metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-bi­phenyl-2,2′-di­carboxyl­ato)bis­­[aqua­(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)copper(II)]

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, Henan, People's Republic of China
*Correspondence e-mail: xiyandong@yeah.net

(Received 27 September 2009; accepted 6 October 2009; online 17 October 2009)

The mol­ecule of the title binuclear copper(II) complex, [Cu2(C14H8O4)2(C12H12N2)2(H2O)2], is bis­ected by a crystallographic twofold axis. Each CuII atom is coordinated in a distorted octa­hedral geometry by three O atoms from two biphen­yl-2,2′-dicarboxyl­ate anions, one aqua O atom and two N atoms of a 4,4′-dimethyl-2,2′-bipyridine ligand. Intramolecular O—H⋯O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms are also present.

Related literature

For related structures, see: Li et al. (2009[Li, F., Zeng, H., Yan, Z. & Li, T. (2009). Acta Cryst. E65, m681.]); Jiang & Feng (2009[Jiang, M.-X. & Feng, Y.-L. (2009). Acta Cryst. E65, m654.]); Xu et al. (2009[Xu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856-m857.]); Zhang et al. (2009[Zhang, J., Chen, X.-D., Zhang, H.-H. & Sun, B.-W. (2009). Acta Cryst. E65, m1136.]); Rizal & Ng (2009[Rizal, M. R. & Ng, S. W. (2009). Acta Cryst. E65, m1178.]); Zhang (2009[Zhang, L. (2009). Acta Cryst. E65, m871-m872.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H8O4)2(C12H12N2)2(H2O)2]

  • Mr = 1109.71

  • Monoclinic, C 2/c

  • a = 17.104 (3) Å

  • b = 15.395 (2) Å

  • c = 18.289 (3) Å

  • β = 104.413 (3)°

  • V = 4664.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.785, Tmax = 0.814

  • 13512 measured reflections

  • 4594 independent reflections

  • 3108 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.109

  • S = 0.93

  • 4594 reflections

  • 310 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O4i 0.85 1.78 2.632 (4) 174
O1W—H1WA⋯O1i 0.85 1.95 2.782 (4) 164
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title binuclear copper(II) complex, [Cu2(C14H8O4)2(C10H8N2)2(H2O)2], is a centrosymmetric dimer. The asymmetric unit consitsts of one CuII atom, one 4,4'-dimethyl-2,2'-bipyridine (dbpy) ligand, one [1,1'-biphenyl]-2,2'-dicarboxylate dianion (bpdc2-) and a coordinated water molecule.

The CuII atom is six-coordinated by two N atoms from bpy and four O atoms, three from two bpdc2- anions and one from coordinated H2O, in a distorted octahedron coordination geometry. And it is noteworthy that the two CuII ions in the complex are bridged by two bpdc2- dianions, one is in a bis-monodentate mode whereas the other is in a bis-bidentate mode.

Related literature top

For related structures, see: Li et al. (2009); Jiang & Feng (2009); Xu et al. (2009); Zhang et al. (2009); Rizal & Ng (2009); Zhang (2009).

Experimental top

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of H2bpdc (0.2 mmol), dbpy (0.4 mmol) and CuSO4.5H2O (0.2 mmol) in water (10 ml) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.96 Å (methyl CH3), 0.93Å (aryl group) and O—H = 0.85 Å and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) otherwise.

Structure description top

The title binuclear copper(II) complex, [Cu2(C14H8O4)2(C10H8N2)2(H2O)2], is a centrosymmetric dimer. The asymmetric unit consitsts of one CuII atom, one 4,4'-dimethyl-2,2'-bipyridine (dbpy) ligand, one [1,1'-biphenyl]-2,2'-dicarboxylate dianion (bpdc2-) and a coordinated water molecule.

The CuII atom is six-coordinated by two N atoms from bpy and four O atoms, three from two bpdc2- anions and one from coordinated H2O, in a distorted octahedron coordination geometry. And it is noteworthy that the two CuII ions in the complex are bridged by two bpdc2- dianions, one is in a bis-monodentate mode whereas the other is in a bis-bidentate mode.

For related structures, see: Li et al. (2009); Jiang & Feng (2009); Xu et al. (2009); Zhang et al. (2009); Rizal & Ng (2009); Zhang (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. Hydrogen-bond interactions are drawn with dashed lines. Atoms labeled(i) are generated by the symmetry code -x, y, -z + 1/2.
Bis(µ-biphenyl-2,2'-dicarboxylato)bis[aqua(4,4'-dimethyl-2,2'- bipyridine)copper(II)] top
Crystal data top
[Cu2(C14H8O4)2(C12H12N2)2(H2O)2]F(000) = 2240
Mr = 1109.71Dx = 1.580 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3688 reflections
a = 17.104 (3) Åθ = 2.7–27.3°
b = 15.395 (2) ŵ = 0.98 mm1
c = 18.289 (3) ÅT = 296 K
β = 104.413 (3)°Block, colourless
V = 4664.2 (13) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4594 independent reflections
Radiation source: fine-focus sealed tube3108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2120
Tmin = 0.785, Tmax = 0.814k = 1812
13512 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
4594 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.87 e Å3
12 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu2(C14H8O4)2(C12H12N2)2(H2O)2]V = 4664.2 (13) Å3
Mr = 1109.71Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.104 (3) ŵ = 0.98 mm1
b = 15.395 (2) ÅT = 296 K
c = 18.289 (3) Å0.26 × 0.24 × 0.22 mm
β = 104.413 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3108 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.814Rint = 0.060
13512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04712 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.93Δρmax = 0.87 e Å3
4594 reflectionsΔρmin = 0.33 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.13088 (2)0.599652 (19)0.344239 (17)0.05361 (14)
N10.1810 (2)0.5542 (2)0.4686 (2)0.0615 (10)
N20.2592 (2)0.6574 (2)0.39215 (19)0.0516 (9)
O10.11652 (18)0.67905 (18)0.23068 (16)0.0602 (8)
O20.0871 (2)0.74927 (19)0.32546 (17)0.0611 (8)
O30.1387 (2)0.4729 (2)0.2927 (3)0.0977 (12)
O40.0538 (2)0.41826 (19)0.1917 (2)0.0701 (10)
O1W0.00362 (18)0.57274 (19)0.35468 (17)0.0611 (8)
H1WA0.03260.61000.33650.073*
H1WB0.01370.52340.33710.073*
C10.0942 (3)0.7474 (3)0.2590 (3)0.0527 (11)
C20.0782 (3)0.8273 (3)0.2111 (2)0.0537 (11)
C30.1193 (3)0.8370 (3)0.1546 (3)0.0677 (14)
H30.15450.79370.14730.081*
C40.1087 (4)0.9095 (3)0.1096 (3)0.0825 (17)
H40.13870.91610.07400.099*
C50.0541 (4)0.9725 (3)0.1166 (3)0.0813 (16)
H50.04551.02050.08480.098*
C60.0121 (3)0.9632 (3)0.1716 (3)0.0685 (14)
H60.02451.00600.17690.082*
C70.0232 (3)0.8913 (2)0.2195 (3)0.0540 (11)
C80.0959 (3)0.4138 (3)0.2577 (4)0.0675 (15)
C90.0975 (3)0.3293 (3)0.3005 (3)0.0578 (12)
C100.1638 (4)0.3135 (4)0.3615 (4)0.0935 (19)
H100.20470.35460.37470.112*
C110.1687 (5)0.2361 (5)0.4026 (4)0.114 (2)
H110.21440.22450.44110.137*
C120.1072 (5)0.1780 (4)0.3865 (4)0.101 (2)
H120.10960.12760.41510.121*
C130.0428 (3)0.1938 (3)0.3290 (3)0.0691 (14)
H130.00070.15380.31940.083*
C140.0357 (3)0.2671 (2)0.2827 (2)0.0491 (10)
C150.2960 (3)0.7114 (3)0.3534 (2)0.0619 (12)
H150.27250.71950.30230.074*
C160.3658 (3)0.7551 (3)0.3848 (3)0.0577 (12)
H160.38820.79250.35560.069*
C170.4026 (3)0.7432 (3)0.4598 (2)0.0523 (11)
C180.3652 (3)0.6872 (3)0.4998 (2)0.0514 (11)
H180.38820.67780.55080.062*
C190.2946 (3)0.6456 (2)0.4655 (2)0.0446 (10)
C200.2522 (3)0.5850 (2)0.5076 (3)0.0484 (11)
C210.2842 (3)0.5611 (3)0.5819 (3)0.0575 (12)
H210.33360.58400.60800.069*
C220.2441 (3)0.5040 (3)0.6179 (3)0.0589 (12)
C230.1719 (3)0.4713 (3)0.5762 (3)0.0750 (15)
H230.14350.43110.59740.090*
C240.1423 (3)0.4981 (3)0.5035 (3)0.0761 (15)
H240.09270.47630.47660.091*
C250.4800 (3)0.7895 (3)0.4962 (3)0.0717 (14)
H25A0.47030.85090.49600.108*
H25B0.51960.77740.46850.108*
H25C0.49940.76980.54730.108*
C260.2776 (3)0.4777 (4)0.6985 (3)0.0843 (16)
H26A0.31360.42940.70060.126*
H26B0.23420.46120.72030.126*
H26C0.30660.52560.72630.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0639 (3)0.0397 (2)0.0639 (2)0.00834 (15)0.02867 (18)0.00204 (16)
N10.068 (3)0.050 (2)0.073 (3)0.012 (2)0.031 (2)0.012 (2)
N20.062 (2)0.044 (2)0.057 (2)0.0098 (17)0.0290 (18)0.0006 (17)
O10.074 (2)0.0420 (17)0.073 (2)0.0006 (15)0.0356 (17)0.0078 (15)
O20.078 (2)0.0476 (17)0.068 (2)0.0056 (15)0.0378 (17)0.0039 (15)
O30.087 (2)0.070 (2)0.150 (3)0.021 (2)0.057 (2)0.040 (2)
O40.084 (3)0.0377 (18)0.106 (3)0.0016 (17)0.058 (2)0.0019 (19)
O1W0.065 (2)0.0444 (16)0.080 (2)0.0043 (15)0.0306 (17)0.0008 (16)
C10.055 (3)0.039 (2)0.073 (3)0.0036 (19)0.033 (2)0.001 (2)
C20.063 (3)0.042 (2)0.065 (3)0.007 (2)0.032 (2)0.002 (2)
C30.082 (4)0.054 (3)0.080 (3)0.004 (3)0.045 (3)0.003 (3)
C40.113 (5)0.073 (4)0.078 (4)0.014 (3)0.054 (3)0.009 (3)
C50.115 (5)0.050 (3)0.087 (4)0.005 (3)0.040 (3)0.017 (3)
C60.088 (4)0.041 (3)0.083 (3)0.002 (2)0.035 (3)0.008 (2)
C70.063 (3)0.035 (2)0.068 (3)0.005 (2)0.025 (2)0.000 (2)
C80.062 (3)0.044 (3)0.116 (5)0.009 (2)0.057 (3)0.029 (3)
C90.058 (3)0.053 (3)0.069 (3)0.005 (2)0.027 (2)0.026 (2)
C100.067 (4)0.093 (5)0.117 (5)0.003 (3)0.017 (4)0.044 (4)
C110.116 (5)0.116 (5)0.093 (4)0.045 (5)0.008 (4)0.020 (4)
C120.125 (6)0.089 (5)0.082 (4)0.030 (4)0.013 (4)0.001 (4)
C130.090 (4)0.052 (3)0.069 (3)0.017 (3)0.026 (3)0.003 (3)
C140.061 (3)0.035 (2)0.058 (3)0.0070 (19)0.0269 (19)0.0053 (19)
C150.072 (3)0.065 (3)0.055 (3)0.009 (3)0.029 (2)0.012 (2)
C160.066 (3)0.049 (3)0.068 (3)0.010 (2)0.037 (3)0.008 (2)
C170.066 (3)0.036 (2)0.065 (3)0.003 (2)0.036 (2)0.004 (2)
C180.062 (3)0.047 (2)0.052 (2)0.003 (2)0.027 (2)0.003 (2)
C190.056 (3)0.032 (2)0.055 (3)0.0018 (19)0.031 (2)0.0006 (19)
C200.056 (3)0.036 (2)0.062 (3)0.0020 (19)0.032 (2)0.001 (2)
C210.066 (3)0.052 (3)0.064 (3)0.001 (2)0.034 (2)0.008 (2)
C220.069 (3)0.054 (3)0.068 (3)0.006 (2)0.042 (3)0.010 (2)
C230.083 (4)0.068 (3)0.087 (4)0.013 (3)0.045 (3)0.025 (3)
C240.068 (3)0.070 (3)0.096 (4)0.016 (3)0.030 (3)0.020 (3)
C250.077 (4)0.068 (3)0.077 (3)0.023 (3)0.033 (3)0.007 (3)
C260.106 (4)0.083 (4)0.079 (4)0.003 (3)0.050 (3)0.022 (3)
Geometric parameters (Å, º) top
Cd1—O32.186 (4)C10—H100.9300
Cd1—O1W2.270 (3)C11—C121.357 (9)
Cd1—N22.327 (3)C11—H110.9300
Cd1—N12.329 (4)C12—C131.342 (8)
Cd1—O12.369 (3)C12—H120.9300
Cd1—O22.420 (3)C13—C141.397 (6)
N1—C201.335 (6)C13—H130.9300
N1—C241.343 (5)C14—C14i1.482 (8)
N2—C191.339 (5)C15—C161.366 (6)
N2—C151.346 (5)C15—H150.9300
O1—C11.272 (5)C16—C171.371 (6)
O2—C11.252 (5)C16—H160.9300
O3—C81.240 (6)C17—C181.386 (5)
O4—C81.244 (6)C17—C251.505 (6)
O1W—H1WA0.8498C18—C191.373 (6)
O1W—H1WB0.8499C18—H180.9300
C1—C21.495 (6)C19—C201.506 (5)
C2—C31.395 (6)C20—C211.382 (6)
C2—C71.397 (6)C21—C221.380 (6)
C3—C41.372 (6)C21—H210.9300
C3—H30.9300C22—C231.375 (7)
C4—C51.374 (7)C22—C261.499 (6)
C4—H40.9300C23—C241.364 (7)
C5—C61.382 (7)C23—H230.9300
C5—H50.9300C24—H240.9300
C6—C71.394 (6)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C7—C7i1.524 (8)C25—H25C0.9600
C8—C91.515 (7)C26—H26A0.9600
C9—C101.400 (8)C26—H26B0.9600
C9—C141.403 (6)C26—H26C0.9600
C10—C111.400 (9)
O3—Cd1—O1W92.06 (12)C9—C10—H10119.9
O3—Cd1—N2110.50 (13)C12—C11—C10120.3 (6)
O1W—Cd1—N2150.70 (11)C12—C11—H11119.8
O3—Cd1—N196.06 (15)C10—C11—H11119.8
O1W—Cd1—N189.48 (12)C13—C12—C11119.4 (6)
N2—Cd1—N170.32 (12)C13—C12—H12120.3
O3—Cd1—O195.00 (13)C11—C12—H12120.3
O1W—Cd1—O1106.00 (11)C12—C13—C14123.5 (6)
N2—Cd1—O190.88 (11)C12—C13—H13118.2
N1—Cd1—O1160.61 (12)C14—C13—H13118.2
O3—Cd1—O2147.01 (15)C13—C14—C9117.6 (4)
O1W—Cd1—O285.21 (10)C13—C14—C14i114.8 (4)
N2—Cd1—O285.37 (12)C9—C14—C14i127.5 (3)
N1—Cd1—O2116.74 (12)N2—C15—C16123.9 (4)
O1—Cd1—O254.80 (9)N2—C15—H15118.0
C20—N1—C24117.8 (4)C16—C15—H15118.0
C20—N1—Cd1118.7 (3)C15—C16—C17119.3 (4)
C24—N1—Cd1123.5 (4)C15—C16—H16120.4
C19—N2—C15117.1 (4)C17—C16—H16120.4
C19—N2—Cd1118.3 (2)C16—C17—C18117.0 (4)
C15—N2—Cd1124.0 (3)C16—C17—C25120.9 (4)
C1—O1—Cd192.7 (2)C18—C17—C25122.1 (4)
C1—O2—Cd190.8 (2)C19—C18—C17121.2 (4)
C8—O3—Cd1141.8 (3)C19—C18—H18119.4
Cd1—O1W—H1WA117.7C17—C18—H18119.4
Cd1—O1W—H1WB112.5N2—C19—C18121.5 (4)
H1WA—O1W—H1WB107.7N2—C19—C20116.1 (4)
O2—C1—O1121.7 (4)C18—C19—C20122.4 (4)
O2—C1—C2120.2 (4)N1—C20—C21121.1 (4)
O1—C1—C2118.1 (4)N1—C20—C19115.9 (4)
C3—C2—C7118.8 (4)C21—C20—C19123.0 (4)
C3—C2—C1118.0 (4)C22—C21—C20121.1 (5)
C7—C2—C1123.1 (4)C22—C21—H21119.5
C4—C3—C2121.1 (5)C20—C21—H21119.5
C4—C3—H3119.5C23—C22—C21116.9 (4)
C2—C3—H3119.5C23—C22—C26121.2 (4)
C3—C4—C5120.7 (5)C21—C22—C26121.9 (5)
C3—C4—H4119.7C24—C23—C22119.7 (4)
C5—C4—H4119.7C24—C23—H23120.2
C4—C5—C6119.0 (5)C22—C23—H23120.2
C4—C5—H5120.5N1—C24—C23123.4 (5)
C6—C5—H5120.5N1—C24—H24118.3
C5—C6—C7121.6 (5)C23—C24—H24118.3
C5—C6—H6119.2C17—C25—H25A109.5
C7—C6—H6119.2C17—C25—H25B109.5
C6—C7—C2118.8 (4)H25A—C25—H25B109.5
C6—C7—C7i116.4 (3)C17—C25—H25C109.5
C2—C7—C7i124.6 (3)H25A—C25—H25C109.5
O3—C8—O4125.9 (6)H25B—C25—H25C109.5
O3—C8—C9115.5 (6)C22—C26—H26A109.5
O4—C8—C9118.7 (4)C22—C26—H26B109.5
C10—C9—C14118.7 (5)H26A—C26—H26B109.5
C10—C9—C8117.9 (5)C22—C26—H26C109.5
C14—C9—C8123.5 (4)H26A—C26—H26C109.5
C11—C10—C9120.3 (6)H26B—C26—H26C109.5
C11—C10—H10119.9
O3—Cd1—N1—C20113.7 (3)C1—C2—C7—C6179.5 (4)
O1W—Cd1—N1—C20154.3 (3)C3—C2—C7—C7i177.3 (5)
N2—Cd1—N1—C204.0 (3)C1—C2—C7—C7i3.9 (8)
O1—Cd1—N1—C2010.8 (6)Cd1—O3—C8—O469.7 (8)
O2—Cd1—N1—C2069.9 (3)Cd1—O3—C8—C9111.2 (6)
O3—Cd1—N1—C2465.9 (4)O3—C8—C9—C1021.7 (6)
O1W—Cd1—N1—C2426.1 (4)O4—C8—C9—C10157.6 (4)
N2—Cd1—N1—C24175.6 (4)O3—C8—C9—C14157.5 (4)
O1—Cd1—N1—C24169.6 (3)O4—C8—C9—C1423.3 (6)
O2—Cd1—N1—C24110.5 (4)C14—C9—C10—C111.4 (7)
O3—Cd1—N2—C1995.8 (3)C8—C9—C10—C11179.4 (5)
O1W—Cd1—N2—C1942.3 (4)C9—C10—C11—C123.8 (10)
N1—Cd1—N2—C196.6 (3)C10—C11—C12—C132.4 (10)
O1—Cd1—N2—C19168.5 (3)C11—C12—C13—C141.3 (9)
O2—Cd1—N2—C19114.0 (3)C12—C13—C14—C93.6 (7)
O3—Cd1—N2—C1593.2 (4)C12—C13—C14—C14i173.3 (5)
O1W—Cd1—N2—C15128.7 (3)C10—C9—C14—C132.1 (6)
N1—Cd1—N2—C15177.6 (4)C8—C9—C14—C13177.0 (4)
O1—Cd1—N2—C152.5 (3)C10—C9—C14—C14i174.3 (5)
O2—Cd1—N2—C1557.1 (3)C8—C9—C14—C14i6.5 (7)
O3—Cd1—O1—C1166.2 (3)C19—N2—C15—C161.0 (7)
O1W—Cd1—O1—C172.6 (3)Cd1—N2—C15—C16170.2 (4)
N2—Cd1—O1—C183.1 (3)N2—C15—C16—C171.1 (7)
N1—Cd1—O1—C169.2 (4)C15—C16—C17—C180.7 (6)
O2—Cd1—O1—C10.6 (2)C15—C16—C17—C25179.5 (4)
O3—Cd1—O2—C127.6 (4)C16—C17—C18—C190.2 (6)
O1W—Cd1—O2—C1114.0 (3)C25—C17—C18—C19180.0 (4)
N2—Cd1—O2—C193.8 (3)C15—N2—C19—C180.4 (6)
N1—Cd1—O2—C1159.0 (3)Cd1—N2—C19—C18171.2 (3)
O1—Cd1—O2—C10.6 (2)C15—N2—C19—C20179.9 (4)
O1W—Cd1—O3—C822.1 (7)Cd1—N2—C19—C208.3 (4)
N2—Cd1—O3—C8177.0 (7)C17—C18—C19—N20.1 (6)
N1—Cd1—O3—C8111.8 (7)C17—C18—C19—C20179.5 (4)
O1—Cd1—O3—C884.2 (7)C24—N1—C20—C211.3 (6)
O2—Cd1—O3—C862.3 (8)Cd1—N1—C20—C21179.0 (3)
Cd1—O2—C1—O11.1 (4)C24—N1—C20—C19178.2 (4)
Cd1—O2—C1—C2177.5 (4)Cd1—N1—C20—C191.4 (5)
Cd1—O1—C1—O21.1 (4)N2—C19—C20—N14.5 (5)
Cd1—O1—C1—C2177.5 (3)C18—C19—C20—N1175.0 (4)
O2—C1—C2—C3151.3 (4)N2—C19—C20—C21175.0 (4)
O1—C1—C2—C327.4 (6)C18—C19—C20—C215.5 (6)
O2—C1—C2—C729.9 (7)N1—C20—C21—C220.8 (6)
O1—C1—C2—C7151.5 (4)C19—C20—C21—C22178.7 (4)
C7—C2—C3—C42.4 (8)C20—C21—C22—C231.0 (7)
C1—C2—C3—C4178.7 (5)C20—C21—C22—C26179.8 (4)
C2—C3—C4—C53.3 (8)C21—C22—C23—C242.1 (7)
C3—C4—C5—C62.4 (9)C26—C22—C23—C24178.6 (5)
C4—C5—C6—C70.7 (9)C20—N1—C24—C230.1 (7)
C5—C6—C7—C20.1 (8)Cd1—N1—C24—C23179.7 (4)
C5—C6—C7—C7i176.7 (5)C22—C23—C24—N11.7 (8)
C3—C2—C7—C60.7 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.851.782.632 (4)174
O1W—H1WA···O1i0.851.952.782 (4)164
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C14H8O4)2(C12H12N2)2(H2O)2]
Mr1109.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.104 (3), 15.395 (2), 18.289 (3)
β (°) 104.413 (3)
V3)4664.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.785, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
13512, 4594, 3108
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 0.93
No. of reflections4594
No. of parameters310
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.851.782.632 (4)174.3
O1W—H1WA···O1i0.851.952.782 (4)164.4
Symmetry code: (i) x, y, z+1/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, M.-X. & Feng, Y.-L. (2009). Acta Cryst. E65, m654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, F., Zeng, H., Yan, Z. & Li, T. (2009). Acta Cryst. E65, m681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRizal, M. R. & Ng, S. W. (2009). Acta Cryst. E65, m1178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856–m857.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. (2009). Acta Cryst. E65, m871–m872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Chen, X.-D., Zhang, H.-H. & Sun, B.-W. (2009). Acta Cryst. E65, m1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds