metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-benzoato-κ8O:O′-bis­­[(benzoic acid-κO)nickel(II)]

aKey Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: djhycu_2006@yahoo.com.cn, yc_mgq@ycu.jx.cn

(Received 17 October 2009; accepted 27 October 2009; online 31 October 2009)

The title compound, [Ni2(C7H5O2)4(C7H6O2)2], is composed of two NiII ions, four bridging benzoate anions and two η1-benzoic acid mol­ecules. The [Ni2(PhCOO)4] unit adopts a typical paddle-wheel conformation. The center between the two NiII atoms represents a crystallographic center of inversion. In addition, each NiII ion also coordinates to one O atom from a benzoic acid mol­ecule. The crystal packing is realised by inter­molecular hydrogen-bonding inter­actions and ππ stacking inter­actions, with a centroid–centroid distance of 3.921 (1) Å.

Related literature

For related benzoate complexes, see: Cotton et al. (2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms. New York: Springer Science and Business Media Inc.], 1987[Cotton, F.-A., Matusz, M. & Poli, R. (1987). Inorg. Chem. 26, 1472-1474.], 1988[Cotton, F.-A., Matusz, M., Poli, R. & Feng, X. (1988). J. Am. Chem. Soc. 110, 1144-1154.]); Bellitto et al. (1985[Bellitto, C., Dessy, G. & Fares, V. (1985). Inorg. Chem. 24, 2815-2820.]); Figuerola et al. (2007[Figuerola, A., Tangoulis, V., Ribas, J., Hartl, H., Brudgam, I., Maestro, M. & Diaz, C. (2007). Inorg. Chem. 46, 11017-11024.]); Gavrilenko et al. (2008[Gavrilenko, K.-S., Cador, O., Bernot, K., Rosa, P., Sessoli, R., Golhen, S., Pavlishchuk, V.-V. & Ouahab, L. (2008). Chem. Eur. J. 14, 2034-2043.]); Shi et al. (2004[Shi, X., Zhu, G.-S., Fang, Q.-R., Wu, G., Tian, G., Wang, R.-W., Zhang, D.-L., Xue, M. & Qiu, S.-L. (2004). Eur. J. Inorg. Chem. pp. 185-191.]); Zheng et al. (2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]); Zhong et al. (2007[Zhong, D.-C., Guo, G.-Q., Deng, J.-H., Zhu, R.-H. & Zhou, Y.-B. (2007). Acta Cryst. E63, m3091-m3092.], 2008[Zhong, D.-C., Guo, G.-Q., Zuo, X.-H., Deng, J.-H., Yuan, L. & Zhu, R.-H. (2008). Acta Cryst. E64, m88-m89.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C7H5O2)4(C7H6O2)2]

  • Mr = 846.10

  • Monoclinic, P 21 /n

  • a = 10.7685 (8) Å

  • b = 11.7173 (7) Å

  • c = 15.258 (1) Å

  • β = 91.354 (3)°

  • V = 1924.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 273 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.759, Tmax = 0.819

  • 17534 measured reflections

  • 4639 independent reflections

  • 3789 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.055

  • S = 0.99

  • 4639 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O3i 0.82 1.81 2.626 (2) 170
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoic acid is the most simple aromatic carboxyl compound with well-known antibacterial activity. Over the past years, many metal complexes based on benzoic acid or benzoate ligands have been synthesized and characterized (Figuerola et al., 2007; Gavrilenko et al., 2008; Shi et al., 2004; Zheng et al., 2004). We also reported the Co(II) and Cd(II) complexes with benzoate and 2-aminopyridine ligands (Zhong et al., 2007; Zhong et al., 2008). As a continuation of this work, we herein report the synthesis and crystal structure of a nickel (II) complex exhibiting benzoate as well as benzoic acid ligands.

The title compound (I) is a typical paddle-wheel complex that have previously been observed (Bellitto et al., 1985; Cotton et al., 1987; Cotton et al., 1988). Two NiII ions are bridged by four benzoate anions ligand using a µ-COO- coordination mode. Each NiII also coordinates to one oxygen atom from one benzoic acid molecule in the axial position (Fig. 1). The center between the two nickel atoms represents a crystallographic center of inversion. The Ni—O bond lengths, ranging from 1.945 (1) Å to 2.193 (1) Å, are in the normal value range.The almost equivalent bond distances of O1—C8 and O2—C8 (1.260 (2) Å and 1.258 (2) Å) in one benzoate ligand and O3—C1 and O4—C1 (1.270 (2) Å and 1.255 (2) Å) in the other reflect the expected delocalization in the carboxylate unit. On the other hand bond distances of O5—C15 and O6—C15 (1.213 (2) Å and 1.317 (2) Å) in the axial benzoic acid ligands prove that it is not deprotonated and accordingly there is one single and one double bond. Albeit the short Ni···Ni distance of 2.6062 (4) Å there is no bonding interaction between both metal centers due to the d8 electron configuration of Ni2+ leading to an overall bond order of zero (Cotton et al., 2005)

The carboxyl group of the benzoic acid ligand (O6) acts as an intramolecular hydrogen bond donor site towards another oxygen atom of one of the bridging benzoate anions (O3). In addition, intermolecular contacts in terms of ππ stacking interactions with centroid centroid distances of 3.921 (1) Å are observed between the phenyl groups.

Related literature top

For related benzoate complexes, see: Cotton et al. (2005, 1987, 1988); Bellitto et al. (1985); Figuerola et al. (2007); Gavrilenko et al. (2008); Shi et al. (2004); Zheng et al. (2004); Zhong et al. (2007, 2008).

Experimental top

All reagents are commercially available and were used without further purification. A mixture of Ni(NO3)2 × 4 H2O (0.5 mmol), sodium benzoate (1 mmol) and 2,2'-bipyridine (0.5 mmol) was dissolved in 10 ml water/methanol (1/1). After stirring for 30 min, the mixture was placed in a 20 ml Teflon-lined reactor and heated to 110 °C in an oven for 7 days. The resulting solution was filtered and the filtrate was allowed to stay at room temperature. Well shaped blue crystals suitable for X-rays diffraction were obtained after one week. Yield: 65.8% based on sodium benzoate.

Refinement top

All H atoms were placed geometrically and were refined using a riding model with C—H and O—H distances of 0.93 Å and 0.82 Å and Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Structure description top

Benzoic acid is the most simple aromatic carboxyl compound with well-known antibacterial activity. Over the past years, many metal complexes based on benzoic acid or benzoate ligands have been synthesized and characterized (Figuerola et al., 2007; Gavrilenko et al., 2008; Shi et al., 2004; Zheng et al., 2004). We also reported the Co(II) and Cd(II) complexes with benzoate and 2-aminopyridine ligands (Zhong et al., 2007; Zhong et al., 2008). As a continuation of this work, we herein report the synthesis and crystal structure of a nickel (II) complex exhibiting benzoate as well as benzoic acid ligands.

The title compound (I) is a typical paddle-wheel complex that have previously been observed (Bellitto et al., 1985; Cotton et al., 1987; Cotton et al., 1988). Two NiII ions are bridged by four benzoate anions ligand using a µ-COO- coordination mode. Each NiII also coordinates to one oxygen atom from one benzoic acid molecule in the axial position (Fig. 1). The center between the two nickel atoms represents a crystallographic center of inversion. The Ni—O bond lengths, ranging from 1.945 (1) Å to 2.193 (1) Å, are in the normal value range.The almost equivalent bond distances of O1—C8 and O2—C8 (1.260 (2) Å and 1.258 (2) Å) in one benzoate ligand and O3—C1 and O4—C1 (1.270 (2) Å and 1.255 (2) Å) in the other reflect the expected delocalization in the carboxylate unit. On the other hand bond distances of O5—C15 and O6—C15 (1.213 (2) Å and 1.317 (2) Å) in the axial benzoic acid ligands prove that it is not deprotonated and accordingly there is one single and one double bond. Albeit the short Ni···Ni distance of 2.6062 (4) Å there is no bonding interaction between both metal centers due to the d8 electron configuration of Ni2+ leading to an overall bond order of zero (Cotton et al., 2005)

The carboxyl group of the benzoic acid ligand (O6) acts as an intramolecular hydrogen bond donor site towards another oxygen atom of one of the bridging benzoate anions (O3). In addition, intermolecular contacts in terms of ππ stacking interactions with centroid centroid distances of 3.921 (1) Å are observed between the phenyl groups.

For related benzoate complexes, see: Cotton et al. (2005, 1987, 1988); Bellitto et al. (1985); Figuerola et al. (2007); Gavrilenko et al. (2008); Shi et al. (2004); Zheng et al. (2004); Zhong et al. (2007, 2008).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-labeling scheme. [Symmetry code: (i) -x+1, -y, -z+2.]
Tetra-µ-benzoato-κ8O:O'-bis[(benzoic acid-κO)nickel(II)] top
Crystal data top
[Ni2(C7H5O2)4(C7H6O2)2]F(000) = 872
Mr = 846.10Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7941 reflections
a = 10.7685 (8) Åθ = 2.3–28.0°
b = 11.7173 (7) ŵ = 1.04 mm1
c = 15.258 (1) ÅT = 273 K
β = 91.354 (3)°Block, blue
V = 1924.7 (2) Å30.28 × 0.26 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4639 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 28.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1412
Tmin = 0.759, Tmax = 0.819k = 1514
17534 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + 1.1987P]
where P = (Fo2 + 2Fc2)/3
4639 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni2(C7H5O2)4(C7H6O2)2]V = 1924.7 (2) Å3
Mr = 846.10Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.7685 (8) ŵ = 1.04 mm1
b = 11.7173 (7) ÅT = 273 K
c = 15.258 (1) Å0.28 × 0.26 × 0.20 mm
β = 91.354 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3789 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.819Rint = 0.022
17534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.99Δρmax = 0.22 e Å3
4639 reflectionsΔρmin = 0.29 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.517820 (18)0.106516 (17)0.979210 (13)0.03259 (6)
O10.42315 (11)0.11994 (11)0.89928 (7)0.0471 (3)
O20.45485 (12)0.06289 (11)0.86345 (8)0.0499 (3)
O30.31459 (11)0.05001 (10)1.05426 (8)0.0473 (3)
O40.34725 (11)0.13053 (10)1.01561 (8)0.0483 (3)
O50.56860 (12)0.28015 (11)0.94023 (9)0.0528 (3)
O60.75910 (14)0.25119 (13)0.89184 (13)0.0800 (5)
H60.74510.18580.90800.120*
C10.27981 (15)0.05301 (15)1.04542 (10)0.0397 (4)
C20.15133 (15)0.08413 (16)1.07061 (11)0.0428 (4)
C30.07758 (19)0.0110 (2)1.11745 (14)0.0656 (6)
H30.10800.05981.13530.079*
C40.0418 (2)0.0433 (2)1.13776 (17)0.0817 (7)
H40.09100.00531.17040.098*
C50.0880 (2)0.1463 (2)1.11020 (17)0.0768 (7)
H50.16900.16671.12300.092*
C60.0157 (2)0.2189 (2)1.06420 (18)0.0779 (7)
H6A0.04720.28891.04560.093*
C70.10426 (18)0.18862 (18)1.04522 (15)0.0623 (6)
H70.15400.23931.01490.075*
C80.41868 (15)0.03704 (15)0.84671 (11)0.0402 (4)
C90.36303 (15)0.05843 (16)0.75772 (11)0.0429 (4)
C100.34030 (19)0.03208 (18)0.70105 (12)0.0567 (5)
H100.36400.10560.71700.068*
C110.2822 (2)0.0125 (2)0.62069 (14)0.0708 (6)
H110.26700.07310.58260.085*
C120.2468 (2)0.0961 (2)0.59682 (14)0.0715 (6)
H120.20770.10870.54270.086*
C130.2689 (2)0.1858 (2)0.65259 (14)0.0710 (6)
H130.24420.25910.63650.085*
C140.32799 (19)0.16738 (18)0.73287 (12)0.0564 (5)
H140.34420.22860.77020.068*
C150.66085 (18)0.31531 (16)0.90494 (12)0.0464 (4)
C160.67474 (18)0.43389 (16)0.87387 (12)0.0470 (4)
C170.5774 (2)0.50892 (17)0.88474 (13)0.0563 (5)
H170.50480.48420.91050.068*
C180.5882 (2)0.62111 (19)0.85726 (14)0.0684 (6)
H180.52310.67200.86510.082*
C190.6951 (3)0.6569 (2)0.81847 (15)0.0758 (7)
H190.70210.73230.80000.091*
C200.7914 (3)0.5829 (2)0.80675 (17)0.0809 (7)
H200.86310.60770.77980.097*
C210.7825 (2)0.47092 (19)0.83488 (15)0.0670 (6)
H210.84840.42080.82770.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03193 (10)0.03109 (10)0.03470 (10)0.00072 (9)0.00051 (7)0.00127 (9)
O10.0553 (7)0.0457 (7)0.0400 (6)0.0009 (6)0.0056 (5)0.0001 (6)
O20.0593 (8)0.0479 (7)0.0420 (7)0.0071 (6)0.0089 (6)0.0007 (6)
O30.0406 (7)0.0409 (7)0.0607 (8)0.0068 (6)0.0076 (6)0.0041 (6)
O40.0381 (6)0.0430 (7)0.0640 (8)0.0051 (6)0.0062 (6)0.0046 (6)
O50.0531 (8)0.0408 (7)0.0648 (8)0.0010 (6)0.0111 (6)0.0076 (6)
O60.0642 (10)0.0483 (9)0.1289 (15)0.0090 (8)0.0353 (9)0.0193 (9)
C10.0377 (9)0.0440 (10)0.0373 (9)0.0044 (8)0.0017 (7)0.0025 (7)
C20.0347 (9)0.0493 (11)0.0443 (9)0.0041 (8)0.0010 (7)0.0063 (8)
C30.0504 (12)0.0710 (15)0.0759 (15)0.0086 (11)0.0157 (10)0.0131 (12)
C40.0524 (14)0.094 (2)0.1000 (19)0.0019 (13)0.0287 (13)0.0100 (16)
C50.0427 (12)0.0887 (19)0.0995 (19)0.0124 (12)0.0143 (12)0.0141 (15)
C60.0511 (13)0.0690 (16)0.114 (2)0.0214 (12)0.0130 (13)0.0013 (14)
C70.0466 (11)0.0550 (13)0.0860 (15)0.0113 (10)0.0142 (10)0.0041 (11)
C80.0348 (9)0.0466 (10)0.0393 (9)0.0026 (8)0.0013 (7)0.0023 (8)
C90.0380 (9)0.0526 (11)0.0381 (9)0.0003 (8)0.0004 (7)0.0031 (8)
C100.0632 (13)0.0571 (13)0.0493 (11)0.0062 (10)0.0107 (9)0.0030 (9)
C110.0832 (16)0.0773 (16)0.0508 (12)0.0016 (13)0.0206 (11)0.0083 (11)
C120.0783 (16)0.0869 (18)0.0483 (12)0.0023 (14)0.0214 (11)0.0103 (12)
C130.0864 (17)0.0681 (15)0.0578 (13)0.0087 (13)0.0151 (12)0.0166 (11)
C140.0677 (13)0.0549 (12)0.0463 (10)0.0010 (10)0.0069 (9)0.0046 (9)
C150.0518 (11)0.0414 (10)0.0460 (10)0.0004 (9)0.0013 (8)0.0009 (8)
C160.0575 (11)0.0395 (10)0.0441 (10)0.0042 (9)0.0002 (8)0.0006 (8)
C170.0650 (13)0.0499 (12)0.0539 (12)0.0032 (10)0.0006 (10)0.0029 (9)
C180.0915 (17)0.0472 (13)0.0662 (14)0.0111 (12)0.0076 (12)0.0016 (10)
C190.112 (2)0.0447 (13)0.0706 (15)0.0124 (14)0.0019 (14)0.0078 (11)
C200.0904 (19)0.0598 (16)0.0932 (18)0.0205 (14)0.0171 (15)0.0114 (13)
C210.0697 (15)0.0512 (13)0.0808 (15)0.0051 (11)0.0141 (12)0.0040 (11)
Geometric parameters (Å, º) top
Ni1—O21.9452 (12)C7—H70.9300
Ni1—O41.9519 (12)C8—C91.492 (2)
Ni1—O1i1.9520 (11)C9—C141.382 (3)
Ni1—O3i1.9999 (12)C9—C101.386 (3)
Ni1—O52.1926 (13)C10—C111.382 (3)
Ni1—Ni1i2.6062 (4)C10—H100.9300
O1—C81.260 (2)C11—C121.375 (3)
O1—Ni1i1.9520 (11)C11—H110.9300
O2—C81.258 (2)C12—C131.370 (3)
O3—C11.270 (2)C12—H120.9300
O3—Ni1i1.9999 (12)C13—C141.384 (3)
O4—C11.255 (2)C13—H130.9300
O5—C151.213 (2)C14—H140.9300
O6—C151.317 (2)C15—C161.477 (3)
O6—H60.8200C16—C171.381 (3)
C1—C21.490 (2)C16—C211.386 (3)
C2—C31.379 (3)C17—C181.385 (3)
C2—C71.377 (3)C17—H170.9300
C3—C41.382 (3)C18—C191.373 (3)
C3—H30.9300C18—H180.9300
C4—C51.368 (3)C19—C201.367 (3)
C4—H40.9300C19—H190.9300
C5—C61.359 (3)C20—C211.384 (3)
C5—H50.9300C20—H200.9300
C6—C71.377 (3)C21—H210.9300
C6—H6A0.9300
O2—Ni1—O489.20 (5)O2—C8—O1125.54 (16)
O2—Ni1—O1i169.19 (5)O2—C8—C9117.17 (16)
O4—Ni1—O1i90.32 (5)O1—C8—C9117.27 (16)
O2—Ni1—O3i88.77 (5)C14—C9—C10119.50 (17)
O4—Ni1—O3i168.91 (5)C14—C9—C8120.40 (17)
O1i—Ni1—O3i89.64 (5)C10—C9—C8120.01 (17)
O2—Ni1—O594.67 (5)C11—C10—C9119.7 (2)
O4—Ni1—O5100.71 (5)C11—C10—H10120.1
O1i—Ni1—O596.03 (5)C9—C10—H10120.1
O3i—Ni1—O590.32 (5)C12—C11—C10120.4 (2)
O2—Ni1—Ni1i85.36 (4)C12—C11—H11119.8
O4—Ni1—Ni1i85.63 (4)C10—C11—H11119.8
O1i—Ni1—Ni1i83.83 (4)C13—C12—C11120.16 (19)
O3i—Ni1—Ni1i83.34 (4)C13—C12—H12119.9
O5—Ni1—Ni1i173.66 (4)C11—C12—H12119.9
C8—O1—Ni1i123.31 (11)C12—C13—C14120.0 (2)
C8—O2—Ni1121.90 (11)C12—C13—H13120.0
C1—O3—Ni1i123.58 (11)C14—C13—H13120.0
C1—O4—Ni1123.73 (11)C13—C14—C9120.3 (2)
C15—O5—Ni1130.36 (12)C13—C14—H14119.9
C15—O6—H6109.5C9—C14—H14119.9
O4—C1—O3123.69 (15)O5—C15—O6122.89 (17)
O4—C1—C2117.72 (15)O5—C15—C16123.51 (18)
O3—C1—C2118.58 (16)O6—C15—C16113.59 (17)
C3—C2—C7119.05 (17)C17—C16—C21119.83 (19)
C3—C2—C1122.08 (17)C17—C16—C15118.53 (18)
C7—C2—C1118.87 (17)C21—C16—C15121.64 (18)
C2—C3—C4119.7 (2)C16—C17—C18119.9 (2)
C2—C3—H3120.1C16—C17—H17120.0
C4—C3—H3120.1C18—C17—H17120.0
C5—C4—C3120.4 (2)C19—C18—C17119.8 (2)
C5—C4—H4119.8C19—C18—H18120.1
C3—C4—H4119.8C17—C18—H18120.1
C6—C5—C4120.1 (2)C18—C19—C20120.6 (2)
C6—C5—H5119.9C18—C19—H19119.7
C4—C5—H5119.9C20—C19—H19119.7
C5—C6—C7119.9 (2)C19—C20—C21120.2 (2)
C5—C6—H6A120.0C19—C20—H20119.9
C7—C6—H6A120.0C21—C20—H20119.9
C6—C7—C2120.7 (2)C20—C21—C16119.7 (2)
C6—C7—H7119.6C20—C21—H21120.2
C2—C7—H7119.6C16—C21—H21120.2
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.821.812.626 (2)170
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni2(C7H5O2)4(C7H6O2)2]
Mr846.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.7685 (8), 11.7173 (7), 15.258 (1)
β (°) 91.354 (3)
V3)1924.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.759, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
17534, 4639, 3789
Rint0.022
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.055, 0.99
No. of reflections4639
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.821.812.626 (2)169.6
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors thank the Youth Foundation of Jiangxi Provincial Office of Education (GJJ09605, GJJ09355) and the Natural Science Foundation of Jiangxi Province (2008GZH0063) for financial support.

References

First citationBellitto, C., Dessy, G. & Fares, V. (1985). Inorg. Chem. 24, 2815–2820.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F.-A., Matusz, M. & Poli, R. (1987). Inorg. Chem. 26, 1472–1474.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F.-A., Matusz, M., Poli, R. & Feng, X. (1988). J. Am. Chem. Soc. 110, 1144–1154.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms. New York: Springer Science and Business Media Inc.  Google Scholar
First citationFiguerola, A., Tangoulis, V., Ribas, J., Hartl, H., Brudgam, I., Maestro, M. & Diaz, C. (2007). Inorg. Chem. 46, 11017–11024.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGavrilenko, K.-S., Cador, O., Bernot, K., Rosa, P., Sessoli, R., Golhen, S., Pavlishchuk, V.-V. & Ouahab, L. (2008). Chem. Eur. J. 14, 2034–2043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Zhu, G.-S., Fang, Q.-R., Wu, G., Tian, G., Wang, R.-W., Zhang, D.-L., Xue, M. & Qiu, S.-L. (2004). Eur. J. Inorg. Chem. pp. 185–191.  Web of Science CSD CrossRef Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhong, D.-C., Guo, G.-Q., Deng, J.-H., Zhu, R.-H. & Zhou, Y.-B. (2007). Acta Cryst. E63, m3091–m3092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, D.-C., Guo, G.-Q., Zuo, X.-H., Deng, J.-H., Yuan, L. & Zhu, R.-H. (2008). Acta Cryst. E64, m88–m89.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds