organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Dimeth­­oxy-2-(4-meth­oxy­phen­yl)-4H-1-benzo­pyran-4-one methanol solvate monohydrate

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand, and bThe Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok 10330, Thailand
*Correspondence e-mail: thammarat.aree@gmail.com

(Received 20 September 2009; accepted 5 October 2009; online 10 October 2009)

In the title compound (alternatively called 4′,5,7-trimethoxy­flavone methanol solvate hydrate), C18H16O5·CH3OH·H2O, the flavone mol­ecule is almost planar, the inter­planar angle between the planes of the benzopyran-4-one group and the attached benzene ring being 4.69 (9)°. In the crystal, the flavone mol­ecule makes inter­molecular C—H⋯O hydrogen bonds to adjacent inversion-related flavone mol­ecules, generating R22(8) and R22(14) rings and an infinite ribbon. The inversion-related ribbons are stabilized through the inter­stitial water and methanol mol­ecules via inter­molecular O—H⋯O hydrogen bonds, generating R42(8) and R21(6) rings and C22(4) chains, and are further sustained by ππ inter­actions with an inter­planar spacing of 3.365 (2)Å.

Related literature

For related structures, see: Teh et al. (2005[Teh, J. B.-J., Fun, H.-K., Razak, I. A., Chantrapromma, S., Boonnak, N. & Karalai, C. (2005). Acta Cryst. E61, o3927-o3929.]) and the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For CONQUEST, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O5·CH4O·H2O

  • Mr = 362.37

  • Triclinic, [P \overline 1]

  • a = 9.5333 (2) Å

  • b = 9.8861 (3) Å

  • c = 10.5378 (3) Å

  • α = 86.671 (1)°

  • β = 66.101 (1)°

  • γ = 78.488 (1)°

  • V = 889.45 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.48 × 0.46 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.916

  • 10931 measured reflections

  • 5238 independent reflections

  • 3026 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.176

  • S = 1.04

  • 5238 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W1—H1W1⋯O2i 0.80 (3) 2.06 (3) 2.844 (2) 169 (3)
O1W1—H2W1⋯O2 0.85 (3) 2.15 (3) 2.940 (2) 154 (3)
O1W1—H2W1⋯O3 0.85 (3) 2.45 (3) 3.113 (2) 134 (3)
O1M1—H4M1⋯O1W1 0.82 2.01 2.822 (3) 173
C14—H14⋯O5ii 0.93 2.50 3.418 (2) 168
C17—H17C⋯O4iii 0.96 2.81 3.287 (2) 112
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), (4',5,7-trimethoxy-2-phenyl-4H-1-benzopyran -4-one or 4',5,7-trimethoxyflavone methanol solvate hydrate), C18H16O5.CH3OH.H2O (Fig.1), is a secondary metabolite that was isolated from a Thai medicinal plant, Kaempferia parviflora. Several flavones have also been isolated from the same plant and their crystal structures have been reported, see: Teh et al. (2005) and references cited therein. Here we report another crystal structure of flavone; water and methanol molecules in the interstices play a key role as hydrogen bonding mediator in stabilizing the entire crystal.

The molecular structure of (I) is almost planar; the interplanar angle between the benzopyran-4-one group and the attached phenyl group is 4.69 (9)° (Fig. 1) This observation is consistent with other flavone structures in the Cambridge Structural Database [Version 1.11 (Allen, 2002); CONQUEST (Bruno et al., 2002)]. The three methoxy C-atoms deviate from the mean planes of the two phenyl rings by -0.091 (3), 0.006 (3) and 0.277 (4) Å for atoms C16, C17 and C18, respectively. The corresponding values of torsion angles are: 3.35 (25)°, C16—O4—C3—C2; -2.95 (24)°, C17—O3—C5—C4 and 9.55 (27)°, C18—O5—C13—C12.

In the crystal lattice, the flavone molecule inclines 48.44 (4)° against the a-b plane and makes intermolecular C—H···O hydrogen bonds to the adjacent inversion-related flavone molecules, generating R22(8), R22(14) rings (Bernstein et al., 1995) and an infinite ribbon along the c axis (Fig. 2). The inversion-related ribbons are stabilized through the interstitial water and methanol molecules via intermolecular O—H···O hydrogen bonds, generating R42(8), R21(6) rings and C22(4) chains (Bernstein et al., 1995) and are further sustained by ππ interactions with an interplanar spacing of 3.365 (2) Å (Figs. 3 and 4).

Related literature top

For related structures, see: Teh et al. (2005) and the Cambridge Structural Database (Allen, 2002). For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995). For CONQUEST, see: Bruno et al. (2002).

Experimental top

The title compound, (I), was extracted from Kaempferia parviflora, a medicinal plant from the north-east of Thailand. Single crystals of (I) were obtained from slow evaporation of a methanol-water (1:1, v/v) solution at room temperature. Because the crystals desolvate very easily, the chosen crystal must be soaked in parafin oil prior to mounting on the tip of a glass fiber.

Refinement top

The water H-atoms were located in a difference electron density map and refined isotropically. All other H atoms were located and then refined using a riding model: C—H = 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C) and C—H = 0.96 Å (methyl), O—H = 0.82 Å (hydroxyl), Uiso(H) = 1.5Ueq(C/O).

Structure description top

The title compound, (I), (4',5,7-trimethoxy-2-phenyl-4H-1-benzopyran -4-one or 4',5,7-trimethoxyflavone methanol solvate hydrate), C18H16O5.CH3OH.H2O (Fig.1), is a secondary metabolite that was isolated from a Thai medicinal plant, Kaempferia parviflora. Several flavones have also been isolated from the same plant and their crystal structures have been reported, see: Teh et al. (2005) and references cited therein. Here we report another crystal structure of flavone; water and methanol molecules in the interstices play a key role as hydrogen bonding mediator in stabilizing the entire crystal.

The molecular structure of (I) is almost planar; the interplanar angle between the benzopyran-4-one group and the attached phenyl group is 4.69 (9)° (Fig. 1) This observation is consistent with other flavone structures in the Cambridge Structural Database [Version 1.11 (Allen, 2002); CONQUEST (Bruno et al., 2002)]. The three methoxy C-atoms deviate from the mean planes of the two phenyl rings by -0.091 (3), 0.006 (3) and 0.277 (4) Å for atoms C16, C17 and C18, respectively. The corresponding values of torsion angles are: 3.35 (25)°, C16—O4—C3—C2; -2.95 (24)°, C17—O3—C5—C4 and 9.55 (27)°, C18—O5—C13—C12.

In the crystal lattice, the flavone molecule inclines 48.44 (4)° against the a-b plane and makes intermolecular C—H···O hydrogen bonds to the adjacent inversion-related flavone molecules, generating R22(8), R22(14) rings (Bernstein et al., 1995) and an infinite ribbon along the c axis (Fig. 2). The inversion-related ribbons are stabilized through the interstitial water and methanol molecules via intermolecular O—H···O hydrogen bonds, generating R42(8), R21(6) rings and C22(4) chains (Bernstein et al., 1995) and are further sustained by ππ interactions with an interplanar spacing of 3.365 (2) Å (Figs. 3 and 4).

For related structures, see: Teh et al. (2005) and the Cambridge Structural Database (Allen, 2002). For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995). For CONQUEST, see: Bruno et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2006).; software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The structure of (I) with atom numbering and 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. : An infinite ribbon formed by the inversion-related flavone molecules that are making C—H···O hydrogen bonds with ring motifs of R22(8) and R22(14). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. : R42(8), R21(6) rings and C22(4) chains generated from the two inversion-related flavone-methanol-hydrate molecules through O—H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. : Parellel, infinite ribbons maintained by intermolecular C—H···O, O—H···O hydrogen bonds and ππ interactions. Hydrogen bonds are shown as dashed lines.
5,7-Dimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one methanol solvate monohydrate top
Crystal data top
C18H16O5·CH4O·H2OZ = 2
Mr = 362.37F(000) = 384
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 9.5333 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8861 (3) ÅCell parameters from 3400 reflections
c = 10.5378 (3) Åθ = 2.5–30.1°
α = 86.671 (1)°µ = 0.10 mm1
β = 66.101 (1)°T = 298 K
γ = 78.488 (1)°Block, colourless
V = 889.45 (4) Å30.48 × 0.46 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5238 independent reflections
Radiation source: fine-focus sealed tube3026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 913
Tmin = 0.845, Tmax = 0.916k = 1314
10931 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.1044P]
where P = (Fo2 + 2Fc2)/3
5238 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H16O5·CH4O·H2Oγ = 78.488 (1)°
Mr = 362.37V = 889.45 (4) Å3
Triclinic, P1Z = 2
a = 9.5333 (2) ÅMo Kα radiation
b = 9.8861 (3) ŵ = 0.10 mm1
c = 10.5378 (3) ÅT = 298 K
α = 86.671 (1)°0.48 × 0.46 × 0.28 mm
β = 66.101 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5238 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3026 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.916Rint = 0.027
10931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
5238 reflectionsΔρmin = 0.19 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68788 (16)0.47269 (15)0.38254 (14)0.0358 (3)
C20.66882 (17)0.35992 (16)0.32291 (16)0.0412 (3)
H20.68730.27110.35440.049*
C30.62134 (18)0.38517 (17)0.21510 (16)0.0440 (4)
C40.59294 (19)0.51854 (18)0.16889 (16)0.0464 (4)
H40.56210.53310.09520.056*
C50.61000 (17)0.62860 (16)0.23116 (16)0.0414 (4)
C60.65977 (16)0.60841 (15)0.34281 (14)0.0365 (3)
C70.68386 (17)0.71706 (16)0.41605 (16)0.0397 (3)
C80.74295 (17)0.66940 (15)0.51967 (16)0.0398 (3)
H80.76630.73370.56540.048*
C90.76598 (16)0.53622 (15)0.55337 (15)0.0357 (3)
C100.82311 (16)0.47626 (15)0.65810 (15)0.0367 (3)
C110.8392 (2)0.33617 (17)0.68317 (18)0.0481 (4)
H110.81010.27940.63460.058*
C120.8978 (2)0.27859 (17)0.77914 (19)0.0524 (4)
H120.90680.18440.79530.063*
C130.94259 (18)0.36194 (17)0.85025 (16)0.0435 (4)
C140.9241 (2)0.50237 (17)0.82922 (18)0.0502 (4)
H140.95190.55890.87900.060*
C150.8645 (2)0.55897 (16)0.73453 (17)0.0471 (4)
H150.85170.65380.72160.056*
C160.6139 (3)0.1483 (2)0.1950 (2)0.0746 (6)
H16A0.71860.11750.18870.112*
H16B0.59300.08870.13860.112*
H16C0.54130.14590.28980.112*
C170.5388 (3)0.7859 (2)0.0770 (2)0.0683 (6)
H17A0.62170.73940.00430.102*
H17B0.52080.88330.06170.102*
H17C0.44510.75150.09600.102*
C181.0500 (3)0.1713 (2)0.9532 (2)0.0734 (6)
H18A0.95850.13060.98650.110*
H18B1.10060.15291.01650.110*
H18C1.12060.13240.86330.110*
O10.73689 (12)0.43770 (10)0.48755 (11)0.0407 (3)
O20.65502 (15)0.84261 (11)0.39405 (13)0.0565 (3)
O30.58166 (15)0.76114 (12)0.19255 (13)0.0564 (3)
O51.00623 (17)0.31561 (13)0.94348 (14)0.0645 (4)
O40.59709 (17)0.28528 (13)0.14734 (14)0.0622 (4)
O1W10.3293 (2)0.95361 (18)0.4350 (2)0.0783 (5)
H1W10.326 (3)1.006 (3)0.491 (3)0.085 (9)*
H2W10.423 (4)0.909 (3)0.401 (3)0.118 (11)*
C1M10.0302 (3)1.0928 (3)0.3320 (3)0.0925 (8)
H1M10.00141.01070.37850.139*
H2M10.02451.12230.27320.139*
H3M10.00591.16440.39970.139*
O1M10.1882 (2)1.0657 (2)0.2530 (2)0.1045 (6)
H4M10.23411.02770.30050.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (7)0.0458 (8)0.0319 (7)0.0084 (6)0.0146 (6)0.0004 (6)
C20.0418 (8)0.0431 (8)0.0430 (8)0.0107 (6)0.0197 (7)0.0018 (6)
C30.0442 (8)0.0532 (9)0.0404 (8)0.0151 (7)0.0193 (7)0.0059 (7)
C40.0491 (9)0.0617 (10)0.0359 (8)0.0135 (7)0.0232 (7)0.0005 (7)
C50.0395 (8)0.0489 (9)0.0384 (8)0.0070 (6)0.0190 (6)0.0009 (6)
C60.0314 (7)0.0451 (8)0.0343 (7)0.0069 (6)0.0144 (6)0.0015 (6)
C70.0379 (8)0.0428 (8)0.0401 (8)0.0036 (6)0.0191 (6)0.0017 (6)
C80.0427 (8)0.0399 (8)0.0431 (8)0.0052 (6)0.0240 (7)0.0055 (6)
C90.0306 (7)0.0436 (8)0.0349 (7)0.0074 (6)0.0146 (6)0.0032 (6)
C100.0325 (7)0.0428 (8)0.0363 (8)0.0062 (6)0.0157 (6)0.0011 (6)
C110.0601 (10)0.0449 (9)0.0531 (10)0.0139 (7)0.0349 (8)0.0000 (7)
C120.0710 (12)0.0409 (8)0.0579 (11)0.0122 (8)0.0388 (9)0.0070 (7)
C130.0454 (8)0.0506 (9)0.0391 (8)0.0068 (7)0.0230 (7)0.0023 (7)
C140.0647 (11)0.0472 (9)0.0528 (10)0.0103 (8)0.0372 (9)0.0047 (7)
C150.0599 (10)0.0396 (8)0.0518 (10)0.0074 (7)0.0335 (8)0.0005 (7)
C160.1022 (17)0.0561 (12)0.0855 (16)0.0196 (11)0.0542 (14)0.0117 (11)
C170.0953 (16)0.0674 (12)0.0657 (12)0.0162 (11)0.0574 (12)0.0121 (10)
C180.0943 (16)0.0652 (13)0.0775 (14)0.0155 (11)0.0544 (13)0.0231 (11)
O10.0474 (6)0.0425 (6)0.0420 (6)0.0110 (5)0.0268 (5)0.0009 (4)
O20.0769 (8)0.0409 (6)0.0661 (8)0.0021 (6)0.0472 (7)0.0007 (5)
O30.0778 (8)0.0520 (7)0.0570 (8)0.0099 (6)0.0468 (7)0.0064 (6)
O50.0891 (10)0.0608 (8)0.0630 (8)0.0100 (7)0.0531 (8)0.0069 (6)
O40.0881 (9)0.0601 (8)0.0603 (8)0.0243 (7)0.0464 (7)0.0048 (6)
O1W10.0728 (11)0.0668 (10)0.1064 (14)0.0040 (8)0.0491 (10)0.0164 (9)
C1M10.0895 (18)0.0874 (18)0.101 (2)0.0153 (14)0.0391 (16)0.0007 (15)
O1M10.0944 (13)0.1108 (15)0.0973 (14)0.0054 (11)0.0355 (11)0.0138 (11)
Geometric parameters (Å, º) top
C1—O11.3683 (16)C13—O51.3649 (18)
C1—C21.388 (2)C13—C141.380 (2)
C1—C61.389 (2)C14—C151.378 (2)
C2—C31.377 (2)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—O41.3584 (18)C16—O41.418 (2)
C3—C41.392 (2)C16—H16A0.9600
C4—C51.372 (2)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—O31.3570 (19)C17—O31.427 (2)
C5—C61.427 (2)C17—H17A0.9600
C6—C71.463 (2)C17—H17B0.9600
C7—O21.2458 (18)C17—H17C0.9600
C7—C81.437 (2)C18—O51.414 (2)
C8—C91.342 (2)C18—H18A0.9600
C8—H80.9300C18—H18B0.9600
C9—O11.3597 (16)C18—H18C0.9600
C9—C101.4656 (19)O1W1—H1W10.80 (3)
C10—C111.385 (2)O1W1—H2W10.85 (3)
C10—C151.391 (2)C1M1—O1M11.373 (3)
C11—C121.387 (2)C1M1—H1M10.9600
C11—H110.9300C1M1—H2M10.9600
C12—C131.376 (2)C1M1—H3M10.9600
C12—H120.9300O1M1—H4M10.8200
O1—C1—C2113.11 (13)C12—C13—C14120.00 (14)
O1—C1—C6122.23 (12)C15—C14—C13120.15 (14)
C2—C1—C6124.65 (13)C15—C14—H14119.9
C3—C2—C1117.17 (14)C13—C14—H14119.9
C3—C2—H2121.4C14—C15—C10120.92 (15)
C1—C2—H2121.4C14—C15—H15119.5
O4—C3—C2123.74 (15)C10—C15—H15119.5
O4—C3—C4115.09 (13)O4—C16—H16A109.5
C2—C3—C4121.16 (13)O4—C16—H16B109.5
C5—C4—C3120.54 (14)H16A—C16—H16B109.5
C5—C4—H4119.7O4—C16—H16C109.5
C3—C4—H4119.7H16A—C16—H16C109.5
O3—C5—C4123.39 (13)H16B—C16—H16C109.5
O3—C5—C6115.92 (13)O3—C17—H17A109.5
C4—C5—C6120.69 (14)O3—C17—H17B109.5
C1—C6—C5115.76 (12)H17A—C17—H17B109.5
C1—C6—C7118.57 (12)O3—C17—H17C109.5
C5—C6—C7125.67 (13)H17A—C17—H17C109.5
O2—C7—C8120.81 (13)H17B—C17—H17C109.5
O2—C7—C6124.13 (13)O5—C18—H18A109.5
C8—C7—C6115.05 (13)O5—C18—H18B109.5
C9—C8—C7122.92 (13)H18A—C18—H18B109.5
C9—C8—H8118.5O5—C18—H18C109.5
C7—C8—H8118.5H18A—C18—H18C109.5
C8—C9—O1120.88 (12)H18B—C18—H18C109.5
C8—C9—C10127.70 (12)C9—O1—C1120.21 (11)
O1—C9—C10111.42 (12)C5—O3—C17117.97 (13)
C11—C10—C15117.96 (13)C13—O5—C18117.91 (13)
C11—C10—C9121.38 (12)C3—O4—C16118.09 (14)
C15—C10—C9120.66 (13)H1W1—O1W1—H2W1105 (3)
C10—C11—C12121.46 (14)O1M1—C1M1—H1M1109.5
C10—C11—H11119.3O1M1—C1M1—H2M1109.5
C12—C11—H11119.3H1M1—C1M1—H2M1109.5
C13—C12—C11119.46 (15)O1M1—C1M1—H3M1109.5
C13—C12—H12120.3H1M1—C1M1—H3M1109.5
C11—C12—H12120.3H2M1—C1M1—H3M1109.5
O5—C13—C12124.34 (15)C1M1—O1M1—H4M1109.5
O5—C13—C14115.66 (13)
O1—C1—C2—C3179.29 (13)C8—C9—C10—C11179.11 (15)
C6—C1—C2—C31.2 (2)O1—C9—C10—C111.3 (2)
C1—C2—C3—O4179.64 (15)C8—C9—C10—C151.6 (2)
C1—C2—C3—C40.4 (2)O1—C9—C10—C15178.04 (13)
O4—C3—C4—C5178.57 (15)C15—C10—C11—C121.4 (2)
C2—C3—C4—C50.8 (2)C9—C10—C11—C12177.97 (15)
C3—C4—C5—O3178.88 (14)C10—C11—C12—C130.7 (3)
C3—C4—C5—C61.1 (2)C11—C12—C13—O5177.82 (16)
O1—C1—C6—C5179.68 (13)C11—C12—C13—C142.2 (3)
C2—C1—C6—C50.9 (2)O5—C13—C14—C15178.39 (15)
O1—C1—C6—C70.1 (2)C12—C13—C14—C151.6 (3)
C2—C1—C6—C7179.53 (14)C13—C14—C15—C100.5 (3)
O3—C5—C6—C1179.67 (13)C11—C10—C15—C141.9 (2)
C4—C5—C6—C10.3 (2)C9—C10—C15—C14177.40 (14)
O3—C5—C6—C70.8 (2)C8—C9—O1—C12.0 (2)
C4—C5—C6—C7179.24 (14)C10—C9—O1—C1177.67 (11)
C1—C6—C7—O2176.29 (14)C2—C1—O1—C9177.81 (12)
C5—C6—C7—O24.2 (2)C6—C1—O1—C92.7 (2)
C1—C6—C7—C83.0 (2)C4—C5—O3—C172.9 (2)
C5—C6—C7—C8176.58 (14)C6—C5—O3—C17177.07 (15)
O2—C7—C8—C9175.49 (15)C12—C13—O5—C189.6 (3)
C6—C7—C8—C93.8 (2)C14—C13—O5—C18170.45 (18)
C7—C8—C9—O11.4 (2)C2—C3—O4—C163.4 (3)
C7—C8—C9—C10179.01 (14)C4—C3—O4—C16175.96 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W1—H1W1···O2i0.80 (3)2.06 (3)2.844 (2)169 (3)
O1W1—H2W1···O20.85 (3)2.15 (3)2.940 (2)154 (3)
O1W1—H2W1···O30.85 (3)2.45 (3)3.113 (2)134 (3)
O1M1—H4M1···O1W10.822.012.822 (3)173
C14—H14···O5ii0.932.503.418 (2)168
C17—H17C···O4iii0.962.813.287 (2)112
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H16O5·CH4O·H2O
Mr362.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.5333 (2), 9.8861 (3), 10.5378 (3)
α, β, γ (°)86.671 (1), 66.101 (1), 78.488 (1)
V3)889.45 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.46 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.845, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
10931, 5238, 3026
Rint0.027
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.176, 1.04
No. of reflections5238
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2006)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W1—H1W1···O2i0.80 (3)2.06 (3)2.844 (2)169 (3)
O1W1—H2W1···O20.85 (3)2.15 (3)2.940 (2)154 (3)
O1W1—H2W1···O30.85 (3)2.45 (3)3.113 (2)134 (3)
O1M1—H4M1···O1W10.822.012.822 (3)172.7
C14—H14···O5ii0.932.503.418 (2)167.9
C17—H17C···O4iii0.962.813.287 (2)111.9
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z.
 

Acknowledgements

This work is supported by the Department of Chemistry and Research Funds from the Faculty of Science, Chulalongkorn University to TA and by the Thailand Research Fund and the Commission on Higher Education (grant No. MRG4980018) to PS

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Fun, H.-K., Razak, I. A., Chantrapromma, S., Boonnak, N. & Karalai, C. (2005). Acta Cryst. E61, o3927–o3929.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds