0.01855 (18)0.00166 (14)0.00090 (13)0.00088 (15)
N10.0169 (9)0.0181 (9)0.0250 (10)0.0013 (7)0.0035 (8)0.0003 (8)
N20.0195 (9)0.0176 (9)0.0205 (10)0.0011 (7)0.0032 (8)0.0017 (8)
N30.0277 (11)0.0304 (11)0.0227 (11)0.0039 (9)0.0009 (9)0.0016 (9)
C270.0304 (13)0.0353 (15)0.0234 (13)0.0050 (11)0.0024 (10)0.0041 (11)
C280.057 (2)0.0473 (18)0.0369 (17)0.0224 (16)0.0029 (15)0.0106 (14)
N40.0340 (12)0.0283 (11)0.0291 (12)0.0043 (9)0.0029 (9)0.0024 (10)
C290.0433 (16)0.0306 (14)0.0344 (15)0.0051 (12)0.0018 (12)0.0042 (12)
C300.078 (3)0.046 (2)0.054 (2)0.0021 (18)0.0039 (19)0.0248 (17)
Geometric parameters (Å, º) top
N5—C311.115 (6)C16—C171.391 (4)
C31—C321.441 (7)C16—C211.519 (4)
C32—H32A0.9800C17—C181.376 (4)
C32—H32B0.9800C17—H17A0.9500
C32—H32C0.9800C18—C191.379 (4)
C1—N11.331 (3)C18—H18A0.9500
C1—C21.390 (3)C19—C201.397 (4)
C1—H1A0.9500C19—H19A0.9500
C2—N21.338 (3)C20—C241.512 (4)
C2—H2A0.9500C21—C231.533 (4)
C3—C81.409 (3)C21—C221.537 (4)
C3—C41.411 (3)C21—H21A1.0000
C3—N11.443 (3)C22—H22A0.9800
C4—C51.384 (3)C22—H22B0.9800
C4—C91.519 (3)C22—H22C0.9800
C5—C61.392 (4)C23—H23A0.9800
C5—H5A0.9500C23—H23B0.9800
C6—C71.379 (4)C23—H23C0.9800
C6—H6A0.9500C24—C261.528 (4)
C7—C81.399 (4)C24—C251.534 (4)
C7—H7A0.9500C24—H24A1.0000
C8—C121.511 (4)C25—H25A0.9800
C9—C101.529 (4)C25—H25B0.9800
C9—C111.530 (4)C25—H25C0.9800
C9—H9A1.0000C26—H26A0.9800
C10—H10A0.9800C26—H26B0.9800
C10—H10B0.9800C26—H26C0.9800
C10—H10C0.9800Cl1—Cr12.3382 (7)
C11—H11A0.9800Cl2—Cr12.3029 (7)
C11—H11B0.9800Cr1—N21.9806 (19)
C11—H11C0.9800Cr1—N11.995 (2)
C12—C141.528 (4)Cr1—N32.099 (2)
C12—C131.530 (4)Cr1—N42.128 (2)
C12—H12A1.0000N3—C271.127 (3)
C13—H13A0.9800C27—C281.450 (4)
C13—H13B0.9800C28—H28A0.9800
C13—H13C0.9800C28—H28B0.9800
C14—H14A0.9800C28—H28C0.9800
C14—H14B0.9800N4—C291.128 (4)
C14—H14C0.9800C29—C301.465 (4)
C15—C201.406 (3)C30—H30A0.9800
C15—C161.417 (3)C30—H30B0.9800
C15—N21.441 (3)C30—H30C0.9800
N5—C31—C32179.4 (6)C18—C19—C20121.3 (3)
C31—C32—H32A109.5C18—C19—H19A119.3
C31—C32—H32B109.5C20—C19—H19A119.3
H32A—C32—H32B109.5C19—C20—C15118.0 (3)
C31—C32—H32C109.5C19—C20—C24120.6 (2)
H32A—C32—H32C109.5C15—C20—C24121.2 (2)
H32B—C32—H32C109.5C16—C21—C23112.0 (2)
N1—C1—C2116.0 (2)C16—C21—C22111.0 (2)
N1—C1—H1A122.0C23—C21—C22109.8 (2)
C2—C1—H1A122.0C16—C21—H21A108.0
N2—C2—C1116.5 (2)C23—C21—H21A108.0
N2—C2—H2A121.7C22—C21—H21A108.0
C1—C2—H2A121.8C21—C22—H22A109.5
C8—C3—C4121.2 (2)C21—C22—H22B109.5
C8—C3—N1120.4 (2)H22A—C22—H22B109.5
C4—C3—N1118.4 (2)C21—C22—H22C109.5
C5—C4—C3118.4 (2)H22A—C22—H22C109.5
C5—C4—C9119.9 (2)H22B—C22—H22C109.5
C3—C4—C9121.4 (2)C21—C23—H23A109.5
C4—C5—C6121.1 (2)C21—C23—H23B109.5
C4—C5—H5A119.4H23A—C23—H23B109.5
C6—C5—H5A119.4C21—C23—H23C109.5
C7—C6—C5119.9 (2)H23A—C23—H23C109.5
C7—C6—H6A120.0H23B—C23—H23C109.5
C5—C6—H6A120.0C20—C24—C26112.8 (3)
C6—C7—C8121.3 (2)C20—C24—C25110.0 (2)
C6—C7—H7A119.4C26—C24—C25110.2 (3)
C8—C7—H7A119.4C20—C24—H24A107.9
C7—C8—C3118.0 (2)C26—C24—H24A107.9
C7—C8—C12119.1 (2)C25—C24—H24A107.9
C3—C8—C12122.9 (2)C24—C25—H25A109.5
C4—C9—C10109.0 (2)C24—C25—H25B109.5
C4—C9—C11113.6 (2)H25A—C25—H25B109.5
C10—C9—C11111.4 (3)C24—C25—H25C109.5
C4—C9—H9A107.5H25A—C25—H25C109.5
C10—C9—H9A107.5H25B—C25—H25C109.5
C11—C9—H9A107.5C24—C26—H26A109.5
C9—C10—H10A109.5C24—C26—H26B109.5
C9—C10—H10B109.5H26A—C26—H26B109.5
H10A—C10—H10B109.5C24—C26—H26C109.5
C9—C10—H10C109.5H26A—C26—H26C109.5
H10A—C10—H10C109.5H26B—C26—H26C109.5
H10B—C10—H10C109.5N2—Cr1—N180.59 (8)
C9—C11—H11A109.5N2—Cr1—N3168.26 (8)
C9—C11—H11B109.5N1—Cr1—N387.72 (8)
H11A—C11—H11B109.5N2—Cr1—N4102.18 (8)
C9—C11—H11C109.5N1—Cr1—N4173.95 (8)
H11A—C11—H11C109.5N3—Cr1—N489.57 (9)
H11B—C11—H11C109.5N2—Cr1—Cl293.30 (6)
C8—C12—C14111.3 (2)N1—Cr1—Cl2101.24 (6)
C8—C12—C13111.2 (2)N3—Cr1—Cl287.90 (6)
C14—C12—C13110.5 (2)N4—Cr1—Cl284.06 (7)
C8—C12—H12A107.9N2—Cr1—Cl193.62 (6)
C14—C12—H12A107.9N1—Cr1—Cl192.03 (6)
C13—C12—H12A107.9N3—Cr1—Cl187.83 (6)
C12—C13—H13A109.5N4—Cr1—Cl182.46 (7)
C12—C13—H13B109.5Cl2—Cr1—Cl1165.88 (3)
H13A—C13—H13B109.5C1—N1—C3117.9 (2)
C12—C13—H13C109.5C1—N1—Cr1111.36 (15)
H13A—C13—H13C109.5C3—N1—Cr1130.52 (15)
H13B—C13—H13C109.5C2—N2—C15114.74 (19)
C12—C14—H14A109.5C2—N2—Cr1111.55 (15)
C12—C14—H14B109.5C15—N2—Cr1132.96 (15)
H14A—C14—H14B109.5C27—N3—Cr1163.3 (2)
C12—C14—H14C109.5N3—C27—C28178.6 (3)
H14A—C14—H14C109.5C27—C28—H28A109.5
H14B—C14—H14C109.5C27—C28—H28B109.5
C20—C15—C16121.2 (2)H28A—C28—H28B109.5
C20—C15—N2120.1 (2)C27—C28—H28C109.5
C16—C15—N2118.6 (2)H28A—C28—H28C109.5
C17—C16—C15117.8 (2)H28B—C28—H28C109.5
C17—C16—C21119.0 (2)C29—N4—Cr1168.1 (2)
C15—C16—C21123.2 (2)N4—C29—C30177.9 (3)
C18—C17—C16121.6 (3)C29—C30—H30A109.5
C18—C17—H17A119.2C29—C30—H30B109.5
C16—C17—H17A119.2H30A—C30—H30B109.5
C17—C18—C19120.1 (3)C29—C30—H30C109.5
C17—C18—H18A120.0H30A—C30—H30C109.5
C19—C18—H18A120.0H30B—C30—H30C109.5

Experimental details

Crystal data
Chemical formula[CrCl2(C2H3N)2(C26H36N2)]·C2H3N
Mr622.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)18.7305 (6), 13.2462 (5), 13.9582 (4)
β (°) 97.838 (2)
V3)3430.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.5 × 0.5 × 0.4
Data collection
DiffractometerStoe IPDSII
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.761, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
53468, 7489, 6233
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.20
No. of reflections7489
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.40

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationBart, S. C., Hawrelak, E. J., Schmisseur, A. K., Lobkovsky, E. & Chirik, P. J. (2004). Organometallics, 23, 237–246.  Web of Science CSD CrossRef CAS Google Scholar
First citationDieck, H. tom & Kinzel, A. (1979). Angew. Chem. 91, 344–345.  Google Scholar
First citationGhosh, M., Sproules, S., Weyhermüller, T. & Wieghardt, K. (2008). Inorg. Chem. 47, 5963–5970.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, R., Koning, C. E. & Chadwick, J. C. (2007). Macromolecules, 40, 3021–3029.  Web of Science CrossRef CAS Google Scholar
First citationKreisel, K. A., Yap, G. P. A., Dmitrenko, O., Landis, C. R. & Theopold, K. H. (2007). J. Am. Chem. Soc. 129, 14162–14163.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurki, T., Guerfel, T. & Bouachir, F. (2006). Inorg. Chem. Commun. 9, 1023–1025.  Web of Science CSD CrossRef CAS Google Scholar
First citationWöhl, A., Müller, W., Peulecke, N., Müller, B. H., Peitz, S., Heller, D. & Rosenthal, U. (2009). J. Mol. Cat. A, 297, 1–8.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds