metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methano­ldinitrato[N-(2-pyridylmethyl­ene)aniline]copper(II)

aDepartment of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information Systems, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 6 October 2009; accepted 8 October 2009; online 17 October 2009)

The Cu atom in the title compound, [Cu(NO3)2(C12H10N2)(CH3OH)], adopts a square-pyramidal geometry, being ligated by two N atoms of the bidentate N-(2-pyridylmethyl­ene)­aniline (ppma) ligand, two O atoms of NO3 ligands and one O atom of a methanol molecule, which occupies the apical position. The phenyl ring on the ppma ligand is twisted out of the pyridine plane, forming a dihedral angle of 42.9 (1)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds between methanol and NO3 ligands form an extensive one-dimensional network extending parallel to [100].

Related literature

For general background on magnetic materials, see: Lu et al. (2007[Lu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210-1213.]); Mukherjee et al. (2008[Mukherjee, P., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Inorg. Chim. Acta, 361, 161-172.]); Tao et al. (2004[Tao, R. J., Mei, C. Z., Zang, S. Q., Wang, Q. L., Niu, J. Y. & Liao, D. Z. (2004). Inorg. Chim. Acta, 357, 1985-1990.]). For related structures, see: Lee et al. (2008[Lee, H. W., Sengottuvelan, N., Seo, H. J., Choi, J. S., Kang, S. K. & Kim, Y. I. (2008). Bull. Korean Chem. Soc. 29, 1711-1716.]); Addison et al. (1984[Addison, A. W., Rao, T. N., Reedjik, J., van Rijin, T. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For general background on electron paramagnetic resonance spectra, see: Mohapatra et al. (2008[Mohapatra, S. C., Tehlan, S., Hundal, M. S. & Mathur, P. (2008). Inorg. Chim. Acta, 361, 1897-1907.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C12H10N2)(CH4O)]

  • Mr = 401.82

  • Orthorhombic, P b c a

  • a = 14.5924 (13) Å

  • b = 13.4826 (12) Å

  • c = 17.0060 (13) Å

  • V = 3345.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.76, Tmax = 0.823

  • 17118 measured reflections

  • 3289 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.03

  • 3289 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23⋯O18i 0.69 (3) 2.15 (3) 2.817 (4) 162 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base complexes of transition metal complexes have great importance over the years due to their versatility of the steric and electronic properties and their possible applications as molecular based magnetic materials (Lu et al., 2007; Mukherjee et al., 2008; Tao et al., 2004). As a part of this research, we reported copper halides complexes with N2 bidentate Schiff base ligand derived from 2-pyridinecarboxylaldehyde and benzylamine(Lee et al., 2008), in which the reaction of copper(II) chloride leads to a dimeric complex whereas copper(II) bromide affords a monomeric copper complex. In this study, we reacted copper(II) nitrate with the similar Schiff base in methanol and prepared a monomeric penta-coordinated copper(II) complex, Cu(ppma)(NO3)2(CH3OH) (I).

In the title compound, the Cu atom adopts a square pyramidal geometry, being ligated by two N atoms of the bidentate N-(2-pyridylmethylene)aniline (ppma) ligand, two O atoms of NO3 ligands, and one O atom of methanol which occupies the apical position. The angles around Cu atom at the basal position are in the range of 80.8 (1) - 96.6 (1)°. The calculated trigonality index, τ = 0.12, indicates that the Cu atom is in an almost square pyramidal geometry (Addison et al., 1984). The phenyl ring on the ppma ligand is twisted out of the pyridine plane, and forms a dihedral angle of 42.9 (1) °. The intermolecular O23—H23—O18i [symmetry code: (i) x - 1/2, -y + 3/2, -z] hydrogen bond allows to form an extensive one-dimensional network, which stabilizes the crystal structure.

EPR (electron paramagnetic resonance) spectra of I compound were obtained both for solid and for frozen glass samples (toluene/methanol) at 77 K. The powder EPR spectrum exhibits isotropic feature, <g>=2.151. The solution EPR spectrum exhibits well defined hyperfine structure with parallel and perpendicular components, g(parallel) = 2.328, g(perpendicular) = 2.065 and A(parallel) =142x10-4 cm-1, typically indicating a dx2-y2 ground state, g(parallel) > g(perpendicular) > 2.0023 (Mohapatra et al., 2008). The magnetic susceptibilities of the title compound were collected as a function of temperatures (4 - 300 K). The magnetic susceptibility data increases as the temperatures decrease exhibiting a paramagnetic behavior. Magnetic susceptibility data follows the Curie-Weiss law showing the features of a discrete monomeric complex. A linear regression results in a Curie-Weiss temperature θ = 0.55 K and a Curie constant C = 0.45 cm3 K mol-1.

Related literature top

For general background on magnetic materials, see: Lu et al. (2007); Mukherjee et al. (2008); Tao et al. (2004). For related structures, see: Lee et al. (2008); Addison et al. (1984). For general background on electron paramagnetic resonance spectra, see: Mohapatra et al. (2008).

Experimental top

N-(2-pyridylmethylene)aniline was synthesized from the direct reaction of 2-pyridinecarboxyaldehyde and aniline. 2-Pyridinecarboxyaldehyde (2 mmol) dissolved in 20 ml of absolute methanol was added dropwise to a methanolic solution of aniline (2 mmol) and then refluxed overnight. After cooling to room temperature, a solution of Cu(NO3)2 3H2O (2 mmol) in 20 ml of absolute methanol was added to the mixed solution of 2-pyridinecarboxyaldehyde and aniline (ppma solution). The solution was changed to dark green color immediately. The resulting solution was allowed to stand at room temperature. The green crystals were obtained by slow evaporation in methanol.

Refinement top

The H23 atom was located in a difference map and refined freely with O—H = 0.69 (3) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Structure description top

Schiff base complexes of transition metal complexes have great importance over the years due to their versatility of the steric and electronic properties and their possible applications as molecular based magnetic materials (Lu et al., 2007; Mukherjee et al., 2008; Tao et al., 2004). As a part of this research, we reported copper halides complexes with N2 bidentate Schiff base ligand derived from 2-pyridinecarboxylaldehyde and benzylamine(Lee et al., 2008), in which the reaction of copper(II) chloride leads to a dimeric complex whereas copper(II) bromide affords a monomeric copper complex. In this study, we reacted copper(II) nitrate with the similar Schiff base in methanol and prepared a monomeric penta-coordinated copper(II) complex, Cu(ppma)(NO3)2(CH3OH) (I).

In the title compound, the Cu atom adopts a square pyramidal geometry, being ligated by two N atoms of the bidentate N-(2-pyridylmethylene)aniline (ppma) ligand, two O atoms of NO3 ligands, and one O atom of methanol which occupies the apical position. The angles around Cu atom at the basal position are in the range of 80.8 (1) - 96.6 (1)°. The calculated trigonality index, τ = 0.12, indicates that the Cu atom is in an almost square pyramidal geometry (Addison et al., 1984). The phenyl ring on the ppma ligand is twisted out of the pyridine plane, and forms a dihedral angle of 42.9 (1) °. The intermolecular O23—H23—O18i [symmetry code: (i) x - 1/2, -y + 3/2, -z] hydrogen bond allows to form an extensive one-dimensional network, which stabilizes the crystal structure.

EPR (electron paramagnetic resonance) spectra of I compound were obtained both for solid and for frozen glass samples (toluene/methanol) at 77 K. The powder EPR spectrum exhibits isotropic feature, <g>=2.151. The solution EPR spectrum exhibits well defined hyperfine structure with parallel and perpendicular components, g(parallel) = 2.328, g(perpendicular) = 2.065 and A(parallel) =142x10-4 cm-1, typically indicating a dx2-y2 ground state, g(parallel) > g(perpendicular) > 2.0023 (Mohapatra et al., 2008). The magnetic susceptibilities of the title compound were collected as a function of temperatures (4 - 300 K). The magnetic susceptibility data increases as the temperatures decrease exhibiting a paramagnetic behavior. Magnetic susceptibility data follows the Curie-Weiss law showing the features of a discrete monomeric complex. A linear regression results in a Curie-Weiss temperature θ = 0.55 K and a Curie constant C = 0.45 cm3 K mol-1.

For general background on magnetic materials, see: Lu et al. (2007); Mukherjee et al. (2008); Tao et al. (2004). For related structures, see: Lee et al. (2008); Addison et al. (1984). For general background on electron paramagnetic resonance spectra, see: Mohapatra et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.
Methanoldinitrato[N-(2-pyridylmethylene)aniline]copper(II) top
Crystal data top
[Cu(NO3)2(C12H10N2)(CH4O)]F(000) = 1640
Mr = 401.82Dx = 1.595 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4394 reflections
a = 14.5924 (13) Åθ = 2.4–22.8°
b = 13.4826 (12) ŵ = 1.35 mm1
c = 17.0060 (13) ÅT = 295 K
V = 3345.8 (5) Å3Block, green
Z = 80.2 × 0.18 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2098 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 26°, θmin = 2.4°
Tmin = 0.76, Tmax = 0.823h = 1118
17118 measured reflectionsk = 1016
3289 independent reflectionsl = 2014
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0421P)2 + 1.1597P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.43 e Å3
3289 reflectionsΔρmin = 0.34 e Å3
229 parameters
Crystal data top
[Cu(NO3)2(C12H10N2)(CH4O)]V = 3345.8 (5) Å3
Mr = 401.82Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.5924 (13) ŵ = 1.35 mm1
b = 13.4826 (12) ÅT = 295 K
c = 17.0060 (13) Å0.2 × 0.18 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3289 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2098 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.823Rint = 0.037
17118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.43 e Å3
3289 reflectionsΔρmin = 0.34 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.22734 (3)0.80769 (3)0.05883 (2)0.04304 (16)
N10.19359 (18)0.8656 (2)0.04406 (14)0.0443 (7)
C20.2115 (2)0.8304 (3)0.1155 (2)0.0562 (9)
H20.24470.77180.11980.067*
C30.1832 (3)0.8766 (3)0.1831 (2)0.0630 (10)
H30.19610.84890.23190.076*
C40.1354 (3)0.9642 (3)0.1777 (2)0.0611 (10)
H40.1160.99710.22280.073*
C50.1169 (2)1.0027 (2)0.10368 (19)0.0529 (9)
H50.08591.06260.09830.063*
C60.1449 (2)0.9511 (2)0.03880 (18)0.0416 (8)
C70.1207 (2)0.9783 (2)0.04160 (18)0.0438 (8)
H70.08981.03710.05220.053*
N80.14329 (17)0.91931 (18)0.09677 (14)0.0423 (6)
C90.1175 (2)0.9408 (2)0.17667 (18)0.0466 (8)
C100.1211 (2)1.0360 (3)0.2067 (2)0.0627 (10)
H100.14171.08830.17580.075*
C110.0938 (3)1.0521 (4)0.2833 (3)0.0858 (14)
H110.09481.11610.30380.103*
C120.0653 (3)0.9751 (5)0.3291 (3)0.0951 (16)
H120.04860.98670.38110.114*
C130.0611 (3)0.8808 (4)0.2995 (2)0.0864 (14)
H130.04040.82910.3310.104*
C140.0876 (2)0.8620 (3)0.2226 (2)0.0650 (10)
H140.08540.7980.20220.078*
O150.32671 (16)0.71875 (15)0.01603 (14)0.0542 (6)
N160.4040 (2)0.7588 (2)0.00143 (16)0.0540 (7)
O170.40926 (18)0.8491 (2)0.00598 (15)0.0781 (7)
O180.47131 (18)0.70493 (19)0.0054 (2)0.0903 (10)
O190.26151 (16)0.75883 (17)0.16300 (13)0.0561 (6)
N200.3146 (2)0.8210 (2)0.19904 (18)0.0565 (8)
O210.33689 (17)0.89636 (19)0.16336 (14)0.0714 (8)
O220.3405 (2)0.80158 (19)0.26547 (15)0.0846 (9)
O230.1281 (2)0.6864 (2)0.0490 (2)0.0773 (10)
H230.084 (2)0.704 (3)0.042 (2)0.049 (13)*
C240.1395 (3)0.5872 (3)0.0572 (3)0.0998 (16)
H13A0.08190.55430.04920.15*
H13B0.16160.57290.10920.15*
H13C0.1830.56390.01910.15*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0416 (3)0.0385 (3)0.0489 (2)0.00253 (18)0.00262 (18)0.00149 (17)
N10.0430 (17)0.0432 (17)0.0469 (16)0.0001 (13)0.0024 (12)0.0009 (12)
C20.058 (3)0.055 (2)0.056 (2)0.0043 (18)0.0079 (18)0.0077 (18)
C30.070 (3)0.075 (3)0.044 (2)0.004 (2)0.0028 (19)0.0035 (19)
C40.067 (3)0.070 (3)0.047 (2)0.008 (2)0.0028 (18)0.0109 (18)
C50.054 (2)0.048 (2)0.057 (2)0.0029 (17)0.0011 (18)0.0079 (17)
C60.0360 (19)0.0396 (19)0.0491 (19)0.0035 (16)0.0025 (14)0.0018 (15)
C70.040 (2)0.0379 (19)0.053 (2)0.0028 (16)0.0016 (15)0.0022 (15)
N80.0393 (17)0.0423 (16)0.0452 (15)0.0030 (13)0.0036 (12)0.0031 (12)
C90.0339 (19)0.057 (2)0.0483 (18)0.0038 (16)0.0032 (15)0.0020 (17)
C100.052 (2)0.072 (3)0.064 (2)0.003 (2)0.0058 (19)0.020 (2)
C110.069 (3)0.113 (4)0.075 (3)0.004 (3)0.008 (2)0.038 (3)
C120.068 (3)0.163 (5)0.054 (3)0.020 (3)0.010 (2)0.021 (3)
C130.069 (3)0.128 (4)0.062 (3)0.016 (3)0.022 (2)0.023 (3)
C140.060 (3)0.072 (3)0.062 (2)0.006 (2)0.011 (2)0.007 (2)
O150.0380 (14)0.0448 (14)0.0799 (17)0.0012 (11)0.0119 (12)0.0028 (11)
N160.048 (2)0.049 (2)0.0647 (18)0.0012 (18)0.0070 (15)0.0009 (15)
O170.078 (2)0.0534 (16)0.1030.0108 (15)0.0194 (16)0.0031 (15)
O180.0405 (17)0.0652 (19)0.165 (3)0.0090 (14)0.0224 (18)0.0068 (17)
O190.0627 (16)0.0481 (15)0.0577 (14)0.0049 (13)0.0082 (12)0.0056 (12)
N200.050 (2)0.067 (2)0.0519 (18)0.0023 (16)0.0013 (16)0.0093 (17)
O210.072 (2)0.0728 (18)0.0689 (16)0.0241 (15)0.0123 (14)0.0210 (14)
O220.100 (2)0.098 (2)0.0556 (16)0.0161 (16)0.0205 (15)0.0193 (14)
O230.0456 (19)0.0467 (18)0.140 (3)0.0003 (15)0.0207 (18)0.0095 (15)
C240.071 (3)0.050 (3)0.179 (5)0.009 (2)0.013 (3)0.019 (3)
Geometric parameters (Å, º) top
Cu—O191.955 (2)C10—C111.378 (5)
Cu—N11.979 (2)C10—H100.93
Cu—O152.017 (2)C11—C121.365 (6)
Cu—N82.046 (2)C11—H110.93
Cu—O232.191 (3)C12—C131.369 (6)
N1—C21.330 (4)C12—H120.93
N1—C61.356 (4)C13—C141.388 (5)
C2—C31.370 (5)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.375 (5)O15—N161.274 (3)
C3—H30.93N16—O171.226 (3)
C4—C51.388 (4)N16—O181.227 (3)
C4—H40.93O19—N201.295 (3)
C5—C61.367 (4)N20—O221.220 (3)
C5—H50.93N20—O211.228 (3)
C6—C71.459 (4)O23—C241.355 (4)
C7—N81.273 (4)O23—H230.69 (3)
C7—H70.93C24—H13A0.96
N8—C91.439 (4)C24—H13B0.96
C9—C101.382 (4)C24—H13C0.96
C9—C141.389 (4)
O19—Cu—N1176.44 (10)C10—C9—N8121.8 (3)
O19—Cu—O1586.75 (9)C14—C9—N8117.3 (3)
N1—Cu—O1595.43 (10)C11—C10—C9119.0 (4)
O19—Cu—N896.60 (10)C11—C10—H10120.5
N1—Cu—N880.75 (10)C9—C10—H10120.5
O15—Cu—N8169.09 (10)C12—C11—C10120.5 (4)
O19—Cu—O2389.20 (11)C12—C11—H11119.8
N1—Cu—O2393.60 (11)C10—C11—H11119.8
O15—Cu—O2390.21 (11)C11—C12—C13120.7 (4)
N8—Cu—O23100.20 (11)C11—C12—H12119.7
C2—N1—C6117.8 (3)C13—C12—H12119.7
C2—N1—Cu128.2 (2)C12—C13—C14120.3 (4)
C6—N1—Cu114.0 (2)C12—C13—H13119.9
N1—C2—C3123.0 (3)C14—C13—H13119.9
N1—C2—H2118.5C13—C14—C9118.5 (4)
C3—C2—H2118.5C13—C14—H14120.7
C2—C3—C4119.1 (3)C9—C14—H14120.7
C2—C3—H3120.4N16—O15—Cu117.0 (2)
C4—C3—H3120.4O17—N16—O18121.8 (3)
C3—C4—C5118.7 (3)O17—N16—O15119.7 (3)
C3—C4—H4120.7O18—N16—O15118.4 (3)
C5—C4—H4120.7N20—O19—Cu111.31 (19)
C6—C5—C4118.9 (3)O22—N20—O21123.6 (3)
C6—C5—H5120.5O22—N20—O19119.0 (3)
C4—C5—H5120.5O21—N20—O19117.4 (3)
N1—C6—C5122.4 (3)C24—O23—Cu130.4 (3)
N1—C6—C7113.7 (3)C24—O23—H23118 (3)
C5—C6—C7123.8 (3)Cu—O23—H23112 (3)
N8—C7—C6118.1 (3)O23—C24—H13A109.5
N8—C7—H7121O23—C24—H13B109.5
C6—C7—H7121H13A—C24—H13B109.5
C7—N8—C9120.1 (3)O23—C24—H13C109.5
C7—N8—Cu112.5 (2)H13A—C24—H13C109.5
C9—N8—Cu127.1 (2)H13B—C24—H13C109.5
C10—C9—C14121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23···O18i0.69 (3)2.15 (3)2.817 (4)162 (4)
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C12H10N2)(CH4O)]
Mr401.82
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)14.5924 (13), 13.4826 (12), 17.0060 (13)
V3)3345.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.2 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.76, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
17118, 3289, 2098
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.03
No. of reflections3289
No. of parameters229
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23···O18i0.69 (3)2.15 (3)2.817 (4)162 (4)
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

This research was supported by the Ministry of Knowledge Economy, Korea, under the Information Technology Research Center support program supervised by the National Industry Promotion Agency [grant No. NIPA-2009-(C1090–0902–0022)].

References

First citationAddison, A. W., Rao, T. N., Reedjik, J., van Rijin, T. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLee, H. W., Sengottuvelan, N., Seo, H. J., Choi, J. S., Kang, S. K. & Kim, Y. I. (2008). Bull. Korean Chem. Soc. 29, 1711–1716.  CAS Google Scholar
First citationLu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun. 10, 1210–1213.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohapatra, S. C., Tehlan, S., Hundal, M. S. & Mathur, P. (2008). Inorg. Chim. Acta, 361, 1897–1907.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Inorg. Chim. Acta, 361, 161–172.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, R. J., Mei, C. Z., Zang, S. Q., Wang, Q. L., Niu, J. Y. & Liao, D. Z. (2004). Inorg. Chim. Acta, 357, 1985–1990.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds