metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua{6,6′-dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}copper(II)

aDepartment of Chemistry, Mudanjiang Normal College, Mudanjiang 157012, People's Republic of China
*Correspondence e-mail: YutingW111@126.com

(Received 15 October 2009; accepted 17 October 2009; online 31 October 2009)

In the asymmetric unit of the title compound, [Cu(C19H20N2O4)(H2O)], there are two independent mononuclear CuII complexes. The coordination environment of each CuII ion is square-pyramidal completed by two N atoms and two O atoms forming the basal plane, and one O atom of the water mol­ecule occupying the apical position. Neighbouring complexes are connected via O—H⋯O hydrogen bonds between the water mol­ecule and the meth­oxy group, forming a chain structure along the a axis. The propyl­ene groups of the two independent complexes are disordered over two positions with site occupancies of 0.361 (7):0.639 (7) and 0.224 (8):0.776 (8). The crystal under investigation was a partial inversion twin.

Related literature

For general background to coordination complexes, see: Karlin (1993[Karlin, K. D. (1993). Science, 261, 701-708.]); Shankar et al. (2009[Shankar, R., Jain, A., Singh, A. P., Kociok-Kohn, G. & Molloy, K. C. (2009). Inorg. Chem. 48, 3608-3616.]); Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]). For a related structure, see: Sui et al. (2007[Sui, Y., Hu, R.-H., Peng, J.-L. & Ng, S. W. (2007). Acta Cryst. E63, m2122.]). For the synthesis of the ligand mol­ecule, see: Saha et al. (2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron 26, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H20N2O4)(H2O)]

  • Mr = 421.93

  • Orthorhombic, P n a 21

  • a = 20.6870 (15) Å

  • b = 22.9179 (17) Å

  • c = 7.6639 (6) Å

  • V = 3633.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 295 K

  • 0.18 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.808, Tmax = 0.908

  • 17668 measured reflections

  • 5909 independent reflections

  • 4814 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.00

  • 5909 reflections

  • 502 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2453 Friedel pairs

  • Flack parameter: 0.249 (15)

Table 1
Selected bond lengths (Å)

N1—Cu1 1.996 (3)
N2—Cu1 1.988 (4)
N3—Cu2 1.980 (4)
N4—Cu2 1.995 (3)
O2—Cu1 1.958 (3)
O3—Cu1 1.931 (2)
O5—Cu1 2.414 (4)
O7—Cu2 1.934 (3)
O8—Cu2 1.958 (3)
O10—Cu2 2.388 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10E⋯O1 0.85 2.00 2.818 (4) 161
O10—H10F⋯O4 0.85 2.02 2.768 (4) 147
O5—H5A⋯O9i 0.85 2.05 2.779 (4) 143
O5—H5B⋯O6i 0.85 2.02 2.758 (4) 145
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination complexes have been intensively researched due to their inherent unique physical and chemical properties (Ward et al., 2007; Shankar et al., 2009). In particular, those compounds with Schiff-base ligands perform at the active sites of many metalloenzymes and therefore play important roles in biological systems (Karlin, 1993). Whereas, it appears necessary to further widen the Schiff-base system of application of metal-organic coordination compounds. Herein, a neutral mononuclear copper(II) compound has been obtained by traditional solution method and its structure is depicted in this paper.

As shown in Fig. 1, compound I is a mononuclear neutral complex [CuIIL(H2O)] with a distorted molecular configuration. Each Cu(II) ion is coordinated in a square-pyramidal geometry with the basal square built from two nitrogen atoms and two oxygen atoms from L ligand, with the apical position occupied by the water molecule. The bond lengths of Cu—O and Cu—N are normal (Sui et al., 2007). The adjacent CuL(H2O) molecules are further connected via the hydrogen bond O—H···O interaction between the coordinated water molecules and oxygen atoms of alkoxyl group, leading to a one-dimensional chain-like supramolecular structure along the a axis in Fig. 2.

Related literature top

For general background to coordination complexes, see: Karlin (1993); Shankar et al. (2009); Ward (2007). For a related structure, see: Sui et al. (2007). For the synthesis of the ligand molecule, see: Saha et al. (2007).

Experimental top

The H2L ligand was synthesized according to the previous literature (Saha et al., 2007). the synthesis method of the compound I was obtained by allowing the mixture of H2L (0.342 g, 1 mmol) and Cu(OAc)2.2H2O (0.2 g, 1 mmol) being stirred in the 10 ml methanol solution for 30 min, then filtered. The precipitation was collected and dried, the yield of the product is 0.36 g, 85%. Suitable yellow crystals were obtained via slow evaporation of the acetone solution containing this complex at room temperature

Refinement top

H atoms were refined using a riding model, with C—H = 0.93–0.97 Å and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C, O). The propylene groups of this crystal were disordered over two positions and the occupancy factors were refined to 0.361 (7):0.639 (7) and 0.224 (8):0.776 (8). The temperature factors of the unprimed and primed atoms of propylene groups have been set to equal by the 'EADP' constraint. The C—C and C—N bond lengths were restrained to 1.52 (1) and 1.50 (1) Å, respectively. The split propylene groups were refined with 'EXYZ' command to share the same C9 atom and C30 atom, respectively. The Flack parameter of 0.249 (15) implies that the crystal used was a partial inversion twin.

Structure description top

Coordination complexes have been intensively researched due to their inherent unique physical and chemical properties (Ward et al., 2007; Shankar et al., 2009). In particular, those compounds with Schiff-base ligands perform at the active sites of many metalloenzymes and therefore play important roles in biological systems (Karlin, 1993). Whereas, it appears necessary to further widen the Schiff-base system of application of metal-organic coordination compounds. Herein, a neutral mononuclear copper(II) compound has been obtained by traditional solution method and its structure is depicted in this paper.

As shown in Fig. 1, compound I is a mononuclear neutral complex [CuIIL(H2O)] with a distorted molecular configuration. Each Cu(II) ion is coordinated in a square-pyramidal geometry with the basal square built from two nitrogen atoms and two oxygen atoms from L ligand, with the apical position occupied by the water molecule. The bond lengths of Cu—O and Cu—N are normal (Sui et al., 2007). The adjacent CuL(H2O) molecules are further connected via the hydrogen bond O—H···O interaction between the coordinated water molecules and oxygen atoms of alkoxyl group, leading to a one-dimensional chain-like supramolecular structure along the a axis in Fig. 2.

For general background to coordination complexes, see: Karlin (1993); Shankar et al. (2009); Ward (2007). For a related structure, see: Sui et al. (2007). For the synthesis of the ligand molecule, see: Saha et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and all the hydrogen atoms have been omitted for clarity. In each molecule, only one component of the disordered propylene group is shown.
[Figure 2] Fig. 2. A packing diagram of (I) with a one-dimensional chain-like supramolecular structure, with the hydrogen atoms of carbon atoms being omitted for clarity.
Aqua{6,6'-dimethoxy-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C19H20N2O4)(H2O)]F(000) = 1752
Mr = 421.93Dx = 1.543 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3860 reflections
a = 20.6870 (15) Åθ = 2.8–24.1°
b = 22.9179 (17) ŵ = 1.24 mm1
c = 7.6639 (6) ÅT = 295 K
V = 3633.5 (5) Å3Block, green
Z = 80.18 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
5909 independent reflections
Radiation source: fine-focus sealed tube4814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2725
Tmin = 0.808, Tmax = 0.908l = 97
17668 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5909 reflectionsΔρmax = 0.26 e Å3
502 parametersΔρmin = 0.29 e Å3
15 restraintsAbsolute structure: Flack (1983), 2453 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.249 (15)
Crystal data top
[Cu(C19H20N2O4)(H2O)]V = 3633.5 (5) Å3
Mr = 421.93Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 20.6870 (15) ŵ = 1.24 mm1
b = 22.9179 (17) ÅT = 295 K
c = 7.6639 (6) Å0.18 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
5909 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4814 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.908Rint = 0.040
17668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.26 e Å3
S = 1.00Δρmin = 0.29 e Å3
5909 reflectionsAbsolute structure: Flack (1983), 2453 Friedel pairs
502 parametersAbsolute structure parameter: 0.249 (15)
15 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.09091 (19)0.3864 (2)0.1707 (7)0.0648 (14)
H1A0.06160.35680.21130.097*
H1B0.07940.39760.05410.097*
H1C0.08840.41970.24610.097*
C20.20370 (19)0.39932 (16)0.1185 (6)0.0432 (10)
C30.1964 (2)0.45593 (17)0.0630 (7)0.0537 (12)
H30.15520.47230.06120.064*
C40.2486 (2)0.48950 (19)0.0095 (6)0.0609 (13)
H40.24260.52770.02830.073*
C50.3084 (2)0.46558 (19)0.0136 (6)0.0575 (14)
H50.34380.48810.01920.069*
C60.31810 (19)0.40757 (16)0.0661 (6)0.0414 (10)
C70.26648 (18)0.37226 (15)0.1208 (6)0.0383 (10)
C80.38423 (18)0.38649 (18)0.0719 (6)0.0446 (10)
H80.41630.41430.05380.054*
C90.47463 (17)0.32791 (18)0.1093 (6)0.0542 (12)0.361 (7)
H9A0.48680.31660.22670.065*0.361 (7)
H9B0.49540.36480.08300.065*0.361 (7)
C100.4971 (11)0.2816 (5)0.020 (2)0.070 (3)0.361 (7)
H10A0.47960.29100.13410.085*0.361 (7)
H10B0.54390.28350.02880.085*0.361 (7)
C110.4782 (3)0.2195 (6)0.024 (2)0.074 (3)0.361 (7)
H11A0.48840.21100.14530.089*0.361 (7)
H11B0.50140.19220.04930.089*0.361 (7)
C9'0.47463 (17)0.32791 (18)0.1093 (6)0.0542 (12)0.639 (7)
H9C0.48810.33690.22750.065*0.639 (7)
H9D0.49440.35660.03290.065*0.639 (7)
C10'0.5005 (6)0.2684 (4)0.0615 (14)0.070 (3)0.639 (7)
H10C0.49620.24200.15980.085*0.639 (7)
H10D0.54600.27120.03130.085*0.639 (7)
C11'0.4622 (4)0.2455 (4)0.0931 (12)0.074 (3)0.639 (7)
H11C0.48770.21860.16210.089*0.639 (7)
H11D0.44760.27720.16730.089*0.639 (7)
C120.3935 (2)0.1614 (2)0.0492 (7)0.0614 (14)
H120.42620.14230.10940.074*
C130.33653 (18)0.12826 (18)0.0148 (6)0.0397 (10)
C140.3349 (2)0.0695 (2)0.0731 (6)0.0558 (13)
H140.37010.05460.13400.067*
C150.2833 (2)0.03444 (19)0.0423 (7)0.0598 (13)
H150.28290.00380.08290.072*
C160.2310 (2)0.05641 (17)0.0507 (6)0.0540 (13)
H160.19570.03240.07340.065*
C170.23071 (17)0.11327 (15)0.1100 (6)0.0397 (10)
C180.28444 (17)0.15138 (16)0.0825 (6)0.0380 (10)
C190.12368 (18)0.10614 (19)0.2255 (7)0.0524 (12)
H19A0.09340.12910.29100.079*
H19B0.13350.07110.28890.079*
H19C0.10510.09620.11460.079*
C200.12773 (19)0.39180 (19)0.4322 (6)0.0532 (12)
H20A0.15940.36600.38320.080*
H20B0.12050.42380.35380.080*
H20C0.14300.40640.54210.080*
C210.01810 (18)0.39057 (17)0.5282 (6)0.0412 (11)
C220.01621 (19)0.44966 (16)0.5539 (6)0.0519 (12)
H220.05180.47240.52450.062*
C230.0383 (2)0.47585 (17)0.6234 (7)0.0594 (13)
H230.03970.51610.63930.071*
C240.0896 (2)0.44249 (19)0.6679 (7)0.0598 (13)
H240.12600.46030.71480.072*
C250.08947 (18)0.38171 (16)0.6454 (6)0.0417 (11)
C260.03530 (18)0.35374 (16)0.5714 (6)0.0370 (9)
C270.1449 (2)0.3496 (2)0.7007 (7)0.0588 (14)
H270.17850.37150.74790.071*
C280.2259 (4)0.2890 (9)0.661 (3)0.065 (2)0.224 (8)
H28A0.23500.29260.53750.078*0.224 (8)
H28B0.24910.31960.72240.078*0.224 (8)
C290.2480 (18)0.2297 (6)0.726 (3)0.065 (3)0.224 (8)
H29A0.23190.22430.84400.078*0.224 (8)
H29B0.29480.22950.73170.078*0.224 (8)
C300.22592 (17)0.17823 (18)0.6147 (7)0.0533 (11)0.224 (8)
H30A0.23780.18480.49390.064*0.224 (8)
H30B0.24700.14280.65410.064*0.224 (8)
C28'0.2125 (3)0.2698 (3)0.7848 (9)0.065 (2)0.776 (8)
H28C0.23820.30050.83700.078*0.776 (8)
H28D0.19950.24260.87530.078*0.776 (8)
C29'0.2498 (4)0.2390 (3)0.6439 (12)0.065 (3)0.776 (8)
H29C0.24620.26090.53610.078*0.776 (8)
H29D0.29520.23760.67610.078*0.776 (8)
C30'0.22592 (17)0.17823 (18)0.6147 (7)0.0533 (11)0.776 (8)
H30C0.23920.16560.49940.064*0.776 (8)
H30D0.24630.15260.69900.064*0.776 (8)
C310.1352 (2)0.12165 (19)0.6818 (6)0.0440 (11)
H310.16720.09600.71940.053*
C320.0696 (2)0.10016 (17)0.6892 (6)0.0404 (10)
C330.0592 (2)0.04488 (18)0.7611 (6)0.0517 (12)
H330.09410.02470.80830.062*
C340.0003 (2)0.01979 (19)0.7640 (6)0.0554 (12)
H340.00650.01650.81590.067*
C350.0517 (2)0.04940 (17)0.6881 (6)0.0464 (11)
H350.09230.03200.68580.056*
C360.04381 (18)0.10348 (16)0.6167 (6)0.0406 (10)
C370.01811 (17)0.13165 (15)0.6142 (5)0.0340 (9)
C380.1553 (2)0.1113 (2)0.5384 (8)0.0673 (15)
H38A0.18400.13790.48030.101*
H38B0.16940.10570.65650.101*
H38C0.15530.07460.47850.101*
N10.40348 (14)0.33463 (14)0.0987 (6)0.0426 (8)
N20.40470 (19)0.2144 (2)0.0068 (6)0.0720 (14)
N30.15392 (17)0.29488 (18)0.6935 (6)0.0686 (14)
N40.15466 (14)0.17189 (14)0.6296 (6)0.0396 (8)
O10.15456 (12)0.36417 (12)0.1717 (5)0.0558 (9)
O20.27165 (12)0.31825 (11)0.1707 (4)0.0422 (8)
O30.28187 (12)0.20415 (10)0.1451 (4)0.0390 (7)
O40.18053 (13)0.13826 (12)0.1993 (5)0.0529 (8)
O50.39293 (18)0.25291 (11)0.4074 (6)0.0525 (11)
H5A0.41510.28100.44840.079*
H5B0.41740.22340.39590.079*
O60.06950 (13)0.36132 (12)0.4577 (5)0.0582 (10)
O70.03113 (12)0.29827 (11)0.5386 (4)0.0415 (8)
O80.02381 (12)0.18312 (11)0.5450 (4)0.0402 (8)
O90.09157 (13)0.13489 (12)0.5383 (5)0.0558 (10)
O100.14401 (17)0.24940 (12)0.3006 (6)0.0520 (10)
H10E0.15670.28280.26720.078*
H10F0.16630.22390.24710.078*
Cu10.34458 (2)0.26616 (2)0.12353 (6)0.03785 (14)
Cu20.09494 (2)0.238236 (18)0.58068 (6)0.03693 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.071 (3)0.078 (4)0.018 (2)0.009 (3)0.013 (3)
C20.051 (2)0.037 (2)0.042 (3)0.0014 (18)0.006 (2)0.000 (2)
C30.060 (3)0.039 (2)0.062 (3)0.017 (2)0.004 (3)0.002 (2)
C40.078 (3)0.030 (2)0.074 (4)0.006 (2)0.014 (3)0.014 (2)
C50.064 (3)0.041 (3)0.067 (4)0.002 (2)0.015 (3)0.006 (2)
C60.045 (2)0.033 (2)0.046 (3)0.0015 (17)0.004 (2)0.005 (2)
C70.048 (2)0.030 (2)0.038 (2)0.0019 (16)0.006 (2)0.0008 (19)
C80.043 (2)0.044 (2)0.047 (3)0.0075 (18)0.001 (2)0.006 (2)
C90.033 (2)0.068 (3)0.062 (3)0.0062 (19)0.004 (2)0.011 (3)
C100.030 (3)0.090 (6)0.092 (10)0.006 (4)0.007 (7)0.010 (6)
C110.054 (5)0.073 (6)0.096 (9)0.011 (4)0.053 (6)0.005 (4)
C9'0.033 (2)0.068 (3)0.062 (3)0.0062 (19)0.004 (2)0.011 (3)
C10'0.030 (3)0.090 (6)0.092 (10)0.006 (4)0.007 (7)0.010 (6)
C11'0.054 (5)0.073 (6)0.096 (9)0.011 (4)0.053 (6)0.005 (4)
C120.051 (3)0.072 (4)0.061 (3)0.005 (3)0.018 (3)0.020 (3)
C130.039 (2)0.044 (3)0.036 (2)0.0128 (19)0.0032 (19)0.0019 (19)
C140.064 (3)0.049 (3)0.055 (3)0.017 (2)0.009 (2)0.010 (2)
C150.075 (4)0.033 (3)0.072 (3)0.009 (2)0.003 (3)0.017 (2)
C160.059 (3)0.032 (2)0.071 (4)0.0000 (19)0.002 (3)0.009 (2)
C170.041 (2)0.033 (2)0.045 (3)0.0018 (16)0.001 (2)0.004 (2)
C180.037 (2)0.039 (2)0.038 (3)0.0045 (16)0.003 (2)0.001 (2)
C190.041 (3)0.046 (3)0.069 (3)0.007 (2)0.001 (2)0.007 (2)
C200.038 (2)0.053 (3)0.069 (3)0.007 (2)0.012 (2)0.001 (2)
C210.038 (2)0.034 (2)0.051 (3)0.0003 (17)0.001 (2)0.0074 (18)
C220.050 (2)0.032 (2)0.074 (3)0.0069 (18)0.010 (3)0.005 (2)
C230.067 (3)0.032 (2)0.079 (4)0.0019 (19)0.009 (3)0.013 (2)
C240.056 (3)0.047 (3)0.077 (4)0.008 (2)0.019 (3)0.016 (2)
C250.041 (2)0.036 (2)0.047 (3)0.0028 (17)0.006 (2)0.0094 (18)
C260.037 (2)0.033 (2)0.041 (2)0.0019 (16)0.003 (2)0.001 (2)
C270.045 (3)0.056 (3)0.075 (4)0.002 (2)0.022 (3)0.026 (3)
C280.077 (5)0.067 (4)0.051 (5)0.020 (3)0.046 (4)0.013 (4)
C290.028 (3)0.070 (4)0.098 (8)0.002 (3)0.008 (6)0.002 (5)
C300.031 (2)0.067 (3)0.061 (3)0.0114 (19)0.005 (2)0.002 (3)
C28'0.077 (5)0.067 (4)0.051 (5)0.020 (3)0.046 (4)0.013 (4)
C29'0.028 (3)0.070 (4)0.098 (8)0.002 (3)0.008 (6)0.002 (5)
C30'0.031 (2)0.067 (3)0.061 (3)0.0114 (19)0.005 (2)0.002 (3)
C310.047 (2)0.044 (3)0.041 (3)0.016 (2)0.003 (2)0.005 (2)
C320.046 (2)0.037 (2)0.039 (2)0.0059 (19)0.0042 (19)0.0051 (18)
C330.059 (3)0.045 (3)0.051 (3)0.016 (2)0.007 (2)0.006 (2)
C340.068 (3)0.033 (3)0.065 (3)0.002 (2)0.003 (3)0.014 (2)
C350.051 (3)0.040 (2)0.048 (3)0.007 (2)0.001 (2)0.0029 (19)
C360.044 (2)0.035 (2)0.043 (3)0.0004 (17)0.002 (2)0.003 (2)
C370.039 (2)0.030 (2)0.033 (2)0.0027 (15)0.002 (2)0.0076 (19)
C380.047 (3)0.069 (3)0.085 (4)0.014 (2)0.014 (3)0.025 (3)
N10.0345 (17)0.049 (2)0.044 (2)0.0029 (14)0.0020 (17)0.008 (2)
N20.062 (3)0.068 (3)0.086 (4)0.015 (2)0.044 (2)0.025 (3)
N30.050 (2)0.058 (3)0.098 (4)0.0197 (19)0.032 (2)0.033 (2)
N40.0313 (17)0.047 (2)0.040 (2)0.0097 (14)0.0013 (16)0.001 (2)
O10.0397 (17)0.0407 (17)0.087 (3)0.0081 (13)0.0083 (17)0.0134 (16)
O20.0392 (16)0.0323 (15)0.055 (2)0.0026 (12)0.0037 (14)0.0065 (13)
O30.0389 (15)0.0324 (14)0.0457 (18)0.0009 (11)0.0060 (14)0.0097 (13)
O40.0419 (17)0.0345 (16)0.082 (2)0.0051 (13)0.0141 (17)0.0170 (15)
O50.059 (2)0.0342 (17)0.065 (3)0.0006 (13)0.012 (2)0.0024 (14)
O60.0328 (16)0.0343 (16)0.107 (3)0.0049 (13)0.0192 (18)0.0152 (16)
O70.0323 (14)0.0268 (15)0.065 (2)0.0035 (11)0.0069 (14)0.0099 (13)
O80.0331 (14)0.0320 (15)0.055 (2)0.0011 (11)0.0059 (14)0.0099 (13)
O90.0394 (17)0.0471 (17)0.081 (3)0.0063 (14)0.0120 (17)0.0226 (16)
O100.061 (2)0.0386 (19)0.056 (3)0.0058 (14)0.017 (2)0.0035 (13)
Cu10.0328 (3)0.0381 (3)0.0426 (4)0.0014 (2)0.0035 (2)0.0004 (3)
Cu20.0321 (3)0.0362 (2)0.0425 (4)0.0051 (2)0.0054 (2)0.0022 (3)
Geometric parameters (Å, º) top
C1—O11.412 (4)C22—C231.385 (5)
C1—H1A0.9600C22—H220.9300
C1—H1B0.9600C23—C241.351 (6)
C1—H1C0.9600C23—H230.9300
C2—O11.360 (4)C24—C251.404 (5)
C2—C31.374 (5)C24—H240.9300
C2—C71.439 (5)C25—C261.410 (5)
C3—C41.388 (6)C25—C271.426 (6)
C3—H30.9300C26—O71.299 (4)
C4—C51.353 (6)C27—N31.270 (6)
C4—H40.9300C27—H270.9300
C5—C61.404 (5)C28—C291.516 (10)
C5—H50.9300C28—N31.516 (6)
C6—C71.404 (5)C28—H28A0.9700
C6—C81.452 (5)C28—H28B0.9700
C7—O21.300 (4)C29—C301.527 (10)
C8—N11.270 (5)C29—H29A0.9700
C8—H80.9300C29—H29B0.9700
C9—N11.482 (4)C30—N41.486 (4)
C9—C101.526 (10)C30—H30A0.9700
C9—H9A0.9700C30—H30B0.9700
C9—H9B0.9700C28'—C29'1.504 (7)
C10—C111.513 (10)C28'—N31.513 (5)
C10—H10A0.9700C28'—H28C0.9700
C10—H10B0.9700C28'—H28D0.9700
C11—N21.543 (6)C29'—H29C0.9700
C11—H11A0.9700C29'—H29D0.9700
C11—H11B0.9700C31—N41.284 (5)
C10'—C11'1.520 (8)C31—C321.445 (6)
C10'—H10C0.9700C31—H310.9300
C10'—H10D0.9700C32—C331.398 (5)
C11'—N21.536 (5)C32—C371.409 (5)
C11'—H11C0.9700C33—C341.359 (6)
C11'—H11D0.9700C33—H330.9300
C12—N21.277 (6)C34—C351.389 (6)
C12—C131.427 (6)C34—H340.9300
C12—H120.9300C35—C361.364 (5)
C13—C181.413 (5)C35—H350.9300
C13—C141.420 (6)C36—O91.362 (5)
C14—C151.357 (6)C36—C371.435 (5)
C14—H140.9300C37—O81.299 (4)
C15—C161.390 (6)C38—O91.424 (4)
C15—H150.9300C38—H38A0.9600
C16—C171.380 (5)C38—H38B0.9600
C16—H160.9300C38—H38C0.9600
C17—O41.369 (5)N1—Cu11.996 (3)
C17—C181.429 (5)N2—Cu11.988 (4)
C18—O31.302 (4)N3—Cu21.980 (4)
C19—O41.402 (4)N4—Cu21.995 (3)
C19—H19A0.9600O2—Cu11.958 (3)
C19—H19B0.9600O3—Cu11.931 (2)
C19—H19C0.9600O5—Cu12.414 (4)
C20—O61.406 (5)O5—H5A0.8499
C20—H20A0.9600O5—H5B0.8500
C20—H20B0.9600O7—Cu21.934 (3)
C20—H20C0.9600O8—Cu21.958 (3)
C21—O61.368 (5)O10—Cu22.388 (4)
C21—C221.369 (5)O10—H10E0.8500
C21—C261.429 (5)O10—H10F0.8499
O1—C1—H1A109.5N3—C27—H27116.0
O1—C1—H1B109.5C25—C27—H27116.0
H1A—C1—H1B109.5C29—C28—N3108.8 (19)
O1—C1—H1C109.5C29—C28—H28A109.9
H1A—C1—H1C109.5N3—C28—H28A109.9
H1B—C1—H1C109.5C29—C28—H28B109.9
O1—C2—C3124.8 (4)N3—C28—H28B109.9
O1—C2—C7114.6 (3)H28A—C28—H28B108.3
C3—C2—C7120.7 (4)C28—C29—C30114.7 (15)
C2—C3—C4122.0 (4)C28—C29—H29A108.6
C2—C3—H3119.0C30—C29—H29A108.6
C4—C3—H3119.0C28—C29—H29B108.6
C5—C4—C3118.7 (4)C30—C29—H29B108.6
C5—C4—H4120.7H29A—C29—H29B107.6
C3—C4—H4120.7N4—C30—C29109.2 (15)
C4—C5—C6121.4 (4)N4—C30—H30A109.8
C4—C5—H5119.3C29—C30—H30A109.8
C6—C5—H5119.3N4—C30—H30B109.8
C7—C6—C5121.5 (4)C29—C30—H30B109.8
C7—C6—C8121.1 (3)H30A—C30—H30B108.3
C5—C6—C8117.3 (4)C29'—C28'—N3105.0 (6)
O2—C7—C6125.0 (3)C29'—C28'—H28C110.8
O2—C7—C2119.2 (3)N3—C28'—H28C110.8
C6—C7—C2115.8 (3)C29'—C28'—H28D110.8
N1—C8—C6127.7 (4)N3—C28'—H28D110.8
N1—C8—H8116.1H28C—C28'—H28D108.8
C6—C8—H8116.1C28'—C29'—H29C109.2
N1—C9—C10109.9 (10)C28'—C29'—H29D109.2
N1—C9—H9A109.7H29C—C29'—H29D107.9
C10—C9—H9A109.7N4—C31—C32127.7 (4)
N1—C9—H9B109.7N4—C31—H31116.1
C10—C9—H9B109.7C32—C31—H31116.1
H9A—C9—H9B108.2C33—C32—C37120.6 (4)
C11—C10—C9115.4 (12)C33—C32—C31117.9 (4)
C11—C10—H10A108.4C37—C32—C31121.3 (4)
C9—C10—H10A108.4C34—C33—C32121.9 (4)
C11—C10—H10B108.4C34—C33—H33119.0
C9—C10—H10B108.4C32—C33—H33119.0
H10A—C10—H10B107.5C33—C34—C35118.7 (4)
C10—C11—N2107.0 (13)C33—C34—H34120.7
C10—C11—H11A110.3C35—C34—H34120.7
N2—C11—H11A110.3C36—C35—C34121.4 (4)
C10—C11—H11B110.3C36—C35—H35119.3
N2—C11—H11B110.3C34—C35—H35119.3
H11A—C11—H11B108.6O9—C36—C35124.8 (3)
C11'—C10'—H10C110.0O9—C36—C37113.8 (3)
C11'—C10'—H10D110.0C35—C36—C37121.4 (4)
H10C—C10'—H10D108.4O8—C37—C32124.3 (3)
C10'—C11'—N2103.2 (8)O8—C37—C36119.7 (3)
C10'—C11'—H11C111.1C32—C37—C36116.0 (3)
N2—C11'—H11C111.1O9—C38—H38A109.5
C10'—C11'—H11D111.1O9—C38—H38B109.5
N2—C11'—H11D111.1H38A—C38—H38B109.5
H11C—C11'—H11D109.1O9—C38—H38C109.5
N2—C12—C13127.5 (4)H38A—C38—H38C109.5
N2—C12—H12116.2H38B—C38—H38C109.5
C13—C12—H12116.2C8—N1—C9114.7 (3)
C18—C13—C14120.3 (4)C8—N1—Cu1124.0 (3)
C18—C13—C12121.8 (4)C9—N1—Cu1121.3 (3)
C14—C13—C12117.8 (4)C12—N2—C11'118.2 (5)
C15—C14—C13121.7 (4)C12—N2—C11106.9 (7)
C15—C14—H14119.2C12—N2—Cu1125.5 (3)
C13—C14—H14119.2C11'—N2—Cu1115.0 (4)
C14—C15—C16119.2 (4)C11—N2—Cu1119.5 (7)
C14—C15—H15120.4C27—N3—C28'118.3 (4)
C16—C15—H15120.4C27—N3—C28103.9 (8)
C17—C16—C15121.0 (4)C27—N3—Cu2125.2 (3)
C17—C16—H16119.5C28'—N3—Cu2116.5 (3)
C15—C16—H16119.5C28—N3—Cu2118.4 (8)
O4—C17—C16124.3 (3)C31—N4—C30115.0 (3)
O4—C17—C18114.1 (3)C31—N4—Cu2123.3 (3)
C16—C17—C18121.7 (4)C30—N4—Cu2121.7 (3)
O3—C18—C13125.0 (3)C2—O1—C1118.8 (3)
O3—C18—C17118.8 (3)C7—O2—Cu1126.1 (2)
C13—C18—C17116.2 (3)C18—O3—Cu1128.6 (2)
O4—C19—H19A109.5C17—O4—C19119.2 (3)
O4—C19—H19B109.5Cu1—O5—H5A117.4
H19A—C19—H19B109.5Cu1—O5—H5B104.7
O4—C19—H19C109.5H5A—O5—H5B108.6
H19A—C19—H19C109.5C21—O6—C20118.5 (3)
H19B—C19—H19C109.5C26—O7—Cu2128.2 (2)
O6—C20—H20A109.5C37—O8—Cu2126.7 (2)
O6—C20—H20B109.5C36—O9—C38118.1 (3)
H20A—C20—H20B109.5Cu2—O10—H10E120.0
O6—C20—H20C109.5Cu2—O10—H10F126.2
H20A—C20—H20C109.5H10E—O10—H10F107.9
H20B—C20—H20C109.5O3—Cu1—O285.14 (12)
O6—C21—C22124.3 (4)O3—Cu1—N291.37 (14)
O6—C21—C26113.7 (3)O2—Cu1—N2159.87 (18)
C22—C21—C26121.9 (4)O3—Cu1—N1175.41 (12)
C21—C22—C23120.5 (4)O2—Cu1—N190.49 (12)
C21—C22—H22119.8N2—Cu1—N192.27 (15)
C23—C22—H22119.8O3—Cu1—O596.25 (12)
C24—C23—C22119.4 (4)O2—Cu1—O5103.28 (13)
C24—C23—H23120.3N2—Cu1—O596.81 (18)
C22—C23—H23120.3N1—Cu1—O586.09 (14)
C23—C24—C25122.0 (4)O7—Cu2—O885.57 (11)
C23—C24—H24119.0O7—Cu2—N391.54 (13)
C25—C24—H24119.0O8—Cu2—N3161.21 (17)
C24—C25—C26120.1 (4)O7—Cu2—N4175.20 (13)
C24—C25—C27118.3 (4)O8—Cu2—N490.00 (11)
C26—C25—C27121.6 (4)N3—Cu2—N492.07 (15)
O7—C26—C25125.1 (3)O7—Cu2—O1093.67 (12)
O7—C26—C21118.8 (3)O8—Cu2—O10105.25 (13)
C25—C26—C21116.0 (3)N3—Cu2—O1093.45 (17)
N3—C27—C25127.9 (4)N4—Cu2—O1089.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10E···O10.852.002.818 (4)161
O10—H10F···O40.852.022.768 (4)147
O5—H5A···O9i0.852.052.779 (4)143
O5—H5B···O6i0.852.022.758 (4)145
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C19H20N2O4)(H2O)]
Mr421.93
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)20.6870 (15), 22.9179 (17), 7.6639 (6)
V3)3633.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.808, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
17668, 5909, 4814
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.00
No. of reflections5909
No. of parameters502
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29
Absolute structureFlack (1983), 2453 Friedel pairs
Absolute structure parameter0.249 (15)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Cu11.996 (3)O3—Cu11.931 (2)
N2—Cu11.988 (4)O5—Cu12.414 (4)
N3—Cu21.980 (4)O7—Cu21.934 (3)
N4—Cu21.995 (3)O8—Cu21.958 (3)
O2—Cu11.958 (3)O10—Cu22.388 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10E···O10.852.002.818 (4)160.5
O10—H10F···O40.852.022.768 (4)146.7
O5—H5A···O9i0.852.052.779 (4)143.0
O5—H5B···O6i0.852.022.758 (4)145.3
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Foundation of Mudanjiang Normal University.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarlin, K. D. (1993). Science, 261, 701–708.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron 26, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationShankar, R., Jain, A., Singh, A. P., Kociok-Kohn, G. & Molloy, K. C. (2009). Inorg. Chem. 48, 3608–3616.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Y., Hu, R.-H., Peng, J.-L. & Ng, S. W. (2007). Acta Cryst. E63, m2122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds