organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Meth­­oxy-6-(thia­zol-2-ylimino­meth­yl)phenol

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 19 September 2009; accepted 4 October 2009; online 10 October 2009)

The title compound, C11H10N2O2S, displays an E configuration about the C=N bond. The mean planes of the thia­zole and benzene rings make a dihedral angle of 9.32 (18)°. Intra­molecular O—H⋯N hydrogen bonds are found in the crystal structure.

Related literature

For general background to Schiff bases, see: Lv et al. (2006[Lv, J., Liu, T., Cai, S., Wang, X., Liu, L. & Wang, Y. (2006). J. Inorg. Biochem. 100, 1888-1896.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.]); Zhou et al. (2009[Zhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009). Acta Cryst. E65, o1949.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O2S

  • Mr = 234.27

  • Monoclinic, C 2/c

  • a = 24.765 (3) Å

  • b = 4.9619 (8) Å

  • c = 20.238 (2) Å

  • β = 117.931 (2)°

  • V = 2197.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.29 × 0.18 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.954

  • 5338 measured reflections

  • 1920 independent reflections

  • 1139 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.02

  • 1920 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.91 2.627 (3) 146

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been extensively researched because of their important applications in coordination chemistry, catalysis and biological processes. (Lv et al. 2006, Tarafder et al. 2002, Zhou et al. 2009). Owing to the importance of these Schiff base analogue compounds, we report here the crystal structure of the title compound, C11H10N2O2S1, (I).

The title compoud was prepared by the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with an equimolar quantity of thiazol-2 -amine (Fig. 1). The structure of (I) shows a trans or E configuration about the C=N bond. The dihedral angle between the mean planes of the thiazole and benzene rings is 9.32 (18) °. Intramolecular O1—H1···N2 hydrogen bonds are found in the crystal structure. Crystal packing is stabilized mainly by van der Waals interactions (Fig. 2).

Related literature top

For general background to Schiff bases, see: Lv et al. (2006); Tarafder et al. (2002); Zhou et al. (2009).

Experimental top

2-hydroxy-3-methoxybenzaldehyde (10 mmol) was added to a ethanolic solution of thiazol-2-amine (10 mmol). Then, the reaction mixture was heated for 2 h under reflux. After filtration a yellow powder was obtained. Suitable crystals for X-ray diffraction were obtained by recrystallization from methanol. Anal. Calcd (%) for C11H10N2O2S1 (Mr = 234.27): C,56.40; H, 4.30; N, 11.96; O, 13.66; S,13.69. Found (%): C,56.38; H, 4.35; N, 11.90; O, 13.69; S,13.68.

Refinement top

All the nonhydroxy H atoms were placed in geometrically idealized positions (Cmethyl—H = 0.96 and all other C—H = 0.93 Å) and constrained to ride on their parent atoms, with with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8). The H atoms attached to oxygen atoms were located from the Fourier differece map and refined isotropically.

Structure description top

Schiff bases have been extensively researched because of their important applications in coordination chemistry, catalysis and biological processes. (Lv et al. 2006, Tarafder et al. 2002, Zhou et al. 2009). Owing to the importance of these Schiff base analogue compounds, we report here the crystal structure of the title compound, C11H10N2O2S1, (I).

The title compoud was prepared by the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with an equimolar quantity of thiazol-2 -amine (Fig. 1). The structure of (I) shows a trans or E configuration about the C=N bond. The dihedral angle between the mean planes of the thiazole and benzene rings is 9.32 (18) °. Intramolecular O1—H1···N2 hydrogen bonds are found in the crystal structure. Crystal packing is stabilized mainly by van der Waals interactions (Fig. 2).

For general background to Schiff bases, see: Lv et al. (2006); Tarafder et al. (2002); Zhou et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with 50% probability displacement ellipsoids. An O—H..N intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Intramolecular hydrogen bonds are shown as dashed lines.
(E)-2-Methoxy-6-(thiazol-2-yliminomethyl)phenol top
Crystal data top
C11H10N2O2SF(000) = 976
Mr = 234.27Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1208 reflections
a = 24.765 (3) Åθ = 3.3–21.9°
b = 4.9619 (8) ŵ = 0.28 mm1
c = 20.238 (2) ÅT = 298 K
β = 117.931 (2)°Block, colorless
V = 2197.2 (5) Å30.29 × 0.18 × 0.17 mm
Z = 8
Data collection top
Siemens SMART CCD area-detector
diffractometer
1920 independent reflections
Radiation source: fine-focus sealed tube1139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2926
Tmin = 0.923, Tmax = 0.954k = 55
5338 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.8745P]
where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H10N2O2SV = 2197.2 (5) Å3
Mr = 234.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.765 (3) ŵ = 0.28 mm1
b = 4.9619 (8) ÅT = 298 K
c = 20.238 (2) Å0.29 × 0.18 × 0.17 mm
β = 117.931 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1920 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1139 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.954Rint = 0.034
5338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1920 reflectionsΔρmin = 0.23 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10966 (12)1.1575 (6)0.46446 (14)0.0681 (8)
N20.09882 (10)0.9199 (5)0.35514 (12)0.0495 (6)
O10.09126 (9)0.6986 (4)0.23318 (10)0.0582 (6)
H10.08330.80910.25750.087*
O20.13089 (10)0.3468 (4)0.17130 (12)0.0687 (6)
S10.01303 (4)1.2680 (2)0.34433 (5)0.0702 (3)
C10.14555 (13)0.7692 (6)0.39241 (16)0.0512 (7)
H1A0.16580.78420.44420.061*
C20.16805 (12)0.5776 (6)0.35747 (15)0.0458 (7)
C30.13974 (12)0.5484 (6)0.27981 (16)0.0457 (7)
C40.16169 (13)0.3571 (6)0.24731 (17)0.0514 (8)
C50.21123 (14)0.2002 (6)0.29263 (19)0.0608 (9)
H50.22590.07240.27140.073*
C60.23948 (14)0.2313 (7)0.3698 (2)0.0642 (9)
H60.27300.12460.39990.077*
C70.21848 (13)0.4170 (6)0.40180 (18)0.0576 (8)
H70.23780.43700.45350.069*
C80.14472 (19)0.1291 (7)0.1360 (2)0.0966 (13)
H8A0.18560.14940.14280.145*
H8B0.11640.12910.08350.145*
H8C0.14150.03800.15780.145*
C90.08023 (13)1.1000 (6)0.39362 (16)0.0500 (7)
C100.07640 (17)1.3433 (7)0.48042 (19)0.0747 (10)
H100.09001.41000.52860.090*
C110.02367 (16)1.4240 (7)0.42374 (18)0.0678 (9)
H110.00311.54710.42740.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0747 (18)0.082 (2)0.0432 (15)0.0066 (16)0.0239 (14)0.0087 (14)
N20.0487 (15)0.0539 (15)0.0471 (14)0.0046 (13)0.0234 (12)0.0034 (13)
O10.0626 (13)0.0576 (13)0.0500 (12)0.0124 (11)0.0227 (10)0.0032 (10)
O20.0912 (17)0.0617 (15)0.0625 (14)0.0129 (12)0.0438 (13)0.0047 (12)
S10.0629 (5)0.0897 (7)0.0526 (5)0.0103 (5)0.0227 (4)0.0114 (5)
C10.0543 (18)0.0540 (19)0.0412 (16)0.0111 (16)0.0188 (15)0.0017 (15)
C20.0451 (17)0.0415 (17)0.0498 (18)0.0068 (14)0.0214 (14)0.0009 (14)
C30.0438 (17)0.0396 (17)0.0557 (19)0.0002 (14)0.0250 (15)0.0022 (15)
C40.0572 (19)0.0481 (19)0.058 (2)0.0037 (16)0.0343 (17)0.0010 (16)
C50.061 (2)0.049 (2)0.088 (3)0.0018 (16)0.048 (2)0.0035 (18)
C60.0493 (19)0.059 (2)0.079 (3)0.0027 (17)0.0254 (18)0.0138 (19)
C70.0516 (19)0.056 (2)0.0569 (19)0.0035 (16)0.0189 (16)0.0046 (17)
C80.162 (4)0.068 (3)0.084 (3)0.021 (3)0.077 (3)0.002 (2)
C90.0572 (18)0.0507 (18)0.0481 (18)0.0063 (15)0.0298 (15)0.0029 (15)
C100.093 (3)0.083 (3)0.051 (2)0.000 (2)0.036 (2)0.018 (2)
C110.075 (2)0.078 (2)0.060 (2)0.004 (2)0.0391 (19)0.0082 (19)
Geometric parameters (Å, º) top
N1—C91.300 (3)C3—C41.401 (4)
N1—C101.372 (4)C4—C51.378 (4)
N2—C11.284 (3)C5—C61.389 (4)
N2—C91.398 (3)C5—H50.9300
O1—C31.351 (3)C6—C71.361 (4)
O1—H10.8200C6—H60.9300
O2—C41.361 (3)C7—H70.9300
O2—C81.423 (4)C8—H8A0.9600
S1—C111.689 (3)C8—H8B0.9600
S1—C91.704 (3)C8—H8C0.9600
C1—C21.443 (4)C10—C111.333 (4)
C1—H1A0.9300C10—H100.9300
C2—C31.397 (4)C11—H110.9300
C2—C71.397 (4)
C9—N1—C10108.6 (3)C7—C6—H6119.8
C1—N2—C9119.1 (2)C5—C6—H6119.8
C3—O1—H1109.5C6—C7—C2120.5 (3)
C4—O2—C8117.2 (3)C6—C7—H7119.8
C11—S1—C989.58 (16)C2—C7—H7119.8
N2—C1—C2123.0 (3)O2—C8—H8A109.5
N2—C1—H1A118.5O2—C8—H8B109.5
C2—C1—H1A118.5H8A—C8—H8B109.5
C3—C2—C7119.3 (3)O2—C8—H8C109.5
C3—C2—C1121.0 (3)H8A—C8—H8C109.5
C7—C2—C1119.7 (3)H8B—C8—H8C109.5
O1—C3—C2122.8 (3)N1—C9—N2126.4 (3)
O1—C3—C4117.3 (3)N1—C9—S1115.3 (2)
C2—C3—C4119.9 (3)N2—C9—S1118.2 (2)
O2—C4—C5125.7 (3)C11—C10—N1116.9 (3)
O2—C4—C3114.9 (3)C11—C10—H10121.5
C5—C4—C3119.4 (3)N1—C10—H10121.5
C4—C5—C6120.5 (3)C10—C11—S1109.5 (3)
C4—C5—H5119.7C10—C11—H11125.2
C6—C5—H5119.7S1—C11—H11125.2
C7—C6—C5120.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.912.627 (3)146

Experimental details

Crystal data
Chemical formulaC11H10N2O2S
Mr234.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.765 (3), 4.9619 (8), 20.238 (2)
β (°) 117.931 (2)
V3)2197.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.29 × 0.18 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
5338, 1920, 1139
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.02
No. of reflections1920
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.912.627 (3)145.7
 

Acknowledgements

We acknowledge the financial support of the Natural Science Foundation of China (No. 20771053), the Natural Science Foundation of Shandong Province (Y2008B48) and the Students Technology Cultural Innovation Fund of Liaocheng University.

References

First citationLv, J., Liu, T., Cai, S., Wang, X., Liu, L. & Wang, Y. (2006). J. Inorg. Biochem. 100, 1888–1896.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, J.-C., Li, N.-X., Zhang, C.-M. & Zhang, Z.-Y. (2009). Acta Cryst. E65, o1949.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds