organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2,6-Di­chloro­benzyl­­idene)indolin-2-one

aDepartment of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
*Correspondence e-mail: hzhang@smu.edu

(Received 13 October 2009; accepted 21 October 2009; online 28 October 2009)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H9Cl2NO. The dihedral angles between the oxindolyl and dichloro­phenyl rings are essentially identical for the two independent mol­ecules [63.4 (1) and 63.2 (1)°]. Dimers linked by amide–carbonyl N—H⋯O hydrogen bonds are formed from each symmetry-independent mol­ecule and the respective symmetry equivalent created by inversion.

Related literature

For the syntheses and structures of related compounds, see: Ankati et al. (2009[Ankati, H., Akubathini, S. K., Kamila, S., Mukherjee, C., D'Mello, S. R. & Biehl, E. R. (2009). The Open Org. Chem. J. 3, 1-10.]); Zhang et al. (2008[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.], 2009a[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009a). Acta Cryst. E65, o8.],b[Zhang, H., Akubathini, S. K., Ankati, H. & Biehl, E. (2009b). Acta Cryst. E65, o363.],c[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009c). Acta Cryst. E65, o2217.]). For the pharmacological properties of 3-(substituted-benzyl­idene)-1,3-dihydro-indolin derivatives, see: Andreani et al. (2006[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922-6924.]); Balderamos et al. (2008[Balderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. R. & D'Mello, S. R. (2008). Exp. Biol. Med. 233, 1395-1402.]); Johnson et al. (2005[Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538-548.]); Olgen et al. (2005[Olgen, S., Akaho, E. & Nebioglu, D. (2005). Farmaco, 60, 497-506.], 2007[Olgen, S., Gotz, C. & Jose, J. (2007). Biol. Pharm. Bull. 30, 715-718.]); Sun et al. (2003[Sun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116-1119.])

[Scheme 1]

Experimental

Crystal data
  • C15H9Cl2NO

  • Mr = 290.13

  • Triclinic, [P \overline 1]

  • a = 8.3908 (5) Å

  • b = 12.6079 (7) Å

  • c = 12.7635 (7) Å

  • α = 99.334 (1)°

  • β = 91.188 (1)°

  • γ = 96.338 (1)°

  • V = 1323.2 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.35 × 0.17 × 0.08 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.849, Tmax = 0.964

  • 16946 measured reflections

  • 6459 independent reflections

  • 4669 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.134

  • S = 1.03

  • 6459 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O22i 0.86 2.03 2.854 (2) 159
N1—H1⋯O2ii 0.86 1.99 2.837 (2) 171
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

3-(Substituted-benzylidene)-1,3-dihydro-indolin derivatives show a variety of pharmacologically important properties such as being protein and tyrosine kinase inhibitors (Olgen et al., 2005, 2007; Sun et al., 2003) as well as antitumor (Andreani et al., 2006) and neuroprotective agents (Johnson et al., 2005). We have designed, synthesized and crystallized several 3-substituted indolin-2-one derivatives to study their neuroprotective properties (Balderamos et al., 2008 and Ankati et al., 2009). In relation of structure-activity of 3-substituted indolin-2-ones, the title compound was synthesized and its crystal structure is reported here. It is similar to the structure of 5-bromo substituted (E)-5-bromo-3-(2,6-dichlorobenzylidene)indolin-2-one (Zhang et al. 2009c). The X-ray crystal structure shows the title compound to show an E configuration.

For studying the biological properties a series of 3-substituted indolin-2-one derivatives have been synthesized in our lab and their neuroprotective activities have been tested (Balderamos et al. 2008). As a part of our research on the relationship between the biological activities and solid structures a couple of crystal structures of the derivatives have been carried out (Zhang, et al., 2008, 2009a, 2009b, 2009c). The title compound consists of an oxindolyl and a dichlorophenyl unit (Fig 1). The dihedral angles between the two aromatic rings are basically identical for the two independent molecules and measure to 63.4°(1) and 63.2°(1), respectively. The crystal structure revealed that intermolecular H-bonds (Table 1), linking two symmetry related inverted molecules, form an eight membered dimeric ring system (Fig 2).

Related literature top

For the syntheses and structures of related compounds, see: Ankati et al. (2009); Zhang et al. (2008, 2009a,b,c). For the pharmacological properties of 3-(substituted-benzylidene)-1,3-dihydro-indolin derivatives, see: Andreani et al. (2006); Balderamos et al. (2008); Johnson et al. (2005); Olgen et al. (2005, 2007); Sun et al. (2003)

Experimental top

The title compound was synthesized by the condensation of 2,6-dichlorobenzaldehyde (1 mmol) with 2-oxindole (1 mmol) in ethanol (10 ml) in the presence of catalytic amount of piperidine (0.1 mmol) with a yield of 83%. After refluxing for 3 hr, the reaction mixture was left to stand overnight. The resulting crude solid was filtered, washed with cold ethanol (10 ml) and dried. Red single crystals of the compound suitable for X-ray structure determination obtained by recrystallization from ethanol.

Refinement top

All H atom were placed in calculated positions and included in the final cycles of refinement using a riding model, with distances N–H = 0.86 Å and C–H = 0.93 Å, and displacement parameters Uĩso(H) = 1.2Ueq(N,C).

Structure description top

3-(Substituted-benzylidene)-1,3-dihydro-indolin derivatives show a variety of pharmacologically important properties such as being protein and tyrosine kinase inhibitors (Olgen et al., 2005, 2007; Sun et al., 2003) as well as antitumor (Andreani et al., 2006) and neuroprotective agents (Johnson et al., 2005). We have designed, synthesized and crystallized several 3-substituted indolin-2-one derivatives to study their neuroprotective properties (Balderamos et al., 2008 and Ankati et al., 2009). In relation of structure-activity of 3-substituted indolin-2-ones, the title compound was synthesized and its crystal structure is reported here. It is similar to the structure of 5-bromo substituted (E)-5-bromo-3-(2,6-dichlorobenzylidene)indolin-2-one (Zhang et al. 2009c). The X-ray crystal structure shows the title compound to show an E configuration.

For studying the biological properties a series of 3-substituted indolin-2-one derivatives have been synthesized in our lab and their neuroprotective activities have been tested (Balderamos et al. 2008). As a part of our research on the relationship between the biological activities and solid structures a couple of crystal structures of the derivatives have been carried out (Zhang, et al., 2008, 2009a, 2009b, 2009c). The title compound consists of an oxindolyl and a dichlorophenyl unit (Fig 1). The dihedral angles between the two aromatic rings are basically identical for the two independent molecules and measure to 63.4°(1) and 63.2°(1), respectively. The crystal structure revealed that intermolecular H-bonds (Table 1), linking two symmetry related inverted molecules, form an eight membered dimeric ring system (Fig 2).

For the syntheses and structures of related compounds, see: Ankati et al. (2009); Zhang et al. (2008, 2009a,b,c). For the pharmacological properties of 3-(substituted-benzylidene)-1,3-dihydro-indolin derivatives, see: Andreani et al. (2006); Balderamos et al. (2008); Johnson et al. (2005); Olgen et al. (2005, 2007); Sun et al. (2003)

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. H atoms are presented as open circles with arbitrary radii. Atoms of another independent molecule were labeled as N21 H21 C22 O22 through C36 Cl36.
[Figure 2] Fig. 2. : A unit cell packing view of the title compound. Dashed lines indicate hydrogen bonds. For clarity, H atoms are presented as open circles with arbitrary radii.
(E)-3-(2,6-Dichlorobenzylidene)indolin-2-one top
Crystal data top
C15H9Cl2NOZ = 4
Mr = 290.13F(000) = 592
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3908 (5) ÅCell parameters from 6257 reflections
b = 12.6079 (7) Åθ = 2.8–27.9°
c = 12.7635 (7) ŵ = 0.48 mm1
α = 99.334 (1)°T = 296 K
β = 91.188 (1)°Plates, orange
γ = 96.338 (1)°0.35 × 0.17 × 0.08 mm
V = 1323.2 (1) Å3
Data collection top
Bruker APEX
diffractometer
6459 independent reflections
Radiation source: fine-focus sealed tube4669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 83.33 pixels mm-1θmax = 28.3°, θmin = 1.6°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.849, Tmax = 0.964l = 1616
16946 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2428P]
where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H9Cl2NOγ = 96.338 (1)°
Mr = 290.13V = 1323.2 (1) Å3
Triclinic, P1Z = 4
a = 8.3908 (5) ÅMo Kα radiation
b = 12.6079 (7) ŵ = 0.48 mm1
c = 12.7635 (7) ÅT = 296 K
α = 99.334 (1)°0.35 × 0.17 × 0.08 mm
β = 91.188 (1)°
Data collection top
Bruker APEX
diffractometer
6459 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4669 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.964Rint = 0.024
16946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
6459 reflectionsΔρmin = 0.23 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8867 (2)0.59180 (14)0.44745 (13)0.0561 (4)
H10.91440.58420.51080.067*
C20.9182 (3)0.52439 (18)0.35853 (16)0.0548 (5)
O20.9914 (2)0.44512 (13)0.35421 (12)0.0729 (5)
C30.8476 (2)0.56692 (16)0.26602 (15)0.0480 (5)
C40.6896 (3)0.73604 (17)0.27271 (17)0.0537 (5)
H40.66770.72850.20000.064*
C50.6374 (3)0.82040 (18)0.3414 (2)0.0609 (6)
H50.58000.86980.31460.073*
C60.6698 (3)0.83215 (18)0.44947 (19)0.0613 (6)
H60.63430.88980.49440.074*
C70.7538 (3)0.76009 (18)0.49217 (17)0.0575 (5)
H70.77600.76840.56490.069*
C80.8033 (2)0.67554 (16)0.42338 (16)0.0487 (5)
C90.7750 (2)0.66252 (16)0.31353 (15)0.0461 (4)
C100.8627 (3)0.51431 (17)0.16770 (16)0.0520 (5)
H100.91520.45260.16360.062*
C110.8090 (2)0.53923 (16)0.06520 (15)0.0478 (5)
C120.8584 (2)0.63401 (17)0.02580 (16)0.0511 (5)
Cl120.99044 (8)0.73448 (5)0.10073 (5)0.07059 (19)
C130.8105 (3)0.6502 (2)0.07446 (18)0.0665 (6)
H130.84410.71480.09790.080*
C140.7137 (3)0.5705 (3)0.13847 (19)0.0764 (8)
H140.68180.58100.20590.092*
C150.6628 (3)0.4751 (2)0.10437 (19)0.0747 (7)
H150.59650.42110.14820.090*
C160.7111 (3)0.46028 (18)0.00474 (17)0.0570 (5)
Cl160.64687 (9)0.33919 (5)0.03774 (6)0.0858 (2)
N210.6215 (2)0.38621 (13)0.51019 (13)0.0534 (4)
H210.61460.44470.55430.064*
C220.5593 (3)0.36652 (16)0.40938 (16)0.0513 (5)
O220.4820 (2)0.42554 (12)0.36706 (12)0.0687 (5)
C230.6022 (2)0.25727 (15)0.36049 (15)0.0461 (4)
C240.7577 (3)0.12452 (17)0.44962 (18)0.0558 (5)
H240.75470.07040.39040.067*
C250.8278 (3)0.1109 (2)0.5444 (2)0.0666 (6)
H250.87200.04730.54910.080*
C260.8328 (3)0.1911 (2)0.6324 (2)0.0684 (6)
H260.88080.18050.69570.082*
C270.7682 (3)0.28678 (19)0.62897 (17)0.0602 (6)
H270.77170.34050.68850.072*
C280.6985 (2)0.29923 (16)0.53382 (16)0.0491 (5)
C290.6920 (2)0.21915 (15)0.44319 (15)0.0461 (4)
C300.5491 (2)0.21366 (15)0.26238 (15)0.0481 (5)
H300.48700.25490.22760.058*
C310.5768 (2)0.10769 (15)0.20232 (14)0.0461 (4)
C320.4491 (3)0.02878 (16)0.16894 (16)0.0518 (5)
Cl320.25656 (7)0.05641 (5)0.20230 (6)0.0764 (2)
C330.4683 (3)0.07053 (18)0.10949 (18)0.0655 (6)
H330.38010.12180.08900.079*
C340.6194 (4)0.0920 (2)0.08132 (18)0.0710 (7)
H340.63370.15870.04150.085*
C350.7498 (3)0.0170 (2)0.11093 (19)0.0692 (7)
H350.85190.03220.09100.083*
C360.7281 (3)0.08203 (18)0.17090 (17)0.0562 (5)
Cl360.89345 (8)0.17731 (6)0.20621 (6)0.0860 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0754 (12)0.0573 (11)0.0375 (9)0.0106 (9)0.0024 (8)0.0117 (8)
C20.0685 (14)0.0529 (12)0.0444 (11)0.0080 (10)0.0019 (10)0.0122 (9)
O20.1095 (14)0.0638 (10)0.0513 (9)0.0352 (10)0.0080 (9)0.0110 (7)
C30.0548 (11)0.0485 (11)0.0418 (10)0.0073 (9)0.0001 (8)0.0099 (8)
C40.0568 (12)0.0541 (12)0.0520 (12)0.0080 (10)0.0024 (9)0.0128 (10)
C50.0615 (13)0.0540 (13)0.0704 (15)0.0139 (10)0.0091 (11)0.0136 (11)
C60.0663 (14)0.0517 (12)0.0647 (15)0.0066 (11)0.0176 (11)0.0042 (11)
C70.0677 (14)0.0572 (13)0.0451 (11)0.0011 (11)0.0086 (10)0.0043 (10)
C80.0525 (11)0.0490 (11)0.0443 (11)0.0009 (9)0.0015 (8)0.0116 (9)
C90.0490 (11)0.0462 (11)0.0434 (10)0.0035 (8)0.0030 (8)0.0095 (8)
C100.0614 (13)0.0488 (11)0.0481 (11)0.0164 (10)0.0007 (9)0.0084 (9)
C110.0518 (11)0.0534 (12)0.0386 (10)0.0184 (9)0.0017 (8)0.0004 (8)
C120.0529 (12)0.0584 (12)0.0437 (11)0.0180 (10)0.0048 (9)0.0053 (9)
Cl120.0724 (4)0.0672 (4)0.0680 (4)0.0048 (3)0.0039 (3)0.0073 (3)
C130.0767 (16)0.0827 (17)0.0482 (13)0.0330 (14)0.0112 (11)0.0175 (12)
C140.0839 (18)0.109 (2)0.0389 (12)0.0392 (17)0.0063 (11)0.0035 (13)
C150.0667 (15)0.097 (2)0.0513 (14)0.0177 (14)0.0086 (11)0.0180 (14)
C160.0572 (12)0.0594 (13)0.0507 (12)0.0134 (10)0.0053 (10)0.0062 (10)
Cl160.0954 (5)0.0576 (4)0.0953 (5)0.0016 (3)0.0205 (4)0.0090 (3)
N210.0712 (11)0.0381 (9)0.0460 (10)0.0049 (8)0.0040 (8)0.0062 (7)
C220.0656 (13)0.0391 (10)0.0470 (11)0.0052 (9)0.0022 (9)0.0009 (8)
O220.1060 (13)0.0475 (8)0.0536 (9)0.0290 (9)0.0097 (8)0.0010 (7)
C230.0558 (11)0.0354 (9)0.0457 (11)0.0053 (8)0.0030 (9)0.0020 (8)
C240.0636 (13)0.0454 (11)0.0568 (13)0.0091 (10)0.0043 (10)0.0029 (9)
C250.0698 (15)0.0580 (14)0.0739 (16)0.0116 (11)0.0136 (12)0.0158 (12)
C260.0715 (15)0.0714 (16)0.0608 (14)0.0008 (12)0.0205 (12)0.0145 (12)
C270.0659 (14)0.0593 (13)0.0485 (12)0.0037 (11)0.0092 (10)0.0024 (10)
C280.0502 (11)0.0421 (10)0.0509 (11)0.0026 (8)0.0017 (9)0.0019 (8)
C290.0488 (11)0.0423 (10)0.0454 (10)0.0008 (8)0.0010 (8)0.0046 (8)
C300.0578 (12)0.0420 (10)0.0450 (11)0.0141 (9)0.0004 (9)0.0038 (8)
C310.0609 (12)0.0435 (10)0.0346 (9)0.0146 (9)0.0012 (8)0.0030 (8)
C320.0658 (13)0.0482 (11)0.0414 (10)0.0149 (10)0.0065 (9)0.0028 (9)
Cl320.0616 (4)0.0763 (4)0.0860 (5)0.0078 (3)0.0018 (3)0.0020 (3)
C330.0947 (18)0.0446 (12)0.0544 (13)0.0137 (12)0.0129 (12)0.0020 (10)
C340.115 (2)0.0513 (13)0.0489 (13)0.0359 (15)0.0008 (13)0.0040 (10)
C350.0865 (18)0.0728 (16)0.0558 (13)0.0412 (14)0.0129 (12)0.0105 (12)
C360.0642 (13)0.0562 (12)0.0503 (12)0.0174 (10)0.0042 (10)0.0082 (10)
Cl360.0609 (4)0.0907 (5)0.1046 (6)0.0068 (3)0.0163 (4)0.0106 (4)
Geometric parameters (Å, º) top
N1—C21.353 (3)N21—C221.353 (3)
N1—C81.399 (3)N21—C281.403 (3)
N1—H10.8600N21—H210.8600
C2—O21.224 (2)C22—O221.220 (3)
C2—C31.510 (3)C22—C231.502 (3)
C3—C101.336 (3)C23—C301.330 (3)
C3—C91.460 (3)C23—C291.457 (3)
C4—C51.381 (3)C24—C251.378 (3)
C4—C91.390 (3)C24—C291.382 (3)
C4—H40.9300C24—H240.9300
C5—C61.381 (3)C25—C261.381 (3)
C5—H50.9300C25—H250.9300
C6—C71.380 (3)C26—C271.383 (3)
C6—H60.9300C26—H260.9300
C7—C81.375 (3)C27—C281.376 (3)
C7—H70.9300C27—H270.9300
C8—C91.397 (3)C28—C291.402 (3)
C10—C111.468 (3)C30—C311.473 (3)
C10—H100.9300C30—H300.9300
C11—C121.395 (3)C31—C321.389 (3)
C11—C161.401 (3)C31—C361.395 (3)
C12—C131.386 (3)C32—C331.382 (3)
C12—Cl121.732 (2)C32—Cl321.737 (2)
C13—C141.365 (4)C33—C341.369 (4)
C13—H130.9300C33—H330.9300
C14—C151.372 (4)C34—C351.369 (4)
C14—H140.9300C34—H340.9300
C15—C161.374 (3)C35—C361.387 (3)
C15—H150.9300C35—H350.9300
C16—Cl161.736 (3)C36—Cl361.733 (2)
C2—N1—C8111.47 (17)C22—N21—C28111.48 (16)
C2—N1—H1124.3C22—N21—H21124.3
C8—N1—H1124.3C28—N21—H21124.3
O2—C2—N1126.48 (19)O22—C22—N21126.61 (19)
O2—C2—C3126.87 (19)O22—C22—C23126.87 (19)
N1—C2—C3106.64 (18)N21—C22—C23106.52 (18)
C10—C3—C9136.10 (19)C30—C23—C29133.96 (18)
C10—C3—C2118.73 (18)C30—C23—C22120.05 (18)
C9—C3—C2105.17 (17)C29—C23—C22105.84 (16)
C5—C4—C9119.3 (2)C25—C24—C29119.5 (2)
C5—C4—H4120.4C25—C24—H24120.2
C9—C4—H4120.4C29—C24—H24120.2
C4—C5—C6120.6 (2)C24—C25—C26120.4 (2)
C4—C5—H5119.7C24—C25—H25119.8
C6—C5—H5119.7C26—C25—H25119.8
C7—C6—C5121.3 (2)C25—C26—C27121.7 (2)
C7—C6—H6119.3C25—C26—H26119.2
C5—C6—H6119.3C27—C26—H26119.2
C8—C7—C6117.7 (2)C28—C27—C26117.3 (2)
C8—C7—H7121.2C28—C27—H27121.4
C6—C7—H7121.2C26—C27—H27121.4
C7—C8—C9122.4 (2)C27—C28—C29122.23 (19)
C7—C8—N1128.23 (19)C27—C28—N21128.52 (19)
C9—C8—N1109.37 (17)C29—C28—N21109.23 (17)
C4—C9—C8118.71 (19)C24—C29—C28118.90 (18)
C4—C9—C3133.96 (19)C24—C29—C23134.09 (18)
C8—C9—C3107.33 (17)C28—C29—C23106.90 (17)
C3—C10—C11129.73 (19)C23—C30—C31127.71 (18)
C3—C10—H10115.1C23—C30—H30116.1
C11—C10—H10115.1C31—C30—H30116.1
C12—C11—C16115.33 (19)C32—C31—C36116.07 (18)
C12—C11—C10125.09 (19)C32—C31—C30120.65 (18)
C16—C11—C10119.4 (2)C36—C31—C30123.21 (19)
C13—C12—C11122.4 (2)C33—C32—C31122.9 (2)
C13—C12—Cl12117.53 (19)C33—C32—Cl32118.52 (19)
C11—C12—Cl12120.03 (16)C31—C32—Cl32118.61 (15)
C14—C13—C12119.5 (2)C34—C33—C32118.8 (2)
C14—C13—H13120.3C34—C33—H33120.6
C12—C13—H13120.3C32—C33—H33120.6
C13—C14—C15120.7 (2)C33—C34—C35121.0 (2)
C13—C14—H14119.7C33—C34—H34119.5
C15—C14—H14119.7C35—C34—H34119.5
C14—C15—C16119.2 (2)C34—C35—C36119.3 (2)
C14—C15—H15120.4C34—C35—H35120.3
C16—C15—H15120.4C36—C35—H35120.3
C15—C16—C11122.9 (2)C35—C36—C31122.0 (2)
C15—C16—Cl16118.9 (2)C35—C36—Cl36118.96 (19)
C11—C16—Cl16118.12 (17)C31—C36—Cl36119.08 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O22i0.862.032.854 (2)159
N1—H1···O2ii0.861.992.837 (2)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H9Cl2NO
Mr290.13
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3908 (5), 12.6079 (7), 12.7635 (7)
α, β, γ (°)99.334 (1), 91.188 (1), 96.338 (1)
V3)1323.2 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.35 × 0.17 × 0.08
Data collection
DiffractometerBruker APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.849, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
16946, 6459, 4669
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.03
No. of reflections6459
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O22i0.862.032.854 (2)159.2
N1—H1···O2ii0.861.992.837 (2)170.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors are grateful for the grants from the Welch Foundation (N-118) and the DARPA (HR0011–06–1–0032).

References

First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922–6924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAnkati, H., Akubathini, S. K., Kamila, S., Mukherjee, C., D'Mello, S. R. & Biehl, E. R. (2009). The Open Org. Chem. J. 3, 1–10.  CrossRef CAS Google Scholar
First citationBalderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. R. & D'Mello, S. R. (2008). Exp. Biol. Med. 233, 1395–1402.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlgen, S., Akaho, E. & Nebioglu, D. (2005). Farmaco, 60, 497–506.  CrossRef PubMed CAS Google Scholar
First citationOlgen, S., Gotz, C. & Jose, J. (2007). Biol. Pharm. Bull. 30, 715–718.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116–1119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, H., Akubathini, S. K., Ankati, H. & Biehl, E. (2009b). Acta Cryst. E65, o363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009a). Acta Cryst. E65, o8.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009c). Acta Cryst. E65, o2217.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds