organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 3-(3-bromo­phen­yl)-2-cyano­acrylate

aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solid, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: yeyin307@yahoo.com.cn

(Received 16 September 2009; accepted 29 September 2009; online 3 October 2009)

The title mol­ecule, C12H10BrNO2, adopts an E configuration with respect to the C=C bond of the acrylate unit. In the crystal structure, mol­ecules are connected by a pair of inter­molecular C—H⋯O hydrogen bonds, forming a centrosymmetric dimer.

Related literature

For the synthesis, see: Lapworth & Baker (1927[Lapworth, A. & Baker, W. (1927). Org. Synth. 7, 20-21.]). For the title compound as an inter­mediate in drug synthesis, see: Obniska et al. (2005[Obniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170-175.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrNO2

  • Mr = 280.12

  • Monoclinic, P 21 /c

  • a = 7.6147 (7) Å

  • b = 21.6015 (19) Å

  • c = 7.6044 (7) Å

  • β = 110.370 (1)°

  • V = 1172.62 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 298 K

  • 0.17 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.597, Tmax = 0.751

  • 10143 measured reflections

  • 2698 independent reflections

  • 1730 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.00

  • 2698 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.47 3.323 (3) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in drugs synthesis (Obniska et al., 2005). In this paper, we report the structure of the title compound (I). In (I), the molecule adopts an E configuration. Both the C7C8 and the cyano (C12N1) groups deviate from the mean plane of the benzene C1–C6 ring. The crystal packing is stabilized by intermolecular non-classic C—H···O hydrogen bonds.

Related literature top

For the synthesis, see: Lapworth & Baker (1927). For the title compound as an intermediate in drug synthesis, see: Obniska et al. (2005).

Experimental top

The compound (I) was obtained by reaction of 3-bromobenzaldehyde (36.8 g, 0.2 mol) and ethyl 2-cyanoacetate (22.6 g, 0.2 mol) in the absolute ethanol (180 ml) containing 3.2 ml triethylamine according to the reported method (Lapworth et al., 1927). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms bonded to C atoms were introduced at calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound is an important intermediate in drugs synthesis (Obniska et al., 2005). In this paper, we report the structure of the title compound (I). In (I), the molecule adopts an E configuration. Both the C7C8 and the cyano (C12N1) groups deviate from the mean plane of the benzene C1–C6 ring. The crystal packing is stabilized by intermolecular non-classic C—H···O hydrogen bonds.

For the synthesis, see: Lapworth & Baker (1927). For the title compound as an intermediate in drug synthesis, see: Obniska et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the c axis. Dotted lines show the C—H···O hydrogen bonds.
(E)-Ethyl 3-(3-bromophenyl)-2-cyanoacrylate top
Crystal data top
C12H10BrNO2F(000) = 560
Mr = 280.12Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2803 reflections
a = 7.6147 (7) Åθ = 2.9–25.8°
b = 21.6015 (19) ŵ = 3.49 mm1
c = 7.6044 (7) ÅT = 298 K
β = 110.370 (1)°Block, colorless
V = 1172.62 (18) Å30.17 × 0.14 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2698 independent reflections
Radiation source: fine-focus sealed tube1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.597, Tmax = 0.751k = 2828
10143 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.2149P]
where P = (Fo2 + 2Fc2)/3
2698 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C12H10BrNO2V = 1172.62 (18) Å3
Mr = 280.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6147 (7) ŵ = 3.49 mm1
b = 21.6015 (19) ÅT = 298 K
c = 7.6044 (7) Å0.17 × 0.14 × 0.09 mm
β = 110.370 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1730 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.751Rint = 0.038
10143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2698 reflectionsΔρmin = 0.33 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.32627 (4)0.459872 (14)0.80815 (5)0.06743 (14)
C51.1401 (4)0.40161 (12)0.6781 (4)0.0491 (7)
C60.9564 (4)0.42010 (12)0.6053 (4)0.0464 (6)
H60.92400.46080.61930.056*
C70.6257 (4)0.39971 (12)0.4366 (4)0.0481 (6)
H70.60600.43730.48620.058*
C10.8179 (3)0.37725 (11)0.5098 (4)0.0460 (6)
N10.4728 (3)0.27353 (12)0.1299 (4)0.0694 (7)
C80.4721 (3)0.37490 (11)0.3089 (3)0.0438 (6)
C41.1939 (4)0.34169 (14)0.6612 (4)0.0626 (8)
H41.31920.33010.71010.075*
C20.8709 (4)0.31640 (13)0.4958 (4)0.0629 (8)
H20.78060.28700.43620.075*
C100.0327 (4)0.40634 (13)0.0878 (4)0.0579 (8)
H10A0.03600.44040.00350.069*
H10B0.05780.42250.19570.069*
C110.1756 (4)0.35851 (14)0.0101 (5)0.0682 (9)
H11A0.14520.34120.11220.102*
H11B0.29720.37740.05770.102*
H11C0.17590.32630.07680.102*
C31.0573 (4)0.29951 (14)0.5701 (5)0.0754 (10)
H31.09120.25880.55820.090*
O20.1493 (2)0.37612 (8)0.1469 (2)0.0517 (5)
O10.2787 (3)0.46073 (9)0.3104 (3)0.0703 (6)
C120.4724 (3)0.31789 (13)0.2110 (4)0.0500 (7)
C90.2926 (4)0.40931 (13)0.2581 (4)0.0493 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04546 (19)0.0595 (2)0.0794 (2)0.00844 (14)0.00088 (15)0.00303 (16)
C50.0422 (15)0.0497 (16)0.0478 (16)0.0039 (12)0.0061 (13)0.0000 (12)
C60.0477 (16)0.0381 (14)0.0488 (16)0.0000 (11)0.0109 (12)0.0000 (12)
C70.0445 (15)0.0409 (14)0.0548 (17)0.0001 (11)0.0119 (13)0.0013 (12)
C10.0394 (14)0.0436 (14)0.0476 (16)0.0031 (11)0.0058 (12)0.0004 (12)
N10.0519 (15)0.0609 (16)0.092 (2)0.0110 (12)0.0204 (14)0.0237 (15)
C80.0381 (14)0.0438 (14)0.0474 (16)0.0023 (11)0.0123 (12)0.0003 (12)
C40.0421 (16)0.0558 (17)0.076 (2)0.0073 (13)0.0024 (15)0.0037 (15)
C20.0503 (17)0.0469 (16)0.074 (2)0.0019 (13)0.0010 (15)0.0078 (14)
C100.0349 (15)0.0605 (18)0.073 (2)0.0057 (13)0.0125 (14)0.0015 (15)
C110.0390 (16)0.077 (2)0.079 (2)0.0025 (15)0.0092 (15)0.0018 (17)
C30.0539 (19)0.0490 (17)0.102 (3)0.0099 (14)0.0000 (18)0.0102 (17)
O20.0350 (10)0.0511 (11)0.0634 (12)0.0005 (8)0.0098 (9)0.0070 (9)
O10.0505 (12)0.0600 (13)0.0904 (16)0.0028 (10)0.0119 (11)0.0251 (11)
C120.0329 (14)0.0529 (16)0.0594 (18)0.0069 (12)0.0098 (13)0.0009 (14)
C90.0410 (15)0.0534 (17)0.0505 (17)0.0041 (12)0.0120 (13)0.0033 (13)
Geometric parameters (Å, º) top
Br1—C51.896 (2)C4—H40.9300
C5—C61.372 (3)C2—C31.382 (4)
C5—C41.377 (4)C2—H20.9300
C6—C11.401 (3)C10—O21.454 (3)
C6—H60.9300C10—C111.497 (4)
C7—C81.344 (3)C10—H10A0.9700
C7—C11.456 (3)C10—H10B0.9700
C7—H70.9300C11—H11A0.9600
C1—C21.390 (4)C11—H11B0.9600
N1—C121.140 (3)C11—H11C0.9600
C8—C121.439 (4)C3—H30.9300
C8—C91.484 (4)O2—C91.333 (3)
C4—C31.374 (4)O1—C91.197 (3)
C6—C5—C4122.0 (2)O2—C10—C11107.1 (2)
C6—C5—Br1119.3 (2)O2—C10—H10A110.3
C4—C5—Br1118.7 (2)C11—C10—H10A110.3
C5—C6—C1119.6 (2)O2—C10—H10B110.3
C5—C6—H6120.2C11—C10—H10B110.3
C1—C6—H6120.2H10A—C10—H10B108.6
C8—C7—C1130.5 (2)C10—C11—H11A109.5
C8—C7—H7114.8C10—C11—H11B109.5
C1—C7—H7114.8H11A—C11—H11B109.5
C2—C1—C6118.6 (2)C10—C11—H11C109.5
C2—C1—C7124.5 (2)H11A—C11—H11C109.5
C6—C1—C7116.9 (2)H11B—C11—H11C109.5
C7—C8—C12123.9 (2)C4—C3—C2121.3 (3)
C7—C8—C9118.6 (2)C4—C3—H3119.3
C12—C8—C9117.5 (2)C2—C3—H3119.3
C3—C4—C5118.2 (3)C9—O2—C10115.9 (2)
C3—C4—H4120.9N1—C12—C8178.3 (3)
C5—C4—H4120.9O1—C9—O2124.2 (3)
C3—C2—C1120.2 (3)O1—C9—C8124.0 (2)
C3—C2—H2119.9O2—C9—C8111.8 (2)
C1—C2—H2119.9
C4—C5—C6—C10.3 (4)C7—C1—C2—C3179.9 (3)
Br1—C5—C6—C1179.72 (19)C5—C4—C3—C20.5 (5)
C5—C6—C1—C21.6 (4)C1—C2—C3—C40.9 (5)
C5—C6—C1—C7179.8 (2)C11—C10—O2—C9171.7 (2)
C8—C7—C1—C217.9 (5)C10—O2—C9—O10.5 (4)
C8—C7—C1—C6164.1 (3)C10—O2—C9—C8179.3 (2)
C1—C7—C8—C121.8 (5)C7—C8—C9—O17.3 (4)
C1—C7—C8—C9178.8 (3)C12—C8—C9—O1169.9 (3)
C6—C5—C4—C30.8 (5)C7—C8—C9—O2172.8 (2)
Br1—C5—C4—C3178.7 (2)C12—C8—C9—O29.9 (3)
C6—C1—C2—C31.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.473.323 (3)152
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H10BrNO2
Mr280.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6147 (7), 21.6015 (19), 7.6044 (7)
β (°) 110.370 (1)
V3)1172.62 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.17 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.597, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
10143, 2698, 1730
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.00
No. of reflections2698
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.473.323 (3)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Science and Technology Fund of Anhui Province for Outstanding Youth (No. 08040106906), the National Natural Science Foundation (No. 20671002) of China, the State Education Ministry (EYTP, SRF for ROCS, SRFDP 20070370001) and the Education Department (No. KJ2008B169) of Anhui Province.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLapworth, A. & Baker, W. (1927). Org. Synth. 7, 20–21.  CAS Google Scholar
First citationObniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170–175.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds