metal-organic compounds
Racemic (RSC,SRS)-(2-{[1-allyloxycarbonyl-3-(methylsulfanyl)propyl]iminomethyl}phenyl-κ3S,N,C1)chloridoplatinum(II)
aOrganic Nanomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, bMaterials Analysis Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, and cApplied Scoences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
*Correspondence e-mail: isozaki.katsuhiro@nims.go.jp
The title compound, [Pt(C15H18NO2S)Cl], was obtained by the cyclometallation reaction of cis-bis(benzonitrile)dichloridoplatinum(II) with N-benzylidene-L-methionine allyl ester in refluxing toluene. The PtII atom has a square-planar geometry and is tetra-coordinated by the Cl atom and the C, N and S atoms from the benzylidene methionine ester ligand. In the the S atoms show opposite chiral configurations with respect to the α-carbon of the methionine, reducing steric repulsion between the methyl and allyl ester groups.
Related literature
For cyclometallated PtII complexes having terdentate benzylidenamine ligands cyclometallated benzylideneamine, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S160053680904238X/is2471sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680904238X/is2471Isup2.hkl
The methionine-derived ligand was synthesized from three step reactions, esterification, deprotection, condensation using Fmoc-L-methionine as a starting material (Fig. 3). A suspension of cis-[PtCl2(PhCN)2] and methionine-derived ligand was refluxed under nitrogen atmosphere for 3 h. The crude mixture was purified by SiO2 flash
Single crystals for X-ray analyses were obtained from a CH2Cl2 solution.H atoms were positioned geometrically and refined as riding atoms, with Carene—H and Callyl—H = 0.93 Å, Cmethyl—H = 0.96 Å, Calkyl—H = 0.97Å and Cα—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(Carene, Calkyl) and Uiso(H) = 1.5Ueq(Cmethyl). Electron density synthesis with coefficients Fo—Fc: Highest peak 1.36 at 0.0428, 0.4390, 0.1909 (0.86 Å from Pt1)
Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the
of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.The α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).
of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to theFor cyclometallated benzylideneamine terdentate PtII complexes, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Pt(C15H18NO2S)Cl] | F(000) = 968 |
Mr = 506.90 | Dx = 2.098 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1024 reflections |
a = 8.6000 (13) Å | θ = 2.8–26.0° |
b = 9.5093 (14) Å | µ = 9.04 mm−1 |
c = 19.679 (3) Å | T = 180 K |
β = 94.398 (2)° | Prism, orange |
V = 1604.6 (4) Å3 | 0.50 × 0.10 × 0.10 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 3105 independent reflections |
Radiation source: fine-focus sealed tube | 2854 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −9→10 |
Tmin = 0.610, Tmax = 0.862 | k = −11→11 |
12273 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.033P)2 + 0.6405P] where P = (Fo2 + 2Fc2)/3 |
3105 reflections | (Δ/σ)max = 0.003 |
191 parameters | Δρmax = 1.36 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Pt(C15H18NO2S)Cl] | V = 1604.6 (4) Å3 |
Mr = 506.90 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6000 (13) Å | µ = 9.04 mm−1 |
b = 9.5093 (14) Å | T = 180 K |
c = 19.679 (3) Å | 0.50 × 0.10 × 0.10 mm |
β = 94.398 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 3105 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2854 reflections with I > 2σ(I) |
Tmin = 0.610, Tmax = 0.862 | Rint = 0.024 |
12273 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.36 e Å−3 |
3105 reflections | Δρmin = −0.48 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.456604 (14) | 0.848674 (12) | 0.309063 (6) | 0.01942 (6) | |
S4 | 0.63428 (10) | 0.87893 (9) | 0.22448 (5) | 0.02394 (18) | |
Cl1 | 0.60649 (11) | 1.00955 (10) | 0.37235 (5) | 0.0338 (2) | |
C3 | 0.3033 (4) | 0.8222 (3) | 0.37990 (18) | 0.0224 (7) | |
N4 | 0.3141 (3) | 0.7078 (3) | 0.26035 (14) | 0.0222 (6) | |
C6 | 0.1849 (5) | 0.9473 (5) | −0.0659 (2) | 0.0518 (12) | |
H6A | 0.1530 | 0.8793 | −0.0980 | 0.062* | |
H6B | 0.2203 | 1.0341 | −0.0801 | 0.062* | |
O7 | 0.1383 (4) | 0.8499 (3) | 0.16257 (16) | 0.0423 (7) | |
C9 | 0.2011 (4) | 0.6636 (3) | 0.29340 (19) | 0.0258 (8) | |
H9 | 0.1318 | 0.5959 | 0.2752 | 0.031* | |
C11 | 0.1695 (5) | 0.8600 (4) | 0.4821 (2) | 0.0331 (9) | |
H11 | 0.1639 | 0.9067 | 0.5234 | 0.040* | |
O12 | 0.2371 (3) | 0.7266 (3) | 0.07819 (13) | 0.0377 (6) | |
C13 | 0.1798 (5) | 0.9200 (5) | 0.0011 (3) | 0.0497 (11) | |
H13 | 0.2122 | 0.9893 | 0.0324 | 0.060* | |
C15 | 0.1855 (4) | 0.7230 (3) | 0.36017 (17) | 0.0242 (7) | |
C16 | 0.5768 (4) | 0.7677 (4) | 0.15222 (17) | 0.0277 (7) | |
H16A | 0.5139 | 0.8229 | 0.1190 | 0.033* | |
H16B | 0.6699 | 0.7388 | 0.1311 | 0.033* | |
C17 | 0.2223 (4) | 0.7597 (4) | 0.14303 (18) | 0.0292 (8) | |
C18 | 0.0640 (4) | 0.6922 (4) | 0.40057 (19) | 0.0322 (8) | |
H18 | −0.0100 | 0.6246 | 0.3868 | 0.039* | |
C19 | 0.2922 (4) | 0.8882 (4) | 0.44249 (18) | 0.0274 (7) | |
H19 | 0.3685 | 0.9524 | 0.4580 | 0.033* | |
C20 | 0.0548 (4) | 0.7633 (4) | 0.46131 (18) | 0.0366 (9) | |
H20 | −0.0277 | 0.7465 | 0.4881 | 0.044* | |
C21 | 0.1259 (5) | 0.7871 (5) | 0.0261 (2) | 0.0469 (11) | |
H21A | 0.1100 | 0.7217 | −0.0116 | 0.056* | |
H21B | 0.0264 | 0.8009 | 0.0453 | 0.056* | |
C27 | 0.8092 (4) | 0.7906 (4) | 0.2577 (2) | 0.0355 (9) | |
H27A | 0.7881 | 0.6922 | 0.2627 | 0.053* | |
H27B | 0.8434 | 0.8298 | 0.3012 | 0.053* | |
H27C | 0.8892 | 0.8029 | 0.2268 | 0.053* | |
C28 | 0.3198 (4) | 0.6605 (3) | 0.18980 (18) | 0.0246 (8) | |
H28 | 0.2675 | 0.5689 | 0.1867 | 0.030* | |
C29 | 0.4852 (4) | 0.6366 (3) | 0.16894 (19) | 0.0270 (8) | |
H29A | 0.5436 | 0.5870 | 0.2056 | 0.032* | |
H29B | 0.4793 | 0.5756 | 0.1293 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01859 (9) | 0.02131 (9) | 0.01877 (9) | −0.00125 (4) | 0.00404 (6) | −0.00029 (4) |
S4 | 0.0227 (4) | 0.0254 (4) | 0.0247 (5) | 0.0004 (3) | 0.0077 (3) | 0.0000 (3) |
Cl1 | 0.0320 (5) | 0.0411 (5) | 0.0291 (5) | −0.0148 (4) | 0.0066 (4) | −0.0086 (4) |
C3 | 0.0202 (18) | 0.0253 (16) | 0.0217 (18) | −0.0021 (13) | 0.0012 (14) | 0.0065 (13) |
N4 | 0.0247 (15) | 0.0216 (14) | 0.0206 (14) | −0.0022 (11) | 0.0042 (11) | −0.0008 (11) |
C6 | 0.046 (3) | 0.062 (3) | 0.050 (3) | 0.009 (2) | 0.020 (2) | 0.018 (2) |
O7 | 0.0392 (17) | 0.0494 (18) | 0.0387 (17) | 0.0171 (13) | 0.0061 (14) | 0.0016 (12) |
C9 | 0.0243 (19) | 0.0242 (18) | 0.029 (2) | −0.0058 (13) | 0.0012 (15) | −0.0004 (13) |
C11 | 0.030 (2) | 0.047 (2) | 0.022 (2) | −0.0010 (16) | 0.0050 (16) | −0.0026 (15) |
O12 | 0.0289 (14) | 0.0599 (18) | 0.0244 (13) | 0.0047 (13) | 0.0030 (11) | 0.0035 (12) |
C13 | 0.036 (2) | 0.052 (3) | 0.062 (3) | 0.007 (2) | 0.005 (2) | 0.001 (2) |
C15 | 0.0224 (17) | 0.0290 (18) | 0.0211 (17) | −0.0015 (13) | 0.0013 (13) | 0.0021 (13) |
C16 | 0.0244 (18) | 0.036 (2) | 0.0236 (17) | 0.0017 (15) | 0.0079 (14) | −0.0030 (15) |
C17 | 0.0224 (18) | 0.037 (2) | 0.0287 (19) | −0.0002 (15) | 0.0044 (14) | 0.0039 (16) |
C18 | 0.024 (2) | 0.042 (2) | 0.030 (2) | −0.0109 (16) | 0.0030 (15) | 0.0034 (17) |
C19 | 0.0253 (19) | 0.0330 (18) | 0.0240 (18) | −0.0018 (15) | 0.0021 (14) | −0.0021 (15) |
C20 | 0.028 (2) | 0.059 (3) | 0.0234 (19) | −0.0062 (18) | 0.0097 (15) | 0.0058 (17) |
C21 | 0.036 (2) | 0.071 (3) | 0.033 (2) | 0.000 (2) | −0.0041 (18) | 0.009 (2) |
C27 | 0.0222 (19) | 0.043 (2) | 0.041 (2) | 0.0063 (16) | 0.0015 (16) | −0.0047 (18) |
C28 | 0.029 (2) | 0.0233 (18) | 0.0219 (18) | −0.0019 (13) | 0.0018 (15) | −0.0044 (12) |
C29 | 0.027 (2) | 0.0287 (18) | 0.0255 (19) | 0.0064 (14) | 0.0037 (15) | −0.0075 (14) |
Pt1—C3 | 2.006 (4) | C13—C21 | 1.446 (7) |
Pt1—N4 | 2.009 (3) | C13—H13 | 0.9300 |
Pt1—Cl1 | 2.3037 (9) | C15—C18 | 1.392 (5) |
Pt1—S4 | 2.3618 (9) | C16—C29 | 1.524 (5) |
S4—C27 | 1.801 (4) | C16—H16A | 0.9700 |
S4—C16 | 1.810 (3) | C16—H16B | 0.9700 |
C3—C19 | 1.392 (5) | C17—C28 | 1.524 (5) |
C3—C15 | 1.417 (5) | C18—C20 | 1.381 (5) |
N4—C9 | 1.281 (4) | C18—H18 | 0.9300 |
N4—C28 | 1.464 (4) | C19—H19 | 0.9300 |
C6—C13 | 1.348 (6) | C20—H20 | 0.9300 |
C6—H6A | 0.9300 | C21—H21A | 0.9700 |
C6—H6B | 0.9300 | C21—H21B | 0.9700 |
O7—C17 | 1.204 (4) | C27—H27A | 0.9600 |
C9—C15 | 1.446 (5) | C27—H27B | 0.9600 |
C9—H9 | 0.9300 | C27—H27C | 0.9600 |
C11—C19 | 1.386 (5) | C28—C29 | 1.528 (5) |
C11—C20 | 1.387 (5) | C28—H28 | 0.9800 |
C11—H11 | 0.9300 | C29—H29A | 0.9700 |
O12—C17 | 1.330 (4) | C29—H29B | 0.9700 |
O12—C21 | 1.464 (5) | ||
C3—Pt1—N4 | 80.72 (13) | O7—C17—O12 | 125.4 (3) |
C3—Pt1—Cl1 | 94.46 (10) | O7—C17—C28 | 124.4 (3) |
N4—Pt1—Cl1 | 175.18 (8) | O12—C17—C28 | 110.1 (3) |
C3—Pt1—S4 | 179.20 (10) | C20—C18—C15 | 119.1 (3) |
N4—Pt1—S4 | 98.56 (8) | C20—C18—H18 | 120.4 |
Cl1—Pt1—S4 | 86.26 (3) | C15—C18—H18 | 120.4 |
C27—S4—C16 | 100.53 (18) | C11—C19—C3 | 121.2 (3) |
C27—S4—Pt1 | 104.77 (14) | C11—C19—H19 | 119.4 |
C16—S4—Pt1 | 109.27 (12) | C3—C19—H19 | 119.4 |
C19—C3—C15 | 116.5 (3) | C18—C20—C11 | 119.6 (3) |
C19—C3—Pt1 | 130.7 (3) | C18—C20—H20 | 120.2 |
C15—C3—Pt1 | 112.8 (2) | C11—C20—H20 | 120.2 |
C9—N4—C28 | 117.6 (3) | C13—C21—O12 | 111.9 (4) |
C9—N4—Pt1 | 115.8 (2) | C13—C21—H21A | 109.2 |
C28—N4—Pt1 | 126.4 (2) | O12—C21—H21A | 109.2 |
C13—C6—H6A | 120.0 | C13—C21—H21B | 109.2 |
C13—C6—H6B | 120.0 | O12—C21—H21B | 109.2 |
H6A—C6—H6B | 120.0 | H21A—C21—H21B | 107.9 |
N4—C9—C15 | 117.4 (3) | S4—C27—H27A | 109.5 |
N4—C9—H9 | 121.3 | S4—C27—H27B | 109.5 |
C15—C9—H9 | 121.3 | H27A—C27—H27B | 109.5 |
C19—C11—C20 | 121.1 (4) | S4—C27—H27C | 109.5 |
C19—C11—H11 | 119.4 | H27A—C27—H27C | 109.5 |
C20—C11—H11 | 119.4 | H27B—C27—H27C | 109.5 |
C17—O12—C21 | 118.2 (3) | N4—C28—C17 | 109.0 (3) |
C6—C13—C21 | 122.5 (5) | N4—C28—C29 | 113.6 (3) |
C6—C13—H13 | 118.8 | C17—C28—C29 | 114.2 (3) |
C21—C13—H13 | 118.8 | N4—C28—H28 | 106.5 |
C18—C15—C3 | 122.4 (3) | C17—C28—H28 | 106.5 |
C18—C15—C9 | 124.2 (3) | C29—C28—H28 | 106.5 |
C3—C15—C9 | 113.3 (3) | C16—C29—C28 | 116.4 (3) |
C29—C16—S4 | 115.0 (2) | C16—C29—H29A | 108.2 |
C29—C16—H16A | 108.5 | C28—C29—H29A | 108.2 |
S4—C16—H16A | 108.5 | C16—C29—H29B | 108.2 |
C29—C16—H16B | 108.5 | C28—C29—H29B | 108.2 |
S4—C16—H16B | 108.5 | H29A—C29—H29B | 107.4 |
H16A—C16—H16B | 107.5 | ||
N4—Pt1—S4—C27 | −107.41 (16) | C21—O12—C17—C28 | 165.9 (3) |
Cl1—Pt1—S4—C27 | 72.70 (14) | C3—C15—C18—C20 | 1.8 (6) |
Cl1—Pt1—S4—C16 | 179.70 (13) | C9—C15—C18—C20 | −175.2 (3) |
N4—Pt1—C3—C19 | −176.3 (4) | C20—C11—C19—C3 | 1.1 (6) |
Cl1—Pt1—C3—C19 | 3.6 (3) | C15—C3—C19—C11 | −1.6 (5) |
N4—Pt1—C3—C15 | 1.1 (2) | Pt1—C3—C19—C11 | 175.8 (3) |
Cl1—Pt1—C3—C15 | −179.0 (2) | C15—C18—C20—C11 | −2.4 (6) |
C3—Pt1—N4—C9 | −1.8 (3) | C19—C11—C20—C18 | 1.0 (6) |
S4—Pt1—N4—C9 | 178.5 (2) | C6—C13—C21—O12 | 128.9 (4) |
C3—Pt1—N4—C28 | 172.9 (3) | C17—O12—C21—C13 | 90.1 (5) |
S4—Pt1—N4—C28 | −6.8 (3) | C9—N4—C28—C17 | 86.9 (4) |
C28—N4—C9—C15 | −173.0 (3) | Pt1—N4—C28—C17 | −87.7 (3) |
Pt1—N4—C9—C15 | 2.2 (4) | C9—N4—C28—C29 | −144.4 (3) |
C19—C3—C15—C18 | 0.1 (5) | Pt1—N4—C28—C29 | 40.9 (4) |
Pt1—C3—C15—C18 | −177.7 (3) | O7—C17—C28—N4 | −9.1 (5) |
C19—C3—C15—C9 | 177.5 (3) | O12—C17—C28—N4 | 174.3 (3) |
Pt1—C3—C15—C9 | −0.3 (4) | O7—C17—C28—C29 | −137.4 (4) |
N4—C9—C15—C18 | 176.1 (3) | O12—C17—C28—C29 | 46.0 (4) |
N4—C9—C15—C3 | −1.2 (4) | S4—C16—C29—C28 | 69.7 (4) |
C27—S4—C16—C29 | 83.2 (3) | N4—C28—C29—C16 | −78.1 (4) |
Pt1—S4—C16—C29 | −26.7 (3) | C17—C28—C29—C16 | 47.8 (4) |
C21—O12—C17—O7 | −10.6 (6) |
Experimental details
Crystal data | |
Chemical formula | [Pt(C15H18NO2S)Cl] |
Mr | 506.90 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 180 |
a, b, c (Å) | 8.6000 (13), 9.5093 (14), 19.679 (3) |
β (°) | 94.398 (2) |
V (Å3) | 1604.6 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.04 |
Crystal size (mm) | 0.50 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.610, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12273, 3105, 2854 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.052, 1.07 |
No. of reflections | 3105 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.36, −0.48 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported financially by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (Start-up, 19850030).
References
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Capapé, A., Crespo, M., Granell, J., Font-Bardía, M. & Solans, X. (2005). J. Organomet. Chem. 690, 4309–4318. Google Scholar
Caubet, A., López, C., Solans, X. & Font-Barda, M. (2003). J. Organomet. Chem. 669, 164–171. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Riera, X., Caubet, A., Lopez, C., Moreno, V., Solans, X. & Font-Bardia, M. (2000). Organometallics, 19, 1384–1390. Web of Science CSD CrossRef CAS Google Scholar
Severin, K., Bergs, R. & Beck, W. (1998). Angew. Chem. Int. Ed. 37, 1634–1654. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.
The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to the α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).