organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{N-[5-(2,4-Di­chloro­phen­yl)-1,3,4-thia­diazol-2-yl]carbamo­yl}-2,6-di­fluoro­benzamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 19 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, C16H8Cl2F2N4O2S, the thia­diazole ring makes dihedral angles of 24.94 (14) and 48.11 (14)°, respectively, with the dichloro- and difluoro-substituted benzene rings. An intra­molecular N—H⋯O hydrogen bond results in the formation of a planar (mean deviation 0.0091 Å) six-membered ring. In the crystal structure, mol­ecules form centrosymmetric dimers through pairs of inter­molecular N—H⋯O hydrogen bonds.

Related literature

For 1,3,4-thia­diazole aryl­urea derivatives, see: Hajjar & Casida (1978[Hajjar, N. P. & Casida, J. E. (1978). Science, 200, 1499-1501.]); Leighton et al. (1981[Leighton, T., Marks, E. & Leighton, F. (1981). Science, 213, 905-907.]); Metcalf et al. (1975[Metcalf, R. L., Lu, P. Y. & Bowlus, S. (1975). J. Agric. Food Chem. 23, 359-363.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8Cl2F2N4O2S

  • Mr = 429.22

  • Monoclinic, P 21 /c

  • a = 8.1600 (16) Å

  • b = 7.6100 (15) Å

  • c = 27.102 (5) Å

  • β = 92.42 (3)°

  • V = 1681.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.852, Tmax = 0.898

  • 5228 measured reflections

  • 3053 independent reflections

  • 2195 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.01

  • 3053 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.07 2.902 (3) 164
N2—H2A⋯O1 0.86 1.92 2.607 (3) 136
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole aroylurea derivatives are promising and effective insecticides used for the control of insects attacking a wide range of crops. These compounds are generally recognized as insect growth regulators that interfere with chitin synthesis in target pests, causing death or abortive development (Hajjar & Casida, 1978; Leighton et al., 1981). They are considered to be a fourth generation of insecticides with many attractive properties such as high selectivity, low acute toxicity for mammals, and high biological activity, resulting in low application rates (Metcalf et al., 1975).

We report herein the crystal structure of the title compound,(I). In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A(C1–C6), B(S/C9/N3/N4/C10) and C(C11–C16) are, of course, planar. The dihedral angle between them is A/B = 47.8 (3)°, A/C=23.1 (3)° and B/C= 24.9 (4)°. The intramolecular N—H···O hydrogen bond (Table 1) results in the formation of one planar six-membered ring D(N2/H2A/O1/C7/N1/C8). They are oriented with respect to the adjacent rings at dihedral angles of A/D= 40.3 (4)°, B/D= 8.6 (4)° and C/D= 17.3 (1)°. So rings B and D are nearly coplanar. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules to form a dimeric unit (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For 1,3,4-thiadiazole arylurea derivatives, see: Hajjar & Casida (1978); Leighton et al. (1981); Metcalf et al. (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

2,6-Difluorobenzoyl isocyanate (14 mmol) was added dropwise to the solution of 5-(2,4-dichlorophenyl)-1,3,4-thiadiazol-2-amine (10 mmol) in toluene under the reflux temperature. The reaction mixture was stirred and refluxed for 5 h. After cooling and filtering, crude compound (I) was obtained. Pure compound (I) was obtained by recrystallization from DMF (15 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a DMF-H2O solution.

Refinement top

H atoms were placed geometrically (C—H = 0.93 and N—H = 0.86 Å) and included in the refinement in riding motion approximation, with Uiso(H) = 1.2Ueq of the carrier atom.

Structure description top

1,3,4-Thiadiazole aroylurea derivatives are promising and effective insecticides used for the control of insects attacking a wide range of crops. These compounds are generally recognized as insect growth regulators that interfere with chitin synthesis in target pests, causing death or abortive development (Hajjar & Casida, 1978; Leighton et al., 1981). They are considered to be a fourth generation of insecticides with many attractive properties such as high selectivity, low acute toxicity for mammals, and high biological activity, resulting in low application rates (Metcalf et al., 1975).

We report herein the crystal structure of the title compound,(I). In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A(C1–C6), B(S/C9/N3/N4/C10) and C(C11–C16) are, of course, planar. The dihedral angle between them is A/B = 47.8 (3)°, A/C=23.1 (3)° and B/C= 24.9 (4)°. The intramolecular N—H···O hydrogen bond (Table 1) results in the formation of one planar six-membered ring D(N2/H2A/O1/C7/N1/C8). They are oriented with respect to the adjacent rings at dihedral angles of A/D= 40.3 (4)°, B/D= 8.6 (4)° and C/D= 17.3 (1)°. So rings B and D are nearly coplanar. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules to form a dimeric unit (Fig. 2), in which they may be effective in the stabilization of the structure.

For 1,3,4-thiadiazole arylurea derivatives, see: Hajjar & Casida (1978); Leighton et al. (1981); Metcalf et al. (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-{N-[5-(2,4-Dichlorophenyl)-1,3,4-thiadiazol- 2-yl]carbamoyl}-2,6-difluorobenzamide top
Crystal data top
C16H8Cl2F2N4O2SF(000) = 864
Mr = 429.22Dx = 1.696 Mg m3
Monoclinic, P21/cMelting point: 498 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1600 (16) ÅCell parameters from 25 reflections
b = 7.6100 (15) Åθ = 10–13°
c = 27.102 (5) ŵ = 0.55 mm1
β = 92.42 (3)°T = 293 K
V = 1681.5 (6) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2195 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 49
Tmin = 0.852, Tmax = 0.898l = 3232
5228 measured reflections3 standard reflections every 200 reflections
3053 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H8Cl2F2N4O2SV = 1681.5 (6) Å3
Mr = 429.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1600 (16) ŵ = 0.55 mm1
b = 7.6100 (15) ÅT = 293 K
c = 27.102 (5) Å0.30 × 0.20 × 0.20 mm
β = 92.42 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2195 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.852, Tmax = 0.8983 standard reflections every 200 reflections
5228 measured reflections intensity decay: 1%
3053 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
3053 reflectionsΔρmin = 0.30 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.24677 (10)0.99323 (10)0.44933 (3)0.0422 (2)
Cl10.07127 (15)1.02058 (11)0.34523 (3)0.0704 (3)
Cl20.13977 (11)1.65344 (11)0.29072 (3)0.0557 (3)
F10.6408 (2)0.7102 (3)0.70051 (7)0.0601 (5)
F20.4085 (3)0.2644 (2)0.60078 (7)0.0616 (5)
O10.3906 (3)0.7670 (3)0.63370 (8)0.0534 (6)
O20.3952 (3)0.6786 (3)0.48524 (7)0.0584 (7)
N10.4499 (3)0.6085 (3)0.56566 (8)0.0433 (6)
H1A0.49570.51310.55620.052*
N20.3126 (3)0.8663 (3)0.54369 (9)0.0419 (6)
H2A0.31020.88430.57500.050*
N30.1602 (3)1.1185 (3)0.53201 (9)0.0429 (6)
N40.0980 (3)1.2319 (3)0.49659 (9)0.0433 (6)
C10.6387 (4)0.2440 (5)0.71587 (13)0.0592 (10)
H1B0.67650.16020.73860.071*
C20.5527 (4)0.1908 (4)0.67364 (13)0.0526 (9)
H2B0.53240.07240.66750.063*
C30.4981 (4)0.3162 (4)0.64105 (11)0.0432 (7)
C40.5219 (3)0.4949 (4)0.64808 (10)0.0372 (7)
C50.6099 (4)0.5392 (4)0.69135 (11)0.0447 (8)
C60.6695 (4)0.4191 (5)0.72498 (12)0.0557 (9)
H6A0.72920.45460.75320.067*
C70.4482 (4)0.6364 (4)0.61606 (10)0.0390 (7)
C80.3853 (4)0.7180 (4)0.52848 (11)0.0417 (7)
C90.2414 (3)0.9916 (4)0.51268 (10)0.0363 (7)
C100.1319 (3)1.1852 (4)0.45196 (10)0.0359 (7)
C110.0728 (3)1.2949 (4)0.40993 (10)0.0366 (7)
C120.0397 (4)1.2367 (4)0.36183 (11)0.0381 (7)
C130.0232 (4)1.3465 (4)0.32543 (11)0.0425 (7)
H13A0.04311.30520.29340.051*
C140.0561 (4)1.5183 (4)0.33714 (10)0.0395 (7)
C150.0260 (4)1.5824 (4)0.38409 (11)0.0481 (8)
H15A0.04881.69880.39160.058*
C160.0386 (4)1.4703 (4)0.41965 (11)0.0455 (8)
H16A0.06011.51340.45140.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0482 (5)0.0403 (5)0.0384 (4)0.0116 (4)0.0050 (3)0.0003 (3)
Cl10.1326 (9)0.0327 (5)0.0451 (5)0.0130 (5)0.0047 (5)0.0082 (4)
Cl20.0709 (6)0.0489 (5)0.0469 (5)0.0135 (4)0.0026 (4)0.0082 (4)
F10.0674 (13)0.0525 (12)0.0589 (12)0.0073 (10)0.0146 (10)0.0105 (9)
F20.0766 (14)0.0489 (12)0.0578 (12)0.0075 (10)0.0145 (10)0.0106 (9)
O10.0714 (16)0.0449 (14)0.0436 (12)0.0189 (12)0.0004 (11)0.0060 (10)
O20.0841 (17)0.0548 (15)0.0363 (12)0.0297 (13)0.0035 (11)0.0017 (10)
N10.0530 (16)0.0385 (15)0.0382 (13)0.0141 (12)0.0017 (11)0.0005 (11)
N20.0498 (15)0.0402 (15)0.0354 (13)0.0098 (12)0.0024 (11)0.0021 (11)
N30.0494 (15)0.0373 (15)0.0415 (14)0.0091 (12)0.0035 (12)0.0026 (12)
N40.0510 (16)0.0396 (15)0.0390 (14)0.0107 (12)0.0015 (12)0.0031 (11)
C10.062 (2)0.064 (3)0.052 (2)0.0136 (19)0.0012 (18)0.0170 (18)
C20.055 (2)0.0393 (19)0.064 (2)0.0022 (16)0.0085 (17)0.0071 (16)
C30.0423 (17)0.0447 (19)0.0427 (17)0.0009 (15)0.0026 (13)0.0031 (14)
C40.0361 (15)0.0392 (17)0.0363 (15)0.0001 (13)0.0028 (12)0.0007 (13)
C50.0415 (18)0.048 (2)0.0449 (17)0.0003 (15)0.0009 (14)0.0045 (15)
C60.055 (2)0.065 (2)0.0464 (19)0.0020 (18)0.0079 (16)0.0048 (17)
C70.0402 (16)0.0381 (17)0.0386 (16)0.0004 (14)0.0009 (13)0.0042 (13)
C80.0433 (17)0.0418 (18)0.0399 (17)0.0086 (14)0.0011 (14)0.0004 (14)
C90.0378 (16)0.0343 (16)0.0365 (15)0.0011 (13)0.0032 (12)0.0050 (13)
C100.0385 (16)0.0279 (15)0.0410 (16)0.0011 (13)0.0003 (13)0.0042 (12)
C110.0399 (16)0.0315 (16)0.0387 (15)0.0019 (13)0.0052 (13)0.0024 (13)
C120.0456 (17)0.0281 (16)0.0408 (16)0.0000 (13)0.0056 (13)0.0062 (12)
C130.0507 (18)0.0406 (18)0.0360 (15)0.0008 (15)0.0001 (13)0.0035 (14)
C140.0420 (17)0.0375 (18)0.0393 (16)0.0009 (14)0.0055 (13)0.0025 (13)
C150.069 (2)0.0321 (17)0.0429 (17)0.0119 (16)0.0016 (15)0.0034 (14)
C160.063 (2)0.0365 (18)0.0368 (16)0.0031 (16)0.0006 (14)0.0060 (13)
Geometric parameters (Å, º) top
S—C91.719 (3)C1—H1B0.9300
S—C101.738 (3)C2—C31.362 (4)
Cl1—C121.727 (3)C2—H2B0.9300
Cl2—C141.742 (3)C3—C41.386 (4)
F1—C51.347 (4)C4—C51.390 (4)
F2—C31.347 (4)C4—C71.494 (4)
O1—C71.206 (3)C5—C61.365 (4)
O2—C81.216 (3)C6—H6A0.9300
N1—C71.383 (4)C10—C111.477 (4)
N1—C81.394 (4)C11—C161.391 (4)
N1—H1A0.8600C11—C121.393 (4)
N2—C81.348 (4)C12—C131.375 (4)
N2—C91.383 (4)C13—C141.375 (4)
N2—H2A0.8600C13—H13A0.9300
N3—C91.294 (3)C14—C151.375 (4)
N3—N41.372 (3)C15—C161.375 (4)
N4—C101.302 (4)C15—H15A0.9300
C1—C61.376 (5)C16—H16A0.9300
C1—C21.378 (5)
C9—S—C1085.91 (14)N1—C7—C4116.3 (3)
C7—N1—C8127.1 (3)O2—C8—N2123.3 (3)
C7—N1—H1A116.5O2—C8—N1120.7 (3)
C8—N1—H1A116.5N2—C8—N1115.9 (3)
C8—N2—C9124.8 (2)N3—C9—N2118.5 (2)
C8—N2—H2A117.6N3—C9—S115.7 (2)
C9—N2—H2A117.6N2—C9—S125.7 (2)
C9—N3—N4111.5 (2)N4—C10—C11119.1 (3)
C10—N4—N3113.0 (2)N4—C10—S113.8 (2)
C6—C1—C2121.1 (3)C11—C10—S127.1 (2)
C6—C1—H1B119.5C16—C11—C12116.7 (3)
C2—C1—H1B119.5C16—C11—C10117.3 (3)
C3—C2—C1118.3 (3)C12—C11—C10125.9 (3)
C3—C2—H2B120.9C13—C12—C11122.0 (3)
C1—C2—H2B120.9C13—C12—Cl1116.5 (2)
F2—C3—C2118.1 (3)C11—C12—Cl1121.4 (2)
F2—C3—C4117.8 (3)C12—C13—C14118.9 (3)
C2—C3—C4123.9 (3)C12—C13—H13A120.6
C3—C4—C5114.7 (3)C14—C13—H13A120.6
C3—C4—C7125.2 (3)C15—C14—C13121.5 (3)
C5—C4—C7119.8 (3)C15—C14—Cl2120.5 (2)
F1—C5—C6117.7 (3)C13—C14—Cl2118.0 (2)
F1—C5—C4118.4 (3)C14—C15—C16118.5 (3)
C6—C5—C4123.9 (3)C14—C15—H15A120.8
C5—C6—C1118.1 (3)C16—C15—H15A120.8
C5—C6—H6A121.0C15—C16—C11122.4 (3)
C1—C6—H6A121.0C15—C16—H16A118.8
O1—C7—N1122.6 (3)C11—C16—H16A118.8
O1—C7—C4121.2 (3)
C9—N3—N4—C101.1 (4)N4—N3—C9—S1.6 (3)
C6—C1—C2—C30.2 (5)C8—N2—C9—N3172.6 (3)
C1—C2—C3—F2177.4 (3)C8—N2—C9—S5.9 (4)
C1—C2—C3—C40.9 (5)C10—S—C9—N31.2 (2)
F2—C3—C4—C5177.6 (3)C10—S—C9—N2179.8 (3)
C2—C3—C4—C51.0 (5)N3—N4—C10—C11180.0 (3)
F2—C3—C4—C73.7 (5)N3—N4—C10—S0.2 (3)
C2—C3—C4—C7172.8 (3)C9—S—C10—N40.5 (2)
C3—C4—C5—F1178.9 (3)C9—S—C10—C11179.3 (3)
C7—C4—C5—F16.9 (4)N4—C10—C11—C1623.2 (4)
C3—C4—C5—C60.1 (5)S—C10—C11—C16156.5 (2)
C7—C4—C5—C6174.2 (3)N4—C10—C11—C12153.1 (3)
F1—C5—C6—C1179.9 (3)S—C10—C11—C1227.1 (4)
C4—C5—C6—C10.9 (5)C16—C11—C12—C130.2 (4)
C2—C1—C6—C51.1 (5)C10—C11—C12—C13176.6 (3)
C8—N1—C7—O11.6 (5)C16—C11—C12—Cl1178.2 (2)
C8—N1—C7—C4178.2 (3)C10—C11—C12—Cl11.9 (4)
C3—C4—C7—O1136.8 (3)C11—C12—C13—C140.8 (5)
C5—C4—C7—O136.8 (4)Cl1—C12—C13—C14177.7 (2)
C3—C4—C7—N143.1 (4)C12—C13—C14—C150.6 (5)
C5—C4—C7—N1143.3 (3)C12—C13—C14—Cl2178.7 (2)
C9—N2—C8—O20.3 (5)C13—C14—C15—C160.0 (5)
C9—N2—C8—N1179.9 (3)Cl2—C14—C15—C16179.3 (2)
C7—N1—C8—O2179.7 (3)C14—C15—C16—C110.6 (5)
C7—N1—C8—N20.5 (5)C12—C11—C16—C150.5 (5)
N4—N3—C9—N2179.8 (3)C10—C11—C16—C15176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.072.902 (3)164
N2—H2A···O10.861.922.607 (3)136
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H8Cl2F2N4O2S
Mr429.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1600 (16), 7.6100 (15), 27.102 (5)
β (°) 92.42 (3)
V3)1681.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.852, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
5228, 3053, 2195
Rint0.034
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.01
No. of reflections3053
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86002.07002.902 (3)164.00
N2—H2A···O10.86001.92002.607 (3)136.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHajjar, N. P. & Casida, J. E. (1978). Science, 200, 1499–1501.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLeighton, T., Marks, E. & Leighton, F. (1981). Science, 213, 905–907.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMetcalf, R. L., Lu, P. Y. & Bowlus, S. (1975). J. Agric. Food Chem. 23, 359–363.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds