metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Aqua­chloridobis(1,10-phenanthroline-κ2N,N′)cobalt(II) chloride 2.5-hydrate

aDepartment of Chemistry, Loyola College (Autonomous), Chennai-34, India, and bDepartment of Physics, RKM Vivekananda College, Chennai-4, India
*Correspondence e-mail: dayalan77@gmail.com

(Received 27 August 2009; accepted 22 September 2009; online 3 October 2009)

In the title complex, [CoCl(C12H8N2)2(H2O)]Cl·2.5H2O, the CoII ion is coordinated by four N atoms of two bis-chelating 1,10-phenanthroline (phen) ligands, one water mol­ecule and a chloride ligand in a distorted octa­hedral environment. The dihedral angle between the two phen ligands is 84.21 (3)°. In the crystal structure, complex mol­ecules and chloride ions are linked into centrosymmetric four-component clusters by inter­molecular O—H⋯Cl hydrogen bonds. Of the 2.5 solvent water mol­ecules in the asymmetric unit, two were refined as disordered over two sites with fixed occupancies of ratios 0.50:0.50 and 0.60:0.40, while another was refined with half occupancy.

Related literature

1,10-Phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions, see: Nobufumi (1969[Nobufumi, M. (1969). Bull. Chem. Soc. Jpn, 42, 2275-2281.]). Metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone, see: Weijnen et al. (1992[Weijnen, J. G. J., Koudijs, A. & Engbersen, J. F. J. (1992). J. Org. Chem. 57, 7258-7265.]). For some examples of the applications of substituted phenanthroline compounds, see Garuti et al. (1989[Garuti, L., Ferranti, A., Burnelli, S., Varoli, L., Giovanninetti, G., Brigidi, P. & Casolari, A. (1989). Boll. Chim. Farm. 128, 136-140.]). For the crystal structures of related cobalt complexes of 1,10-phenanthroline, see: Sun & Feng (2006[Sun, J.-H. & Feng, X. (2006). Acta Cryst. E62, m3370-m3372.]); Zhong et al. (2006[Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330-m3332.]). For the crystal structure of the title complex with thio­acetamide solvent rather than water, see: Zhong et al. (2007[Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2007). Acta Cryst. E63, m221-m223.]). For the use of metal complexes of 1,10-phenanthroline in developing new diagnostic and therapeutic agents that can recognize and cleave DNA, see: Arai et al. (2005[Arai, T., Hayashi, K., Ozaki, H. & Sawai, H. (2005). Nippon Kagakkai Koen Yokoshu Jpn, 85, 1336-1337.]); Müller et al. (1987[Müller, B. C., Raphael, A. L. & Barton, J. K. (1987). Proc. Natl Acad. Sci. USA, 84, 1764-1768.]). Oxovanadium complexes of dimethyl-substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer, see: Rama Krishna et al. (2000[Rama Krishna, N., Yanhong, D., Osmond, J., D′Cruz, C. N. & Fatih, M. U. (2000). Clin. Cancer Res. 6, 1546-1556.]). Weijnen et al. (1992[Weijnen, J. G. J., Koudijs, A. & Engbersen, J. F. J. (1992). J. Org. Chem. 57, 7258-7265.]); Nobufumi (1969[Nobufumi, M. (1969). Bull. Chem. Soc. Jpn, 42, 2275-2281.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C12H8N2)2(H2O)]Cl·2.5H2O

  • Mr = 553.29

  • Triclinic, [P \overline 1]

  • a = 9.6597 (3) Å

  • b = 11.4386 (3) Å

  • c = 12.9886 (4) Å

  • α = 64.224 (1)°

  • β = 86.377 (2)°

  • γ = 78.303 (1)°

  • V = 1265.01 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.722, Tmax = 0.812

  • 34458 measured reflections

  • 9683 independent reflections

  • 7380 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.138

  • S = 1.10

  • 9683 reflections

  • 343 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl2i 0.90 (2) 2.290 (19) 3.1530 (18) 162 (2)
O1—H1B⋯Cl2ii 0.90 (2) 2.190 (16) 3.0836 (15) 173 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions (Nobufumi, 1969). Complexes of 1,10-phenanthroline are frequently employed for catalytic reactions. For example metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone (Weijnen, et al. 1992). The synthesis of some phenanthroline -2,9-disubstituted compounds along with their in vitro antimicrobial properties against gram-positive and gram – negative bacteria and fungi have been reported (Garuti et al.,1989). Metal complexes of 1,10-phenanthroline have been found to be attractive species for developing new diagnostic and therapeutic agents that can recognize and cleave DNA (Müller et al., 1987, Arai et al., 2005). Experimental evidence has been provided to prove oxovanadium complexes of dimethyl substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer (Rama Krishna, et al. 2000).

The molecular structure of the cation is shown in Fig. 1. The asymmetric unit contains one complex cation a chloride anion and 2.5 molecules of solvent water. The CoII ion is coordinated in a distorted octahedral environment by four nitrogen atoms of two 1,10-phenanthroline ligands, a chloride ion, and a water molecule. The dihedral angle between the two phen ligands is 84.21 (3) °. In the crystal structure, complex molecules and chloride ions are linked into centrosymmetric four component clusters by intermolecular O—H···Cl hydrogen bonds. .

Related literature top

1,10-Phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions, see: Nobufumi (1969). Metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone, see: Weijnen et al. (1992). For some examples of the applications of substituted phenanthroline compounds, see Garuti et al. (1989). For the crystal structures of related cobalt complexes of 1,10-phenanthroline, see: Sun & Feng (2006); Zhong et al. (2006). For the crystal structure of the title complex with thioacetamide solvent rather than water, see: Zhong et al. (2007). For the use of metal complexes of 1,10-phenanthroline in developing new diagnostic and therapeutic agents that can recognize and cleave DNA, see: Arai et al. (2005); Müller et al. (1987). Oxovanadium complexes of dimethyl-substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer, see: Rama Krishna et al. (2000). Weijnen et al. (1992); Nobufumi (1969).

Experimental top

Cobalt(II) chloride hexahydrate was thoroughly grinded and exposed to microwave radiation for 30s. The dehydrated cobalt(II) chloride (0.05 mol) was dissolved in 100 ml of acetone. 1,10-phenanathroline monohydrate (0.1 mol) was dissolved in 100 ml of acetone. The solution of 1,10-phenanathroline was slowly added with constant stirring to the solution of cobalt(II) chloride and allowed to react for two hours. After completion of the reaction, a reddish orange coloured solution was formed. The stirring was stopped and the reaction mixture was allowed to settle for one hour. The reddish orange coloured product was filtered and washed with acetone and dried over a desicator. Single crystals were obtained by slow evaporation of a methanolic solution of the title complex.

Refinement top

H atoms bonded to C atoms were placed in calculated position and included in the refinement in a riding-model approximation with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C). The H atoms bonded to the coordinated water molecule were refined with isotropic displacement parameters. Of the 2.5 solvent water molecules is the asymmetric unit two were refnied as disordered over two sites with fixed occupancies of ration 0.5:0.5 and 0.60:0.40 while another was refined as a partial occupancy of 0.50. The H atoms of the solvent water molecules were not located nor included in the refinement but were included in the molecular formula.

Structure description top

1,10-phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions (Nobufumi, 1969). Complexes of 1,10-phenanthroline are frequently employed for catalytic reactions. For example metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone (Weijnen, et al. 1992). The synthesis of some phenanthroline -2,9-disubstituted compounds along with their in vitro antimicrobial properties against gram-positive and gram – negative bacteria and fungi have been reported (Garuti et al.,1989). Metal complexes of 1,10-phenanthroline have been found to be attractive species for developing new diagnostic and therapeutic agents that can recognize and cleave DNA (Müller et al., 1987, Arai et al., 2005). Experimental evidence has been provided to prove oxovanadium complexes of dimethyl substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer (Rama Krishna, et al. 2000).

The molecular structure of the cation is shown in Fig. 1. The asymmetric unit contains one complex cation a chloride anion and 2.5 molecules of solvent water. The CoII ion is coordinated in a distorted octahedral environment by four nitrogen atoms of two 1,10-phenanthroline ligands, a chloride ion, and a water molecule. The dihedral angle between the two phen ligands is 84.21 (3) °. In the crystal structure, complex molecules and chloride ions are linked into centrosymmetric four component clusters by intermolecular O—H···Cl hydrogen bonds. .

1,10-Phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions, see: Nobufumi (1969). Metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone, see: Weijnen et al. (1992). For some examples of the applications of substituted phenanthroline compounds, see Garuti et al. (1989). For the crystal structures of related cobalt complexes of 1,10-phenanthroline, see: Sun & Feng (2006); Zhong et al. (2006). For the crystal structure of the title complex with thioacetamide solvent rather than water, see: Zhong et al. (2007). For the use of metal complexes of 1,10-phenanthroline in developing new diagnostic and therapeutic agents that can recognize and cleave DNA, see: Arai et al. (2005); Müller et al. (1987). Oxovanadium complexes of dimethyl-substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer, see: Rama Krishna et al. (2000). Weijnen et al. (1992); Nobufumi (1969).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. FMolecular structure of the cation of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing O—H···Cl hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonds have been ommited. The solvent water molecules are not shown.
cis-Aquachloridobis(1,10-phenanthroline- κ2N,N')cobalt(II) chloride 2.5-hydrate top
Crystal data top
[CoCl(C12H8N2)2(H2O)]Cl·2.5H2OZ = 2
Mr = 553.29F(000) = 576
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6597 (3) ÅCell parameters from 7839 reflections
b = 11.4386 (3) Åθ = 2.7–32.5°
c = 12.9886 (4) ŵ = 0.93 mm1
α = 64.224 (1)°T = 293 K
β = 86.377 (2)°Plate, red
γ = 78.303 (1)°0.30 × 0.30 × 0.20 mm
V = 1265.01 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9683 independent reflections
Radiation source: fine-focus sealed tube7380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 33.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.722, Tmax = 0.812k = 1717
34458 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.4443P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
9683 reflectionsΔρmax = 0.72 e Å3
343 parametersΔρmin = 0.42 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (12)
Crystal data top
[CoCl(C12H8N2)2(H2O)]Cl·2.5H2Oγ = 78.303 (1)°
Mr = 553.29V = 1265.01 (6) Å3
Triclinic, P1Z = 2
a = 9.6597 (3) ÅMo Kα radiation
b = 11.4386 (3) ŵ = 0.93 mm1
c = 12.9886 (4) ÅT = 293 K
α = 64.224 (1)°0.30 × 0.30 × 0.20 mm
β = 86.377 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9683 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7380 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.812Rint = 0.028
34458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.72 e Å3
9683 reflectionsΔρmin = 0.42 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6979 (2)0.9429 (3)0.1406 (2)0.0498 (5)
H10.78470.93960.10560.060*
C20.6035 (3)0.8711 (3)0.1298 (3)0.0634 (7)
H20.62800.82050.08910.076*
C30.4749 (3)0.8757 (3)0.1794 (3)0.0593 (6)
H30.41020.82950.17180.071*
C40.4415 (2)0.9510 (2)0.24212 (18)0.0413 (4)
C50.3106 (2)0.9586 (2)0.3001 (2)0.0485 (5)
H50.24200.91550.29360.058*
C60.2858 (2)1.0266 (2)0.36317 (19)0.0444 (5)
H60.20151.02760.40190.053*
C70.38682 (18)1.09809 (18)0.37217 (15)0.0355 (4)
C80.3665 (2)1.1707 (2)0.43717 (17)0.0426 (4)
H80.28441.17370.47820.051*
C90.4674 (2)1.2367 (2)0.44004 (18)0.0436 (4)
H90.45451.28610.48220.052*
C100.5913 (2)1.22959 (19)0.37879 (17)0.0377 (4)
H100.65941.27550.38100.045*
C110.51474 (17)1.09520 (16)0.31430 (14)0.0300 (3)
C120.54289 (17)1.01907 (18)0.24953 (15)0.0319 (3)
C130.9632 (2)1.2764 (2)0.31592 (19)0.0430 (4)
H130.98381.19550.38000.052*
C141.0192 (3)1.3822 (3)0.3113 (3)0.0567 (6)
H141.07591.37110.37130.068*
C150.9900 (3)1.5015 (2)0.2182 (3)0.0565 (6)
H151.02791.57200.21370.068*
C160.9028 (2)1.5171 (2)0.1295 (2)0.0449 (5)
C170.8652 (3)1.6387 (2)0.0285 (3)0.0590 (7)
H170.90021.71230.02010.071*
C180.7806 (3)1.6483 (2)0.0541 (2)0.0606 (7)
H180.75841.72830.11880.073*
C190.7241 (2)1.5380 (2)0.04446 (18)0.0460 (5)
C200.6344 (3)1.5425 (3)0.1270 (2)0.0594 (7)
H200.60941.62040.19330.071*
C210.5838 (3)1.4333 (3)0.1105 (2)0.0579 (6)
H210.52281.43620.16440.069*
C220.6249 (2)1.3163 (2)0.01098 (18)0.0444 (4)
H220.59131.24150.00090.053*
C230.75899 (18)1.41697 (17)0.05320 (15)0.0334 (3)
C240.85017 (18)1.40623 (17)0.14098 (16)0.0334 (3)
O2'0.6535 (14)0.3986 (11)0.6280 (11)0.195 (6)0.40
O20.3871 (11)0.4705 (7)0.6502 (7)0.190 (4)0.60
O30.9469 (11)0.3167 (6)0.6132 (6)0.125 (3)0.50
O3'1.0826 (15)0.2976 (8)0.6422 (8)0.180 (5)0.50
O41.1914 (12)0.4501 (10)0.5278 (7)0.171 (4)0.50
N10.66940 (16)1.01569 (16)0.19855 (14)0.0350 (3)
N20.61525 (15)1.16040 (14)0.31806 (12)0.0299 (3)
N30.88180 (15)1.28706 (15)0.23231 (13)0.0319 (3)
N40.70912 (16)1.30782 (15)0.06895 (13)0.0329 (3)
O10.95884 (15)1.10031 (14)0.11464 (12)0.0382 (3)
Cl10.92546 (5)0.95686 (5)0.38472 (4)0.03919 (11)
Cl20.88362 (6)0.18004 (6)0.86264 (5)0.04968 (13)
Co10.79827 (2)1.13428 (2)0.222016 (18)0.02766 (7)
H1A1.006 (3)1.0167 (13)0.138 (2)0.062 (8)*
H1B0.930 (3)1.129 (3)0.0417 (11)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (11)0.0636 (14)0.0639 (14)0.0216 (10)0.0158 (10)0.0447 (12)
C20.0605 (14)0.0834 (18)0.0834 (19)0.0336 (13)0.0197 (13)0.0640 (17)
C30.0521 (13)0.0754 (17)0.0757 (17)0.0336 (12)0.0103 (12)0.0476 (15)
C40.0346 (9)0.0504 (11)0.0434 (10)0.0180 (8)0.0024 (7)0.0203 (9)
C50.0328 (9)0.0598 (13)0.0524 (12)0.0216 (9)0.0032 (8)0.0187 (10)
C60.0258 (8)0.0540 (11)0.0452 (11)0.0110 (7)0.0057 (7)0.0134 (9)
C70.0270 (7)0.0379 (8)0.0308 (8)0.0038 (6)0.0030 (6)0.0062 (7)
C80.0337 (9)0.0462 (10)0.0366 (9)0.0005 (7)0.0083 (7)0.0114 (8)
C90.0455 (10)0.0461 (10)0.0385 (10)0.0022 (8)0.0072 (8)0.0212 (8)
C100.0383 (9)0.0393 (9)0.0371 (9)0.0065 (7)0.0037 (7)0.0188 (7)
C110.0253 (7)0.0319 (7)0.0263 (7)0.0047 (5)0.0001 (5)0.0069 (6)
C120.0270 (7)0.0362 (8)0.0313 (8)0.0094 (6)0.0004 (6)0.0119 (6)
C130.0411 (10)0.0462 (10)0.0478 (11)0.0080 (8)0.0065 (8)0.0251 (9)
C140.0518 (12)0.0613 (14)0.0757 (17)0.0144 (11)0.0087 (11)0.0440 (13)
C150.0506 (12)0.0496 (12)0.0876 (18)0.0215 (10)0.0092 (12)0.0424 (13)
C160.0410 (10)0.0345 (9)0.0619 (13)0.0133 (7)0.0157 (9)0.0226 (9)
C170.0592 (14)0.0306 (9)0.0793 (18)0.0159 (9)0.0251 (13)0.0165 (10)
C180.0700 (16)0.0306 (9)0.0575 (14)0.0056 (9)0.0199 (12)0.0016 (9)
C190.0458 (10)0.0358 (9)0.0371 (10)0.0030 (8)0.0101 (8)0.0040 (7)
C200.0609 (14)0.0527 (13)0.0353 (10)0.0138 (11)0.0021 (10)0.0023 (9)
C210.0543 (13)0.0698 (16)0.0361 (10)0.0118 (12)0.0160 (9)0.0184 (11)
C220.0410 (10)0.0521 (11)0.0378 (10)0.0014 (8)0.0075 (8)0.0206 (9)
C230.0313 (8)0.0306 (7)0.0312 (8)0.0017 (6)0.0070 (6)0.0094 (6)
C240.0306 (7)0.0305 (7)0.0386 (9)0.0075 (6)0.0086 (6)0.0149 (7)
O2'0.207 (12)0.110 (7)0.169 (10)0.002 (7)0.033 (9)0.015 (7)
O20.282 (10)0.100 (5)0.180 (7)0.020 (5)0.061 (7)0.051 (5)
O30.238 (9)0.059 (3)0.062 (3)0.024 (5)0.029 (5)0.017 (2)
O3'0.349 (16)0.074 (5)0.123 (7)0.049 (8)0.064 (9)0.053 (5)
O40.242 (10)0.192 (9)0.128 (6)0.078 (8)0.062 (7)0.107 (7)
N10.0306 (7)0.0418 (8)0.0396 (8)0.0130 (6)0.0071 (6)0.0221 (7)
N20.0283 (6)0.0313 (6)0.0281 (6)0.0055 (5)0.0021 (5)0.0114 (5)
N30.0306 (7)0.0323 (7)0.0332 (7)0.0076 (5)0.0009 (5)0.0138 (6)
N40.0329 (7)0.0350 (7)0.0289 (7)0.0032 (5)0.0017 (5)0.0137 (6)
O10.0384 (7)0.0389 (7)0.0338 (7)0.0044 (5)0.0073 (5)0.0147 (5)
Cl10.0372 (2)0.0397 (2)0.0311 (2)0.00573 (16)0.00006 (16)0.00724 (16)
Cl20.0557 (3)0.0504 (3)0.0480 (3)0.0067 (2)0.0007 (2)0.0273 (2)
Co10.02642 (11)0.02914 (11)0.02756 (12)0.00822 (8)0.00243 (8)0.01140 (8)
Geometric parameters (Å, º) top
C1—N11.328 (3)C14—H140.9300
C1—C21.394 (3)C15—C161.397 (4)
C1—H10.9300C15—H150.9300
C2—C31.365 (4)C16—C241.406 (3)
C2—H20.9300C16—C171.433 (3)
C3—C41.405 (3)C17—C181.343 (4)
C3—H30.9300C17—H170.9300
C4—C121.401 (2)C18—C191.428 (4)
C4—C51.437 (3)C18—H180.9300
C5—C61.338 (3)C19—C201.397 (4)
C5—H50.9300C19—C231.406 (3)
C6—C71.434 (3)C20—C211.359 (4)
C6—H60.9300C20—H200.9300
C7—C81.401 (3)C21—C221.401 (3)
C7—C111.407 (2)C21—H210.9300
C8—C91.360 (3)C22—N41.318 (3)
C8—H80.9300C22—H220.9300
C9—C101.403 (3)C23—N41.357 (2)
C9—H90.9300C23—C241.432 (3)
C10—N21.322 (2)C24—N31.353 (2)
C10—H100.9300N1—Co12.1389 (15)
C11—N21.354 (2)N2—Co12.1453 (14)
C11—C121.432 (3)N3—Co12.1241 (15)
C12—N11.354 (2)N4—Co12.1738 (15)
C13—N31.329 (2)O1—Co12.1108 (13)
C13—C141.398 (3)O1—H1A0.896 (10)
C13—H130.9300O1—H1B0.898 (10)
C14—C151.363 (4)Cl1—Co12.3835 (5)
N1—C1—C2122.9 (2)C17—C18—C19121.3 (2)
N1—C1—H1118.5C17—C18—H18119.4
C2—C1—H1118.5C19—C18—H18119.4
C3—C2—C1119.5 (2)C20—C19—C23117.1 (2)
C3—C2—H2120.2C20—C19—C18123.8 (2)
C1—C2—H2120.2C23—C19—C18119.1 (2)
C2—C3—C4119.1 (2)C21—C20—C19120.1 (2)
C2—C3—H3120.5C21—C20—H20120.0
C4—C3—H3120.5C19—C20—H20120.0
C12—C4—C3117.69 (18)C20—C21—C22119.1 (2)
C12—C4—C5119.22 (19)C20—C21—H21120.4
C3—C4—C5123.07 (19)C22—C21—H21120.4
C6—C5—C4121.13 (18)N4—C22—C21122.7 (2)
C6—C5—H5119.4N4—C22—H22118.6
C4—C5—H5119.4C21—C22—H22118.6
C5—C6—C7121.14 (18)N4—C23—C19122.64 (19)
C5—C6—H6119.4N4—C23—C24117.64 (15)
C7—C6—H6119.4C19—C23—C24119.72 (18)
C8—C7—C11117.27 (17)N3—C24—C16122.97 (19)
C8—C7—C6123.58 (17)N3—C24—C23117.24 (15)
C11—C7—C6119.15 (18)C16—C24—C23119.78 (18)
C9—C8—C7119.68 (17)C1—N1—C12117.90 (16)
C9—C8—H8120.2C1—N1—Co1128.30 (13)
C7—C8—H8120.2C12—N1—Co1113.80 (12)
C8—C9—C10119.29 (19)C10—N2—C11118.18 (15)
C8—C9—H9120.4C10—N2—Co1128.29 (13)
C10—C9—H9120.4C11—N2—Co1113.53 (11)
N2—C10—C9122.77 (19)C13—N3—C24117.96 (16)
N2—C10—H10118.6C13—N3—Co1127.18 (13)
C9—C10—H10118.6C24—N3—Co1114.83 (12)
N2—C11—C7122.79 (17)C22—N4—C23118.33 (17)
N2—C11—C12117.62 (14)C22—N4—Co1128.70 (14)
C7—C11—C12119.59 (16)C23—N4—Co1112.74 (12)
N1—C12—C4122.85 (17)Co1—O1—H1A116.3 (19)
N1—C12—C11117.43 (15)Co1—O1—H1B114.6 (18)
C4—C12—C11119.72 (16)H1A—O1—H1B107 (3)
N3—C13—C14122.6 (2)O1—Co1—N393.44 (6)
N3—C13—H13118.7O1—Co1—N194.48 (6)
C14—C13—H13118.7N3—Co1—N1166.38 (6)
C15—C14—C13119.6 (2)O1—Co1—N2171.52 (6)
C15—C14—H14120.2N3—Co1—N293.79 (6)
C13—C14—H14120.2N1—Co1—N277.58 (6)
C14—C15—C16119.52 (19)O1—Co1—N485.36 (5)
C14—C15—H15120.2N3—Co1—N477.19 (6)
C16—C15—H15120.2N1—Co1—N492.42 (6)
C15—C16—C24117.4 (2)N2—Co1—N491.91 (5)
C15—C16—C17123.7 (2)O1—Co1—Cl190.18 (4)
C24—C16—C17118.9 (2)N3—Co1—Cl196.39 (4)
C18—C17—C16121.3 (2)N1—Co1—Cl194.66 (5)
C18—C17—H17119.4N2—Co1—Cl193.43 (4)
C16—C17—H17119.4N4—Co1—Cl1171.92 (4)
N1—C1—C2—C30.7 (5)C9—C10—N2—Co1178.68 (14)
C1—C2—C3—C41.1 (5)C7—C11—N2—C100.1 (2)
C2—C3—C4—C120.6 (4)C12—C11—N2—C10179.13 (16)
C2—C3—C4—C5178.1 (3)C7—C11—N2—Co1179.45 (13)
C12—C4—C5—C61.8 (3)C12—C11—N2—Co10.39 (18)
C3—C4—C5—C6176.9 (2)C14—C13—N3—C241.5 (3)
C4—C5—C6—C72.1 (3)C14—C13—N3—Co1176.37 (17)
C5—C6—C7—C8179.9 (2)C16—C24—N3—C131.9 (3)
C5—C6—C7—C110.6 (3)C23—C24—N3—C13178.24 (17)
C11—C7—C8—C91.4 (3)C16—C24—N3—Co1176.25 (14)
C6—C7—C8—C9179.36 (19)C23—C24—N3—Co13.6 (2)
C7—C8—C9—C100.8 (3)C21—C22—N4—C230.7 (3)
C8—C9—C10—N20.3 (3)C21—C22—N4—Co1174.82 (17)
C8—C7—C11—N21.0 (3)C19—C23—N4—C220.1 (3)
C6—C7—C11—N2179.73 (16)C24—C23—N4—C22179.86 (17)
C8—C7—C11—C12178.05 (16)C19—C23—N4—Co1175.15 (14)
C6—C7—C11—C121.2 (3)C24—C23—N4—Co15.10 (19)
C3—C4—C12—N10.5 (3)C13—N3—Co1—O198.21 (17)
C5—C4—C12—N1179.22 (19)C24—N3—Co1—O179.76 (12)
C3—C4—C12—C11178.9 (2)C13—N3—Co1—N1136.3 (2)
C5—C4—C12—C110.1 (3)C24—N3—Co1—N145.7 (3)
N2—C11—C12—N11.3 (2)C13—N3—Co1—N286.24 (17)
C7—C11—C12—N1177.80 (16)C24—N3—Co1—N295.79 (12)
N2—C11—C12—C4179.35 (17)C13—N3—Co1—N4177.34 (17)
C7—C11—C12—C41.6 (3)C24—N3—Co1—N44.69 (12)
N3—C13—C14—C150.1 (4)C13—N3—Co1—Cl17.64 (17)
C13—C14—C15—C161.0 (4)C24—N3—Co1—Cl1170.32 (12)
C14—C15—C16—C240.7 (3)C1—N1—Co1—O14.1 (2)
C14—C15—C16—C17179.6 (2)C12—N1—Co1—O1175.11 (13)
C15—C16—C17—C18179.8 (2)C1—N1—Co1—N3129.5 (3)
C24—C16—C17—C180.4 (3)C12—N1—Co1—N349.7 (3)
C16—C17—C18—C190.3 (4)C1—N1—Co1—N2179.0 (2)
C17—C18—C19—C20179.3 (2)C12—N1—Co1—N21.85 (13)
C17—C18—C19—C230.5 (3)C1—N1—Co1—N489.6 (2)
C23—C19—C20—C210.6 (3)C12—N1—Co1—N489.58 (13)
C18—C19—C20—C21179.1 (2)C1—N1—Co1—Cl186.5 (2)
C19—C20—C21—C221.1 (4)C12—N1—Co1—Cl194.34 (13)
C20—C21—C22—N41.2 (4)C10—N2—Co1—O1160.7 (3)
C20—C19—C23—N40.1 (3)C11—N2—Co1—O119.8 (4)
C18—C19—C23—N4179.69 (18)C10—N2—Co1—N312.39 (16)
C20—C19—C23—C24179.81 (18)C11—N2—Co1—N3168.16 (12)
C18—C19—C23—C240.1 (3)C10—N2—Co1—N1178.27 (17)
C15—C16—C24—N30.8 (3)C11—N2—Co1—N11.18 (11)
C17—C16—C24—N3178.91 (19)C10—N2—Co1—N489.67 (16)
C15—C16—C24—C23179.33 (18)C11—N2—Co1—N490.87 (12)
C17—C16—C24—C230.9 (3)C10—N2—Co1—Cl184.26 (15)
N4—C23—C24—N31.1 (2)C11—N2—Co1—Cl195.20 (11)
C19—C23—C24—N3179.10 (16)C22—N4—Co1—O185.00 (17)
N4—C23—C24—C16179.01 (16)C23—N4—Co1—O189.41 (12)
C19—C23—C24—C160.7 (3)C22—N4—Co1—N3179.59 (18)
C2—C1—N1—C120.3 (4)C23—N4—Co1—N35.19 (11)
C2—C1—N1—Co1178.9 (2)C22—N4—Co1—N19.31 (17)
C4—C12—N1—C10.9 (3)C23—N4—Co1—N1176.29 (12)
C11—C12—N1—C1178.44 (19)C22—N4—Co1—N286.96 (17)
C4—C12—N1—Co1178.38 (15)C23—N4—Co1—N298.64 (12)
C11—C12—N1—Co12.3 (2)C22—N4—Co1—Cl1141.7 (3)
C9—C10—N2—C110.7 (3)C23—N4—Co1—Cl132.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.90 (2)2.29 (2)3.1530 (18)162 (2)
O1—H1B···Cl2ii0.90 (2)2.19 (2)3.0836 (15)173 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[CoCl(C12H8N2)2(H2O)]Cl·2.5H2O
Mr553.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6597 (3), 11.4386 (3), 12.9886 (4)
α, β, γ (°)64.224 (1), 86.377 (2), 78.303 (1)
V3)1265.01 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.722, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
34458, 9683, 7380
Rint0.028
(sin θ/λ)max1)0.775
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.138, 1.10
No. of reflections9683
No. of parameters343
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.90 (2)2.290 (19)3.1530 (18)162 (2)
O1—H1B···Cl2ii0.90 (2)2.190 (16)3.0836 (15)173 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z1.
 

Acknowledgements

The authors are thankful to Rev. Fr Dr A. Albert Muthumali, S.J., Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArai, T., Hayashi, K., Ozaki, H. & Sawai, H. (2005). Nippon Kagakkai Koen Yokoshu Jpn, 85, 1336–1337.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaruti, L., Ferranti, A., Burnelli, S., Varoli, L., Giovanninetti, G., Brigidi, P. & Casolari, A. (1989). Boll. Chim. Farm. 128, 136–140.  CAS PubMed Google Scholar
First citationMüller, B. C., Raphael, A. L. & Barton, J. K. (1987). Proc. Natl Acad. Sci. USA, 84, 1764–1768.  PubMed Web of Science Google Scholar
First citationNobufumi, M. (1969). Bull. Chem. Soc. Jpn, 42, 2275–2281.  Google Scholar
First citationRama Krishna, N., Yanhong, D., Osmond, J., D′Cruz, C. N. & Fatih, M. U. (2000). Clin. Cancer Res. 6, 1546–1556.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J.-H. & Feng, X. (2006). Acta Cryst. E62, m3370–m3372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeijnen, J. G. J., Koudijs, A. & Engbersen, J. F. J. (1992). J. Org. Chem. 57, 7258–7265.  CrossRef CAS Web of Science Google Scholar
First citationZhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330–m3332.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhong, H., Zeng, X.-R. & Luo, Q.-Y. (2007). Acta Cryst. E63, m221–m223.  Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds