metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Racemic (RSC,SRS)-(2-{[1-allyl­­oxy­carbonyl-3-(methyl­sulfanyl)prop­yl]iminometh­yl}phenyl-κ3S,N,C1)chlorido­platinum(II)

aOrganic Nanomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, bMaterials Analysis Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, and cApplied Scoences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
*Correspondence e-mail: isozaki.katsuhiro@nims.go.jp

(Received 10 October 2009; accepted 15 October 2009; online 23 October 2009)

The title compound, [Pt(C15H18NO2S)Cl], was obtained by the cyclo­metallation reaction of cis-bis­(benzonitrile)dichlorido­platinum(II) with N-benzyl­idene-L-methio­nine allyl ester in refluxing toluene. The PtII atom has a square-planar geometry and is tetra-coordinated by the Cl atom and the C, N and S atoms from the benzyl­idene methio­nine ester ligand. In the crystal structure, the S atoms show opposite chiral configurations with respect to the α-carbon of the methio­nine, reducing steric repulsion between the methyl and allyl ester groups.

Related literature

For cyclometallated PtII complexes having terdentate benzylidenamine ligands cyclo­metallated benzyl­ideneamine, see: Capapé et al. (2005[Capapé, A., Crespo, M., Granell, J., Font-Bardía, M. & Solans, X. (2005). J. Organomet. Chem. 690, 4309-4318.]); Caubet et al. (2003[Caubet, A., López, C., Solans, X. & Font-Barda, M. (2003). J. Organomet. Chem. 669, 164-171.]); Riera et al. (2000[Riera, X., Caubet, A., Lopez, C., Moreno, V., Solans, X. & Font-Bardia, M. (2000). Organometallics, 19, 1384-1390.]). For organometallic amino acid complexes, see: Severin et al. (1998[Severin, K., Bergs, R. & Beck, W. (1998). Angew. Chem. Int. Ed. 37, 1634-1654.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C15H18NO2S)Cl]

  • Mr = 506.90

  • Monoclinic, P 21 /n

  • a = 8.6000 (13) Å

  • b = 9.5093 (14) Å

  • c = 19.679 (3) Å

  • β = 94.398 (2)°

  • V = 1604.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.04 mm−1

  • T = 180 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.610, Tmax = 0.862

  • 12273 measured reflections

  • 3105 independent reflections

  • 2854 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.052

  • S = 1.07

  • 3105 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.

The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to the α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).

Related literature top

For cyclometallated benzylideneamine terdentate PtII complexes, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).

Experimental top

The methionine-derived ligand was synthesized from three step reactions, esterification, deprotection, condensation using Fmoc-L-methionine as a starting material (Fig. 3). A suspension of cis-[PtCl2(PhCN)2] and methionine-derived ligand was refluxed under nitrogen atmosphere for 3 h. The crude mixture was purified by SiO2 flash column chromatography. Single crystals for X-ray analyses were obtained from a CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with Carene—H and Callyl—H = 0.93 Å, Cmethyl—H = 0.96 Å, Calkyl—H = 0.97Å and Cα—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(Carene, Calkyl) and Uiso(H) = 1.5Ueq(Cmethyl). Electron density synthesis with coefficients Fo—Fc: Highest peak 1.36 at 0.0428, 0.4390, 0.1909 (0.86 Å from Pt1)

Structure description top

Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.

The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to the α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).

For cyclometallated benzylideneamine terdentate PtII complexes, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (RC,SS)-1 with 50% probability displacement.
[Figure 2] Fig. 2. The packing structure of (1). Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Synthetic scheme of the amino acid-derived ligand for 1.
(RSC,SRS)-(2-{[1-allyloxycarbonyl-3- (methylsulfanyl)propyl]iminomethyl}phenyl- κ3S,N,C1)chloridoplatinum(II) top
Crystal data top
[Pt(C15H18NO2S)Cl]F(000) = 968
Mr = 506.90Dx = 2.098 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1024 reflections
a = 8.6000 (13) Åθ = 2.8–26.0°
b = 9.5093 (14) ŵ = 9.04 mm1
c = 19.679 (3) ÅT = 180 K
β = 94.398 (2)°Prism, orange
V = 1604.6 (4) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 910
Tmin = 0.610, Tmax = 0.862k = 1111
12273 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.033P)2 + 0.6405P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.003
191 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Pt(C15H18NO2S)Cl]V = 1604.6 (4) Å3
Mr = 506.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6000 (13) ŵ = 9.04 mm1
b = 9.5093 (14) ÅT = 180 K
c = 19.679 (3) Å0.50 × 0.10 × 0.10 mm
β = 94.398 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2854 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.862Rint = 0.024
12273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.07Δρmax = 1.36 e Å3
3105 reflectionsΔρmin = 0.48 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.456604 (14)0.848674 (12)0.309063 (6)0.01942 (6)
S40.63428 (10)0.87893 (9)0.22448 (5)0.02394 (18)
Cl10.60649 (11)1.00955 (10)0.37235 (5)0.0338 (2)
C30.3033 (4)0.8222 (3)0.37990 (18)0.0224 (7)
N40.3141 (3)0.7078 (3)0.26035 (14)0.0222 (6)
C60.1849 (5)0.9473 (5)0.0659 (2)0.0518 (12)
H6A0.15300.87930.09800.062*
H6B0.22031.03410.08010.062*
O70.1383 (4)0.8499 (3)0.16257 (16)0.0423 (7)
C90.2011 (4)0.6636 (3)0.29340 (19)0.0258 (8)
H90.13180.59590.27520.031*
C110.1695 (5)0.8600 (4)0.4821 (2)0.0331 (9)
H110.16390.90670.52340.040*
O120.2371 (3)0.7266 (3)0.07819 (13)0.0377 (6)
C130.1798 (5)0.9200 (5)0.0011 (3)0.0497 (11)
H130.21220.98930.03240.060*
C150.1855 (4)0.7230 (3)0.36017 (17)0.0242 (7)
C160.5768 (4)0.7677 (4)0.15222 (17)0.0277 (7)
H16A0.51390.82290.11900.033*
H16B0.66990.73880.13110.033*
C170.2223 (4)0.7597 (4)0.14303 (18)0.0292 (8)
C180.0640 (4)0.6922 (4)0.40057 (19)0.0322 (8)
H180.01000.62460.38680.039*
C190.2922 (4)0.8882 (4)0.44249 (18)0.0274 (7)
H190.36850.95240.45800.033*
C200.0548 (4)0.7633 (4)0.46131 (18)0.0366 (9)
H200.02770.74650.48810.044*
C210.1259 (5)0.7871 (5)0.0261 (2)0.0469 (11)
H21A0.11000.72170.01160.056*
H21B0.02640.80090.04530.056*
C270.8092 (4)0.7906 (4)0.2577 (2)0.0355 (9)
H27A0.78810.69220.26270.053*
H27B0.84340.82980.30120.053*
H27C0.88920.80290.22680.053*
C280.3198 (4)0.6605 (3)0.18980 (18)0.0246 (8)
H280.26750.56890.18670.030*
C290.4852 (4)0.6366 (3)0.16894 (19)0.0270 (8)
H29A0.54360.58700.20560.032*
H29B0.47930.57560.12930.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01859 (9)0.02131 (9)0.01877 (9)0.00125 (4)0.00404 (6)0.00029 (4)
S40.0227 (4)0.0254 (4)0.0247 (5)0.0004 (3)0.0077 (3)0.0000 (3)
Cl10.0320 (5)0.0411 (5)0.0291 (5)0.0148 (4)0.0066 (4)0.0086 (4)
C30.0202 (18)0.0253 (16)0.0217 (18)0.0021 (13)0.0012 (14)0.0065 (13)
N40.0247 (15)0.0216 (14)0.0206 (14)0.0022 (11)0.0042 (11)0.0008 (11)
C60.046 (3)0.062 (3)0.050 (3)0.009 (2)0.020 (2)0.018 (2)
O70.0392 (17)0.0494 (18)0.0387 (17)0.0171 (13)0.0061 (14)0.0016 (12)
C90.0243 (19)0.0242 (18)0.029 (2)0.0058 (13)0.0012 (15)0.0004 (13)
C110.030 (2)0.047 (2)0.022 (2)0.0010 (16)0.0050 (16)0.0026 (15)
O120.0289 (14)0.0599 (18)0.0244 (13)0.0047 (13)0.0030 (11)0.0035 (12)
C130.036 (2)0.052 (3)0.062 (3)0.007 (2)0.005 (2)0.001 (2)
C150.0224 (17)0.0290 (18)0.0211 (17)0.0015 (13)0.0013 (13)0.0021 (13)
C160.0244 (18)0.036 (2)0.0236 (17)0.0017 (15)0.0079 (14)0.0030 (15)
C170.0224 (18)0.037 (2)0.0287 (19)0.0002 (15)0.0044 (14)0.0039 (16)
C180.024 (2)0.042 (2)0.030 (2)0.0109 (16)0.0030 (15)0.0034 (17)
C190.0253 (19)0.0330 (18)0.0240 (18)0.0018 (15)0.0021 (14)0.0021 (15)
C200.028 (2)0.059 (3)0.0234 (19)0.0062 (18)0.0097 (15)0.0058 (17)
C210.036 (2)0.071 (3)0.033 (2)0.000 (2)0.0041 (18)0.009 (2)
C270.0222 (19)0.043 (2)0.041 (2)0.0063 (16)0.0015 (16)0.0047 (18)
C280.029 (2)0.0233 (18)0.0219 (18)0.0019 (13)0.0018 (15)0.0044 (12)
C290.027 (2)0.0287 (18)0.0255 (19)0.0064 (14)0.0037 (15)0.0075 (14)
Geometric parameters (Å, º) top
Pt1—C32.006 (4)C13—C211.446 (7)
Pt1—N42.009 (3)C13—H130.9300
Pt1—Cl12.3037 (9)C15—C181.392 (5)
Pt1—S42.3618 (9)C16—C291.524 (5)
S4—C271.801 (4)C16—H16A0.9700
S4—C161.810 (3)C16—H16B0.9700
C3—C191.392 (5)C17—C281.524 (5)
C3—C151.417 (5)C18—C201.381 (5)
N4—C91.281 (4)C18—H180.9300
N4—C281.464 (4)C19—H190.9300
C6—C131.348 (6)C20—H200.9300
C6—H6A0.9300C21—H21A0.9700
C6—H6B0.9300C21—H21B0.9700
O7—C171.204 (4)C27—H27A0.9600
C9—C151.446 (5)C27—H27B0.9600
C9—H90.9300C27—H27C0.9600
C11—C191.386 (5)C28—C291.528 (5)
C11—C201.387 (5)C28—H280.9800
C11—H110.9300C29—H29A0.9700
O12—C171.330 (4)C29—H29B0.9700
O12—C211.464 (5)
C3—Pt1—N480.72 (13)O7—C17—O12125.4 (3)
C3—Pt1—Cl194.46 (10)O7—C17—C28124.4 (3)
N4—Pt1—Cl1175.18 (8)O12—C17—C28110.1 (3)
C3—Pt1—S4179.20 (10)C20—C18—C15119.1 (3)
N4—Pt1—S498.56 (8)C20—C18—H18120.4
Cl1—Pt1—S486.26 (3)C15—C18—H18120.4
C27—S4—C16100.53 (18)C11—C19—C3121.2 (3)
C27—S4—Pt1104.77 (14)C11—C19—H19119.4
C16—S4—Pt1109.27 (12)C3—C19—H19119.4
C19—C3—C15116.5 (3)C18—C20—C11119.6 (3)
C19—C3—Pt1130.7 (3)C18—C20—H20120.2
C15—C3—Pt1112.8 (2)C11—C20—H20120.2
C9—N4—C28117.6 (3)C13—C21—O12111.9 (4)
C9—N4—Pt1115.8 (2)C13—C21—H21A109.2
C28—N4—Pt1126.4 (2)O12—C21—H21A109.2
C13—C6—H6A120.0C13—C21—H21B109.2
C13—C6—H6B120.0O12—C21—H21B109.2
H6A—C6—H6B120.0H21A—C21—H21B107.9
N4—C9—C15117.4 (3)S4—C27—H27A109.5
N4—C9—H9121.3S4—C27—H27B109.5
C15—C9—H9121.3H27A—C27—H27B109.5
C19—C11—C20121.1 (4)S4—C27—H27C109.5
C19—C11—H11119.4H27A—C27—H27C109.5
C20—C11—H11119.4H27B—C27—H27C109.5
C17—O12—C21118.2 (3)N4—C28—C17109.0 (3)
C6—C13—C21122.5 (5)N4—C28—C29113.6 (3)
C6—C13—H13118.8C17—C28—C29114.2 (3)
C21—C13—H13118.8N4—C28—H28106.5
C18—C15—C3122.4 (3)C17—C28—H28106.5
C18—C15—C9124.2 (3)C29—C28—H28106.5
C3—C15—C9113.3 (3)C16—C29—C28116.4 (3)
C29—C16—S4115.0 (2)C16—C29—H29A108.2
C29—C16—H16A108.5C28—C29—H29A108.2
S4—C16—H16A108.5C16—C29—H29B108.2
C29—C16—H16B108.5C28—C29—H29B108.2
S4—C16—H16B108.5H29A—C29—H29B107.4
H16A—C16—H16B107.5
N4—Pt1—S4—C27107.41 (16)C21—O12—C17—C28165.9 (3)
Cl1—Pt1—S4—C2772.70 (14)C3—C15—C18—C201.8 (6)
Cl1—Pt1—S4—C16179.70 (13)C9—C15—C18—C20175.2 (3)
N4—Pt1—C3—C19176.3 (4)C20—C11—C19—C31.1 (6)
Cl1—Pt1—C3—C193.6 (3)C15—C3—C19—C111.6 (5)
N4—Pt1—C3—C151.1 (2)Pt1—C3—C19—C11175.8 (3)
Cl1—Pt1—C3—C15179.0 (2)C15—C18—C20—C112.4 (6)
C3—Pt1—N4—C91.8 (3)C19—C11—C20—C181.0 (6)
S4—Pt1—N4—C9178.5 (2)C6—C13—C21—O12128.9 (4)
C3—Pt1—N4—C28172.9 (3)C17—O12—C21—C1390.1 (5)
S4—Pt1—N4—C286.8 (3)C9—N4—C28—C1786.9 (4)
C28—N4—C9—C15173.0 (3)Pt1—N4—C28—C1787.7 (3)
Pt1—N4—C9—C152.2 (4)C9—N4—C28—C29144.4 (3)
C19—C3—C15—C180.1 (5)Pt1—N4—C28—C2940.9 (4)
Pt1—C3—C15—C18177.7 (3)O7—C17—C28—N49.1 (5)
C19—C3—C15—C9177.5 (3)O12—C17—C28—N4174.3 (3)
Pt1—C3—C15—C90.3 (4)O7—C17—C28—C29137.4 (4)
N4—C9—C15—C18176.1 (3)O12—C17—C28—C2946.0 (4)
N4—C9—C15—C31.2 (4)S4—C16—C29—C2869.7 (4)
C27—S4—C16—C2983.2 (3)N4—C28—C29—C1678.1 (4)
Pt1—S4—C16—C2926.7 (3)C17—C28—C29—C1647.8 (4)
C21—O12—C17—O710.6 (6)

Experimental details

Crystal data
Chemical formula[Pt(C15H18NO2S)Cl]
Mr506.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)8.6000 (13), 9.5093 (14), 19.679 (3)
β (°) 94.398 (2)
V3)1604.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)9.04
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.610, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
12273, 3105, 2854
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.07
No. of reflections3105
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.48

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (Start-up, 19850030).

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapapé, A., Crespo, M., Granell, J., Font-Bardía, M. & Solans, X. (2005). J. Organomet. Chem. 690, 4309–4318.  Google Scholar
First citationCaubet, A., López, C., Solans, X. & Font-Barda, M. (2003). J. Organomet. Chem. 669, 164–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRiera, X., Caubet, A., Lopez, C., Moreno, V., Solans, X. & Font-Bardia, M. (2000). Organometallics, 19, 1384–1390.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeverin, K., Bergs, R. & Beck, W. (1998). Angew. Chem. Int. Ed. 37, 1634–1654.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds