organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Adamantane-1-ammonium benzoate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wsp1314@126.com

(Received 28 August 2009; accepted 12 September 2009; online 17 October 2009)

In the title molecular salt, C10H15NH3+·C7H5O2, both carboxyl O atoms act as acceptors for strong N—H⋯O inter­molecular hydrogen-bond inter­actions with the ammonium group in the cation, generating infinite chains along the b axis. A weak C—H⋯π inter­action is also present.

Related literature

For related structures, see: Tukada & Mochizuki (2003[Tukada, H. & Mochizuki, K. (2003). J. Mol. Struct. 655, 473-478.]); Zhao et al. (2003[Zhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). Chin. J. Appl. Chem. 20, 806-808.]); He & Wen (2006[He, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, o1312-o1313.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C10H18N+·C7H5O2

  • Mr = 273.36

  • Monoclinic, P 21 /n

  • a = 10.918 (2) Å

  • b = 6.5664 (13) Å

  • c = 21.197 (4) Å

  • β = 100.07 (3)°

  • V = 1496.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.774, Tmax = 1.000

  • 15027 measured reflections

  • 3437 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.147

  • S = 1.04

  • 3437 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 1.83 2.7134 (17) 176
N1—H1B⋯O2ii 0.89 1.90 2.7840 (18) 173
N1—H1C⋯O2 0.89 1.92 2.7915 (18) 166
C16—H16ACg1iii 0.97 2.74 3.702 (2) 174
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z. Cg1 is the centroid of the C2–C7 ring.

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Owing to its highly symmetrical and stable structure, adamantane and its derivatives have generated much interest in the past and continue to be actively studied as evidenced by the large number of compounds containing amantadine that have been synthesized (Tukada & Mochizuki, 2003; Zhao et al., 2003; He & Wen, 2006). Here we report the synthesis and crystal structure of the title compound,(I), C10H15NH3+ . C7H5O2-, a salt obtained from the reaction of adamantane-1-ammonium hydrochloride and sodium benzoate (Fig. 1).

The adamantane-1-ammonium cation contains four 6-membered rings in a cage-like structure each in a slightly distorted boat conformation and with a protonated N atom at the 1-position. Puckering parameters (Cremer & Pople, 1975) Q, θ and φ are for rings 1–4 [(1) 0.630 (2) Å, 1.48 (18)°,272 (54)°; (2) 0.6247 (19)Å,178.36 (17)°, 251 (423)°; (3) 0.621 (4)Å,0.67 (18)°, 240 (54)°; (4)0.6207 (19)Å, 0.55 (18)°, 218 (39)°] where (1) = C7–C9/C13–C15, (2) = C7/C8/C10/C11/C16/C15, (3) = C8/C9/C13/C12/C11/C10 and (4) = C11–C16. C—C distances range from 1.518 (2)Å to 1.531 (3)Å and C—C—C angles range from 108.93 (13)° to 109.91 (13)°, while the exocyclic C—N bond length is 1.4924 (19)Å. These values are similar to that observed in adamantane-1-ammonium 2-nitrobenzoate (C—C = 1.5254 (18)Å to 1.532 (2)Å, C—C—C 109.06 (13)° to 109.84 (11)°, C—N = 1.4967 (18)Å (He & Wen, 2006). Both the negativly charged and neutral oxygen atoms in the benzoate anion are involved in strong N—H···O intermolecular hydrogen bond interactions with the ammonium cation group generating infinite one-dimensional chains along the b axis of the unit cell (Fig. 2, Table 1). In addition, weak π-ring C16–H16A···Cg1 interactions exist which contribute to crystal stability (Cg1 is the center of gravity of ring 1).

Related literature top

For related structures, see: Tukada & Mochizuki (2003); Zhao et al. (2003); He & Wen (2006). For puckering parameters, see: Cremer & Pople (1975). Cg1 is the centroid of the C7–C9/C13–C15 ring.

Experimental top

A mixture of adamantane-1- ammonium hydrochloride (10 mmol), sodiumbenzoate (10 mmol) and methanol (50 ml) was stirred in a beaker. There were many solid powders produced and the solution was filtered. Colorless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvents over a period of 20 h.

Refinement top

Positional parameters of all the H atoms were calculated geometrically (aromatic C–H = 0.93 A°, aliphatic C–H = 0.97 A°) & N–H = 0.89Å) and were allowed to ride on the C,N atoms to which they are bonded, with Uiso(H) = 1.2-1.5Ueq(C,N).

Structure description top

Owing to its highly symmetrical and stable structure, adamantane and its derivatives have generated much interest in the past and continue to be actively studied as evidenced by the large number of compounds containing amantadine that have been synthesized (Tukada & Mochizuki, 2003; Zhao et al., 2003; He & Wen, 2006). Here we report the synthesis and crystal structure of the title compound,(I), C10H15NH3+ . C7H5O2-, a salt obtained from the reaction of adamantane-1-ammonium hydrochloride and sodium benzoate (Fig. 1).

The adamantane-1-ammonium cation contains four 6-membered rings in a cage-like structure each in a slightly distorted boat conformation and with a protonated N atom at the 1-position. Puckering parameters (Cremer & Pople, 1975) Q, θ and φ are for rings 1–4 [(1) 0.630 (2) Å, 1.48 (18)°,272 (54)°; (2) 0.6247 (19)Å,178.36 (17)°, 251 (423)°; (3) 0.621 (4)Å,0.67 (18)°, 240 (54)°; (4)0.6207 (19)Å, 0.55 (18)°, 218 (39)°] where (1) = C7–C9/C13–C15, (2) = C7/C8/C10/C11/C16/C15, (3) = C8/C9/C13/C12/C11/C10 and (4) = C11–C16. C—C distances range from 1.518 (2)Å to 1.531 (3)Å and C—C—C angles range from 108.93 (13)° to 109.91 (13)°, while the exocyclic C—N bond length is 1.4924 (19)Å. These values are similar to that observed in adamantane-1-ammonium 2-nitrobenzoate (C—C = 1.5254 (18)Å to 1.532 (2)Å, C—C—C 109.06 (13)° to 109.84 (11)°, C—N = 1.4967 (18)Å (He & Wen, 2006). Both the negativly charged and neutral oxygen atoms in the benzoate anion are involved in strong N—H···O intermolecular hydrogen bond interactions with the ammonium cation group generating infinite one-dimensional chains along the b axis of the unit cell (Fig. 2, Table 1). In addition, weak π-ring C16–H16A···Cg1 interactions exist which contribute to crystal stability (Cg1 is the center of gravity of ring 1).

For related structures, see: Tukada & Mochizuki (2003); Zhao et al. (2003); He & Wen (2006). For puckering parameters, see: Cremer & Pople (1975). Cg1 is the centroid of the C7–C9/C13–C15 ring.

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level. All H atoms except those on the N atom have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Dashed lines indicate N–H···O hydrogen bonds which form infinite, one-dimensional chains along the b axis of the unit cell. H atoms not involved in hydrogen bonding have been omitted for clarity.
adamantane-1-ammonium benzoate top
Crystal data top
C10H18N+·C7H5O2F(000) = 592
Mr = 273.36Dx = 1.214 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12490 reflections
a = 10.918 (2) Åθ = 3.2–27.7°
b = 6.5664 (13) ŵ = 0.08 mm1
c = 21.197 (4) ÅT = 298 K
β = 100.07 (3)°Prism, colourless
V = 1496.3 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3437 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.774, Tmax = 1.000l = 2726
15027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.3147P]
where P = (Fo2 + 2Fc2)/3
3437 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H18N+·C7H5O2V = 1496.3 (5) Å3
Mr = 273.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.918 (2) ŵ = 0.08 mm1
b = 6.5664 (13) ÅT = 298 K
c = 21.197 (4) Å0.20 × 0.20 × 0.20 mm
β = 100.07 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3437 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2453 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 1.000Rint = 0.043
15027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3437 reflectionsΔρmin = 0.26 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56217 (14)0.6892 (3)0.15342 (7)0.0405 (4)
C20.47020 (13)0.7614 (2)0.09647 (7)0.0365 (3)
C30.41146 (17)0.6184 (3)0.05392 (8)0.0551 (5)
H3A0.42820.48070.06120.066*
C40.3278 (2)0.6789 (3)0.00041 (9)0.0718 (6)
H4A0.28990.58200.02860.086*
C50.30094 (19)0.8799 (4)0.00983 (9)0.0707 (6)
H5A0.24390.92010.04550.085*
C60.35764 (18)1.0225 (3)0.03223 (9)0.0651 (5)
H6A0.33851.15960.02530.078*
C70.44324 (15)0.9646 (3)0.08504 (8)0.0481 (4)
H7A0.48281.06290.11300.058*
C80.93359 (16)0.8861 (2)0.16653 (8)0.0463 (4)
H8A0.95681.00030.19520.056*
H8B0.84830.90570.14520.056*
C90.94432 (13)0.6891 (2)0.20453 (7)0.0347 (3)
C100.90627 (16)0.5096 (2)0.15964 (8)0.0472 (4)
H10A0.91230.38380.18400.057*
H10B0.82070.52600.13830.057*
C110.99218 (19)0.5007 (3)0.11014 (9)0.0591 (5)
H11A0.96810.38590.08110.071*
C120.98200 (19)0.6977 (3)0.07187 (9)0.0633 (5)
H12A0.89720.71580.04960.076*
H12B1.03600.69150.04010.076*
C131.01933 (18)0.8766 (3)0.11689 (9)0.0548 (5)
H13A1.01261.00350.09220.066*
C141.07795 (14)0.6598 (3)0.23908 (8)0.0474 (4)
H14A1.08460.53470.26380.057*
H14B1.10210.77230.26830.057*
C151.16369 (16)0.6503 (3)0.18941 (9)0.0596 (5)
H15A1.24970.63170.21130.071*
C161.15367 (17)0.8477 (3)0.15120 (10)0.0628 (5)
H16A1.20890.84280.12000.075*
H16B1.17830.96160.17970.075*
C171.1262 (2)0.4714 (3)0.14452 (11)0.0689 (6)
H17A1.13300.34550.16880.083*
H17B1.18130.46290.11340.083*
N10.85951 (11)0.69816 (19)0.25257 (6)0.0393 (3)
H1A0.88100.80250.27900.059*
H1B0.86540.58280.27490.059*
H1C0.78150.71460.23240.059*
O10.57302 (14)0.5030 (2)0.16200 (6)0.0744 (5)
O20.62592 (11)0.81896 (19)0.18784 (6)0.0594 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (8)0.0485 (9)0.0338 (8)0.0034 (7)0.0030 (6)0.0005 (7)
C20.0332 (7)0.0430 (8)0.0325 (7)0.0025 (6)0.0039 (6)0.0033 (6)
C30.0573 (10)0.0494 (10)0.0514 (10)0.0022 (8)0.0102 (8)0.0026 (8)
C40.0713 (13)0.0782 (15)0.0541 (11)0.0070 (11)0.0218 (10)0.0098 (10)
C50.0622 (12)0.0890 (16)0.0518 (11)0.0029 (11)0.0148 (9)0.0201 (11)
C60.0635 (12)0.0581 (12)0.0670 (12)0.0025 (9)0.0073 (10)0.0234 (10)
C70.0473 (9)0.0454 (9)0.0482 (9)0.0030 (7)0.0012 (7)0.0045 (7)
C80.0529 (9)0.0362 (9)0.0467 (9)0.0043 (7)0.0002 (7)0.0037 (7)
C90.0346 (7)0.0325 (7)0.0343 (7)0.0002 (6)0.0019 (6)0.0008 (6)
C100.0521 (9)0.0385 (9)0.0493 (9)0.0068 (7)0.0046 (8)0.0090 (7)
C110.0723 (12)0.0516 (11)0.0546 (11)0.0037 (9)0.0137 (9)0.0182 (8)
C120.0675 (12)0.0823 (14)0.0398 (9)0.0007 (10)0.0083 (9)0.0031 (9)
C130.0648 (11)0.0487 (10)0.0507 (10)0.0016 (8)0.0092 (9)0.0150 (8)
C140.0391 (8)0.0527 (10)0.0461 (9)0.0016 (7)0.0045 (7)0.0046 (7)
C150.0375 (8)0.0759 (13)0.0635 (11)0.0061 (8)0.0036 (8)0.0076 (10)
C160.0528 (10)0.0718 (13)0.0651 (12)0.0150 (9)0.0134 (9)0.0019 (10)
C170.0717 (13)0.0601 (12)0.0810 (14)0.0191 (10)0.0297 (11)0.0009 (10)
N10.0371 (6)0.0397 (7)0.0375 (7)0.0005 (5)0.0030 (5)0.0023 (5)
O10.0912 (11)0.0536 (9)0.0663 (9)0.0002 (7)0.0200 (8)0.0209 (6)
O20.0484 (7)0.0625 (8)0.0575 (7)0.0142 (6)0.0177 (6)0.0197 (6)
Geometric parameters (Å, º) top
C1—O11.238 (2)C10—H10B0.9700
C1—O21.2512 (19)C11—C121.520 (3)
C1—C21.505 (2)C11—C171.528 (3)
C2—C71.378 (2)C11—H11A0.9800
C2—C31.380 (2)C12—C131.523 (3)
C3—C41.384 (3)C12—H12A0.9700
C3—H3A0.9300C12—H12B0.9700
C4—C51.361 (3)C13—C161.531 (3)
C4—H4A0.9300C13—H13A0.9800
C5—C61.365 (3)C14—C151.528 (2)
C5—H5A0.9300C14—H14A0.9700
C6—C71.380 (2)C14—H14B0.9700
C6—H6A0.9300C15—C171.522 (3)
C7—H7A0.9300C15—C161.522 (3)
C8—C91.518 (2)C15—H15A0.9800
C8—C131.527 (2)C16—H16A0.9700
C8—H8A0.9700C16—H16B0.9700
C8—H8B0.9700C17—H17A0.9700
C9—N11.4925 (19)C17—H17B0.9700
C9—C141.526 (2)N1—H1A0.8900
C9—C101.526 (2)N1—H1B0.8900
C10—C111.526 (2)N1—H1C0.8900
C10—H10A0.9700
O1—C1—O2123.88 (15)C17—C11—H11A109.4
O1—C1—C2117.52 (14)C11—C12—C13109.58 (14)
O2—C1—C2118.55 (15)C11—C12—H12A109.8
C7—C2—C3118.90 (15)C13—C12—H12A109.8
C7—C2—C1122.54 (14)C11—C12—H12B109.8
C3—C2—C1118.55 (14)C13—C12—H12B109.8
C2—C3—C4120.31 (18)H12A—C12—H12B108.2
C2—C3—H3A119.8C12—C13—C8109.53 (15)
C4—C3—H3A119.8C12—C13—C16109.35 (16)
C5—C4—C3120.12 (18)C8—C13—C16109.25 (15)
C5—C4—H4A119.9C12—C13—H13A109.6
C3—C4—H4A119.9C8—C13—H13A109.6
C4—C5—C6120.05 (17)C16—C13—H13A109.6
C4—C5—H5A120.0C9—C14—C15108.92 (13)
C6—C5—H5A120.0C9—C14—H14A109.9
C5—C6—C7120.41 (18)C15—C14—H14A109.9
C5—C6—H6A119.8C9—C14—H14B109.9
C7—C6—H6A119.8C15—C14—H14B109.9
C2—C7—C6120.18 (16)H14A—C14—H14B108.3
C2—C7—H7A119.9C17—C15—C16109.76 (16)
C6—C7—H7A119.9C17—C15—C14109.41 (15)
C9—C8—C13109.32 (13)C16—C15—C14109.63 (15)
C9—C8—H8A109.8C17—C15—H15A109.3
C13—C8—H8A109.8C16—C15—H15A109.3
C9—C8—H8B109.8C14—C15—H15A109.3
C13—C8—H8B109.8C15—C16—C13109.38 (15)
H8A—C8—H8B108.3C15—C16—H16A109.8
N1—C9—C8109.18 (12)C13—C16—H16A109.8
N1—C9—C14109.45 (12)C15—C16—H16B109.8
C8—C9—C14109.91 (13)C13—C16—H16B109.8
N1—C9—C10108.82 (12)H16A—C16—H16B108.2
C8—C9—C10109.89 (12)C15—C17—C11109.36 (15)
C14—C9—C10109.58 (13)C15—C17—H17A109.8
C11—C10—C9108.97 (13)C11—C17—H17A109.8
C11—C10—H10A109.9C15—C17—H17B109.8
C9—C10—H10A109.9C11—C17—H17B109.8
C11—C10—H10B109.9H17A—C17—H17B108.3
C9—C10—H10B109.9C9—N1—H1A109.5
H10A—C10—H10B108.3C9—N1—H1B109.5
C12—C11—C10109.76 (15)H1A—N1—H1B109.5
C12—C11—C17109.64 (17)C9—N1—H1C109.5
C10—C11—C17109.22 (15)H1A—N1—H1C109.5
C12—C11—H11A109.4H1B—N1—H1C109.5
C10—C11—H11A109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.891.832.7134 (17)176
N1—H1B···O2ii0.891.902.7840 (18)173
N1—H1C···O20.891.922.7915 (18)166
C16—H16A···Cg1iii0.972.743.702 (2)174
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H18N+·C7H5O2
Mr273.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.918 (2), 6.5664 (13), 21.197 (4)
β (°) 100.07 (3)
V3)1496.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.774, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15027, 3437, 2453
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.147, 1.04
No. of reflections3437
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.891.832.7134 (17)175.8
N1—H1B···O2ii0.891.902.7840 (18)172.5
N1—H1C···O20.891.922.7915 (18)166
C16—H16A···Cg1iii0.972.73593.702 (2)173.73
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHe, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, o1312–o1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTukada, H. & Mochizuki, K. (2003). J. Mol. Struct. 655, 473–478.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). Chin. J. Appl. Chem. 20, 806–808.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds