organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­methyl-3-methyl-1-phenyl­sulfonyl-1H-indole

aDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 6 October 2009; accepted 9 October 2009; online 17 October 2009)

In the title compound, C16H14ClNO2S, the phenyl ring makes a dihedral angle of 78.1 (1)° with the indole ring system. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions. The crystal structure exhibits weak inter­molecular C—H⋯O, C—H⋯π and ππ [centroid–centroid distances = 3.620 (1)–3.794 (1) Å] inter­actions.

Related literature

For the biological activity of indole derivatives, see: Okabe & Adachi (1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]); Schollmeyer et al. (1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]). For related crystal structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClNO2S

  • Mr = 319.79

  • Monoclinic, P 21 /c

  • a = 7.9769 (6) Å

  • b = 10.8064 (9) Å

  • c = 17.3418 (12) Å

  • β = 97.500 (2)°

  • V = 1482.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 295 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.889, Tmax = 0.903

  • 17616 measured reflections

  • 3885 independent reflections

  • 3201 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.04

  • 3885 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.51 2.886 (3) 104
C13—H13⋯O1 0.93 2.47 3.033 (2) 119
C15—H15B⋯O2 0.97 2.31 2.853 (3) 114
C16—H16ACg2ii 0.96 2.94 3.777 (2) 146
C16—H16BCg3iii 0.96 2.92 3.781 (3) 149
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1. Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The indole derivatives are found to possess antibacterial (Okabe & Adachi, 1998) and antitumour (Schollmeyer et al., 1995) activities. In continuation of our studies in indole derivatives, we present the crystal structure of the title compound (I). The geometric parameters of (I) (Fig. 1) agree with those in the reported structures (Chakkaravarthi et al., 2007, 2008).

The plane of the phenyl ring forms a dihedral angle of 78.1 (1)° with the indole ring system. The torsion angles O2—S1—N1—C7 and O1—S1—N1—C14 [-22.9 (2)° and 54.5 (1)°, respectively] indicate the syn-conformation of the sulfonyl moiety. The sum of bond angles around N1 [355.6 (1)°] indicates that N1 is sp2-hybridized.

The molecular packing is stabilized by weak intramolecular C—H···O interactions and the crystal packing of I (Fig. 2) exhibit weak intermolecular C—H···O, C—H···π (see Table 1) and ππ [Cg1···Cg1(-x, -y, 1 - z) distance of 3.620 (1) Å and Cg1···Cg3 (-x, -y, 1 - z) distance of 3.794 (1) Å interactions. Cg1 and Cg3 are the centroids of the N1/C7–C9/C14 and C9–C14 rings, respectively.

Related literature top

For the biological activity of indole derivatives, see: Okabe & Adachi (1998); Schollmeyer et al. (1995). For related crystal structures, see: Chakkaravarthi et al. (2007, 2008). Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

Experimental top

A mixture of 1-phenylsulfonyl-2,3-dimethylindole (5 g, 17.5 mmol) and finely powdered NCS (2.56 g, 19.17 mmol) in dry CCl4 (80 ml) containing catalytic amount of benzoyl peroxide (0.1 g) was refluxed for 1 h and cooled. The floated succinimide was filtered off and washed with CCl4 (15 ml). The solvent was then removed completely under vacuo and recrystallized from CDCl3.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methylene, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl.

Structure description top

The indole derivatives are found to possess antibacterial (Okabe & Adachi, 1998) and antitumour (Schollmeyer et al., 1995) activities. In continuation of our studies in indole derivatives, we present the crystal structure of the title compound (I). The geometric parameters of (I) (Fig. 1) agree with those in the reported structures (Chakkaravarthi et al., 2007, 2008).

The plane of the phenyl ring forms a dihedral angle of 78.1 (1)° with the indole ring system. The torsion angles O2—S1—N1—C7 and O1—S1—N1—C14 [-22.9 (2)° and 54.5 (1)°, respectively] indicate the syn-conformation of the sulfonyl moiety. The sum of bond angles around N1 [355.6 (1)°] indicates that N1 is sp2-hybridized.

The molecular packing is stabilized by weak intramolecular C—H···O interactions and the crystal packing of I (Fig. 2) exhibit weak intermolecular C—H···O, C—H···π (see Table 1) and ππ [Cg1···Cg1(-x, -y, 1 - z) distance of 3.620 (1) Å and Cg1···Cg3 (-x, -y, 1 - z) distance of 3.794 (1) Å interactions. Cg1 and Cg3 are the centroids of the N1/C7–C9/C14 and C9–C14 rings, respectively.

For the biological activity of indole derivatives, see: Okabe & Adachi (1998); Schollmeyer et al. (1995). For related crystal structures, see: Chakkaravarthi et al. (2007, 2008). Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Chloromethyl-3-methyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C16H14ClNO2SF(000) = 664
Mr = 319.79Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8432 reflections
a = 7.9769 (6) Åθ = 2.2–28.8°
b = 10.8064 (9) ŵ = 0.40 mm1
c = 17.3418 (12) ÅT = 295 K
β = 97.500 (2)°Block, colourless
V = 1482.1 (2) Å30.30 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3885 independent reflections
Radiation source: fine-focus sealed tube3201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.889, Tmax = 0.903k = 1414
17616 measured reflectionsl = 1323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.5623P]
where P = (Fo2 + 2Fc2)/3
3885 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C16H14ClNO2SV = 1482.1 (2) Å3
Mr = 319.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9769 (6) ŵ = 0.40 mm1
b = 10.8064 (9) ÅT = 295 K
c = 17.3418 (12) Å0.30 × 0.28 × 0.26 mm
β = 97.500 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3885 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3201 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.903Rint = 0.024
17616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
3885 reflectionsΔρmin = 0.45 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2222 (2)0.12567 (15)0.26775 (9)0.0376 (3)
C20.2156 (3)0.03299 (18)0.21251 (11)0.0510 (4)
H20.11720.01250.19890.061*
C30.3596 (3)0.0096 (2)0.17795 (12)0.0633 (6)
H30.35760.05190.14030.076*
C40.5042 (3)0.0757 (2)0.19847 (13)0.0602 (5)
H40.60060.05730.17580.072*
C50.5086 (3)0.1686 (2)0.25200 (12)0.0554 (5)
H50.60690.21450.26470.067*
C60.3671 (2)0.19466 (18)0.28736 (10)0.0460 (4)
H60.36950.25780.32390.055*
C70.1768 (2)0.16719 (15)0.47207 (10)0.0391 (3)
C80.2587 (2)0.08731 (16)0.52391 (9)0.0408 (4)
C90.2430 (2)0.03433 (15)0.49110 (9)0.0371 (3)
C100.3019 (3)0.14938 (18)0.51880 (11)0.0498 (4)
H100.36460.15680.56770.060*
C110.2658 (3)0.25159 (18)0.47269 (13)0.0543 (5)
H110.30540.32880.49040.065*
C120.1713 (3)0.24139 (17)0.40010 (12)0.0503 (4)
H120.14910.31210.37000.060*
C130.1090 (2)0.12916 (16)0.37131 (10)0.0426 (4)
H130.04460.12290.32270.051*
C140.14676 (19)0.02597 (15)0.41808 (9)0.0343 (3)
C150.1467 (3)0.29996 (17)0.48501 (12)0.0530 (5)
H15A0.13760.31300.53960.064*
H15B0.03980.32360.45550.064*
C160.3463 (3)0.1166 (2)0.60340 (11)0.0604 (5)
H16A0.33480.20330.61370.091*
H16B0.46400.09600.60620.091*
H16C0.29630.06940.64140.091*
N10.10231 (17)0.09922 (13)0.40560 (7)0.0370 (3)
O10.08880 (16)0.07654 (16)0.28192 (8)0.0602 (4)
O20.0208 (2)0.28227 (14)0.32369 (9)0.0621 (4)
S10.04580 (5)0.15288 (4)0.31625 (2)0.04245 (13)
Cl10.31210 (9)0.39887 (5)0.45712 (4)0.07026 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (8)0.0392 (8)0.0318 (7)0.0045 (6)0.0032 (6)0.0087 (6)
C20.0614 (11)0.0464 (10)0.0462 (9)0.0100 (9)0.0108 (8)0.0018 (8)
C30.0900 (16)0.0496 (12)0.0557 (12)0.0003 (11)0.0294 (11)0.0080 (9)
C40.0614 (12)0.0649 (13)0.0592 (12)0.0082 (10)0.0270 (10)0.0068 (10)
C50.0454 (9)0.0698 (14)0.0519 (10)0.0043 (9)0.0090 (8)0.0039 (9)
C60.0467 (9)0.0519 (10)0.0389 (8)0.0010 (8)0.0040 (7)0.0004 (7)
C70.0465 (9)0.0336 (8)0.0401 (8)0.0044 (7)0.0162 (7)0.0023 (6)
C80.0469 (9)0.0415 (9)0.0347 (7)0.0092 (7)0.0082 (6)0.0005 (6)
C90.0391 (8)0.0374 (8)0.0349 (7)0.0027 (6)0.0058 (6)0.0039 (6)
C100.0539 (10)0.0460 (10)0.0470 (9)0.0006 (8)0.0025 (8)0.0117 (8)
C110.0630 (12)0.0355 (9)0.0649 (12)0.0069 (8)0.0097 (9)0.0094 (8)
C120.0585 (11)0.0359 (9)0.0579 (11)0.0027 (8)0.0130 (9)0.0072 (8)
C130.0474 (9)0.0413 (9)0.0392 (8)0.0026 (7)0.0057 (7)0.0033 (7)
C140.0355 (7)0.0338 (8)0.0344 (7)0.0006 (6)0.0081 (6)0.0029 (6)
C150.0683 (12)0.0373 (9)0.0588 (11)0.0017 (9)0.0279 (9)0.0040 (8)
C160.0773 (14)0.0624 (13)0.0397 (9)0.0185 (11)0.0007 (9)0.0052 (9)
N10.0423 (7)0.0337 (7)0.0354 (6)0.0033 (5)0.0070 (5)0.0039 (5)
O10.0372 (6)0.0834 (11)0.0567 (8)0.0000 (7)0.0064 (6)0.0106 (7)
O20.0714 (10)0.0515 (9)0.0644 (9)0.0286 (7)0.0124 (7)0.0183 (7)
S10.0366 (2)0.0485 (3)0.0416 (2)0.01086 (17)0.00270 (15)0.01142 (17)
Cl10.0967 (4)0.0386 (3)0.0815 (4)0.0169 (3)0.0344 (3)0.0031 (2)
Geometric parameters (Å, º) top
C1—C61.380 (3)C10—C111.372 (3)
C1—C21.382 (3)C10—H100.9300
C1—S11.7559 (17)C11—C121.385 (3)
C2—C31.387 (3)C11—H110.9300
C2—H20.9300C12—C131.379 (3)
C3—C41.364 (3)C12—H120.9300
C3—H30.9300C13—C141.389 (2)
C4—C51.365 (3)C13—H130.9300
C4—H40.9300C14—N11.408 (2)
C5—C61.382 (3)C15—Cl11.812 (2)
C5—H50.9300C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—C81.352 (2)C16—H16A0.9600
C7—N11.429 (2)C16—H16B0.9600
C7—C151.477 (2)C16—H16C0.9600
C8—C91.431 (2)N1—S11.6607 (13)
C8—C161.496 (2)O1—S11.4216 (15)
C9—C101.392 (2)O2—S11.4206 (15)
C9—C141.395 (2)
C6—C1—C2121.15 (17)C12—C11—H11119.5
C6—C1—S1119.29 (13)C13—C12—C11121.79 (18)
C2—C1—S1119.53 (14)C13—C12—H12119.1
C1—C2—C3118.21 (19)C11—C12—H12119.1
C1—C2—H2120.9C12—C13—C14117.02 (17)
C3—C2—H2120.9C12—C13—H13121.5
C4—C3—C2120.80 (19)C14—C13—H13121.5
C4—C3—H3119.6C13—C14—C9121.98 (15)
C2—C3—H3119.6C13—C14—N1130.59 (15)
C3—C4—C5120.56 (19)C9—C14—N1107.42 (13)
C3—C4—H4119.7C7—C15—Cl1113.22 (13)
C5—C4—H4119.7C7—C15—H15A108.9
C4—C5—C6120.1 (2)Cl1—C15—H15A108.9
C4—C5—H5119.9C7—C15—H15B108.9
C6—C5—H5119.9Cl1—C15—H15B108.9
C1—C6—C5119.14 (18)H15A—C15—H15B107.7
C1—C6—H6120.4C8—C16—H16A109.5
C5—C6—H6120.4C8—C16—H16B109.5
C8—C7—N1108.80 (14)H16A—C16—H16B109.5
C8—C7—C15126.40 (17)C8—C16—H16C109.5
N1—C7—C15124.29 (16)H16A—C16—H16C109.5
C7—C8—C9108.21 (15)H16B—C16—H16C109.5
C7—C8—C16127.22 (17)C14—N1—C7107.46 (13)
C9—C8—C16124.53 (17)C14—N1—S1120.74 (11)
C10—C9—C14119.47 (16)C7—N1—S1127.36 (12)
C10—C9—C8132.44 (16)O2—S1—O1120.13 (10)
C14—C9—C8108.08 (14)O2—S1—N1106.45 (8)
C11—C10—C9118.82 (17)O1—S1—N1106.64 (8)
C11—C10—H10120.6O2—S1—C1109.81 (9)
C9—C10—H10120.6O1—S1—C1108.11 (9)
C10—C11—C12120.91 (18)N1—S1—C1104.57 (7)
C10—C11—H11119.5
C6—C1—C2—C31.0 (3)C10—C9—C14—N1179.02 (15)
S1—C1—C2—C3176.87 (15)C8—C9—C14—N10.22 (18)
C1—C2—C3—C40.5 (3)C8—C7—C15—Cl191.1 (2)
C2—C3—C4—C51.8 (4)N1—C7—C15—Cl198.03 (19)
C3—C4—C5—C61.6 (3)C13—C14—N1—C7179.07 (16)
C2—C1—C6—C51.2 (3)C9—C14—N1—C71.18 (17)
S1—C1—C6—C5176.64 (15)C13—C14—N1—S121.1 (2)
C4—C5—C6—C10.1 (3)C9—C14—N1—S1159.16 (11)
N1—C7—C8—C91.60 (19)C8—C7—N1—C141.75 (17)
C15—C7—C8—C9173.60 (16)C15—C7—N1—C14173.96 (15)
N1—C7—C8—C16176.32 (18)C8—C7—N1—S1157.84 (13)
C15—C7—C8—C164.3 (3)C15—C7—N1—S130.0 (2)
C7—C8—C9—C10179.98 (19)C14—N1—S1—O2176.12 (13)
C16—C8—C9—C102.0 (3)C7—N1—S1—O222.86 (16)
C7—C8—C9—C140.87 (19)C14—N1—S1—O154.50 (14)
C16—C8—C9—C14177.12 (17)C7—N1—S1—O1152.24 (14)
C14—C9—C10—C111.1 (3)C14—N1—S1—C159.89 (14)
C8—C9—C10—C11179.89 (19)C7—N1—S1—C193.37 (15)
C9—C10—C11—C120.6 (3)C6—C1—S1—O243.32 (16)
C10—C11—C12—C130.3 (3)C2—C1—S1—O2138.81 (15)
C11—C12—C13—C140.6 (3)C6—C1—S1—O1176.10 (14)
C12—C13—C14—C90.1 (2)C2—C1—S1—O16.02 (17)
C12—C13—C14—N1179.82 (17)C6—C1—S1—N170.55 (15)
C10—C9—C14—C130.8 (2)C2—C1—S1—N1107.33 (15)
C8—C9—C14—C13180.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.512.886 (3)104
C13—H13···O10.932.473.033 (2)119
C15—H15B···O20.972.312.853 (3)114
C2—H2···O2i0.932.483.314 (2)149
C16—H16A···Cg2ii0.962.943.777 (2)146
C16—H16B···Cg3iii0.962.923.781 (3)149
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H14ClNO2S
Mr319.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.9769 (6), 10.8064 (9), 17.3418 (12)
β (°) 97.500 (2)
V3)1482.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.889, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
17616, 3885, 3201
Rint0.024
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.04
No. of reflections3885
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.512.886 (3)104
C13—H13···O10.932.473.033 (2)119
C15—H15B···O20.972.312.853 (3)114
C2—H2···O2i0.932.483.314 (2)149
C16—H16A···Cg2ii0.962.943.777 (2)146
C16—H16B···Cg3iii0.962.923.781 (3)149
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors wish to acknowledge IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds